
Size homotopy groups for computation of

natural size distances

Patrizio Frosini Michele Mulazzani

Abstract

For every manifold M endowed with a structure described by a function
from M to the vector space Rk, a parametric family of groups, called size
homotopy groups, is introduced and studied. Some lower bounds for natural
size distances are obtained in this way.

1 Introduction

Size Theory is a new approach to the problem of comparing manifolds endowed
with a structure represented by an Rk-valued function. Apart from the intrinsic
and classical mathematical interest in this subject (think of the study of metric and
conformal structures on manifolds), this theory has a strong motivation in Computer
Vision for problems of Shape Recognition and Image Analysis and has turned out
to be useful for several applications (see [4], [12], [13], [14], [15], [16] and [17]). On
the other hand, mathematical problems arising in Computer Vision require new
geometrical techniques (cf. [3], [11] and also the nice informal paper [2]).

In previous papers ([5], [6], [7], [8] and [9]) Size Theory was basically founded
on two related concepts: natural size distances and size functions. Natural size dis-
tances are a tool for measuring the “difference” between two homeomorphic mani-
folds, on each of which a continuous Rk-valued function, called measuring function,
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is defined. The basic idea is very simple: we shall measure how much the measur-
ing function changes when going homeomorphically from the first manifold to the
second. This approach can then be used to measure how similar, or isometric, or
conformal, etc, two manifolds are. Natural size distances are very useful from the
applicative viewpoint, too, since they allow us to compare “shapes of objects” (think
of the problem of classifying two “bottles” as the same object and of distinguishing
them from a “glass”).

Size functions are used for the same task but they are much easier to compute
than natural size distances, for which they give lower bounds. More precisely, size
functions are integer functions of two real variables giving metric obstructions to
the classical notion of homotopy (see also Remark 2). Thus, size functions convey
information both on topological and metric properties of the manifold describing the
viewed shape. However, such a point of view lacks algebraic structure and therefore
does not have a satisfactory connection with the classical concept of homotopy
groups. In this paper we shall try to fill this gap by means of size homotopy groups:
algebraic structures easily able to give computable lower bounds for natural size
distances. Concerning the use of metric constraints on homotopy groups, although
used in a different way from this article, see also [10].

A size homotopy group is a group depending on two vector parameters ξ,η ∈ Rk,
such that ξ � η (i.e. ξi ≤ ηi, for every index i). The leading idea is to consider

the class of loops in the topological space Mξ
def
= {P ∈ M | ϕ(P ) � ξ}, based

at a fixed point P ′ ∈ Mξ, where ϕ = (ϕ1, ϕ2, . . . , ϕk) : M → Rk is the chosen

measuring function onM. Two based loops inMξ are considered equivalent if they

are (pointed) homotopic in the larger topological spaceMη. The set of equivalence
classes of loops has a natural group structure and is called the first size homotopy
group. The core of this paper is the proof that we can obtain lower bounds for
natural size distances using size homotopy groups (Theorems 7 and 10).

In Section 2 we shall review the concept of natural size distance, while the main
results regarding the relations between natural size distances and size homotopy
groups will be given in Section 3.

From now on, the symbol ∼= will denote both homeomorphism between topolog-
ical spaces and isomorphism between groups.

2 Natural size distances

The environment in which we formalize this concept is the following. Consider
the category Sizek whose objects are the size pairs (M,ϕ), where M is a closed
C0-manifold and ϕ = (ϕ1, ϕ2, . . . , ϕk) :M→ Rk is a continuous function called k-
dimensional measuring function, and whose morphisms from (M,ϕ) to (N ,ψ) are
the homeomorphisms fromM to N . The set of such morphisms will be denoted by
H(M,N ). As usual, by Obj(Sizek) and Mor(Sizek) we shall denote respectively
the class of objects and the class of morphisms of Sizek. Now we shall give the
definition of natural size distance, assuming Rk endowed with the usual norm of
maximum: ‖(ξ1, ξ2, . . . , ξk)‖∞ = max1≤i≤k |ξi|.
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Definition 1. Let Θk : Mor(Sizek) → R be the function defined by Θk(f) =
maxP∈M ‖ϕ(P ) − ψ(f(P ))‖∞, for any f ∈ H(M,N ). We call Θk the natural size
measure on Mor(Sizek).

In plain words, Θk measures how much f “changes” the values taken by the
measuring function.

Proposition 2. Let Σk : Obj(Sizek) × Obj(Sizek) → R ∪ {+∞} be the function
defined by setting Σk((M,ϕ), (N ,ψ)) = inff∈H(M,N ) Θk(f) if H(M,N ) 6= ∅ and
+∞ otherwise. Then Σk is a pseudometric on Obj(Sizek).

Proof. Trivial. �

Definition 3. The metric σk induced by the pseudometric Σk will be called the
natural size distance on Obj(Sizek)/ ≈, where ≈ denotes the equivalence relation
defined by setting (M,ϕ) ≈ (N ,ψ) if and only if Σk((M,ϕ), (N ,ψ)) = 0. The
equivalence class of (M,ϕ) will be denoted by the symbol [(M,ϕ)].

More details about the passage from a pseudometric to a metric can be found
in [1]. The term “natural” is used since the previous way to define a pseudometric
between manifolds is a particular case of a more general method illustrated in [9].
That paper also states the main properties of natural size distances.

Remark 1. For the sake of conciseness, we shall often use the symbols Θ and σ
respectively instead of Θk and σk, whenever no possibility of confusion may arise.

Before going on, we shall give some simple examples of natural size distances.

Example 1. Let (M,ϕ), (N ,ψ) ∈ Obj(Sizek) such that ϕ = ψ ◦ f for a certain
homeomorphism f :M→N . Since Θ(f) = 0, we get σ([(M,ϕ)], [(M,ψ)]) = 0.

Example 2. Consider the unit sphere S ⊆ R3 of equation x2 + y2 + z2 = 1 and the
ellipsoid E ⊆ R3 of equation x2+4y2+9z2 = 1. Let ϕ : S → R and ψ : E → R be the
Gaussian curvatures of the surfaces. We obtain σ([(S, ϕ)], [(E, ψ)]) = 35. In fact,
ϕ(S) = {1} and ψ(E) = [4/9, 36], and therefore Θ(f) = 35, for every f ∈ H(S, E).

Example 3. Take a torus T and the two Riemannian metrics defined on T in toroidal
coordinates (α, β) respectively by ds2 = dα2 + dβ2 and ds2 = dα2 + (2 + cosα)2dβ2.
Now, we consider the size pairs (T , ϕ) and (T , ψ), where ϕ, ψ : T → R are the
Gaussian curvatures of T associated to the two metrics.
We then have σ([(T , ϕ)], [(T , ψ)]) = 1. In fact, ϕ(T ) = {0} and ψ(T ) = [−1, 1/3]
and therefore Θ(f) = 1, for every f ∈ H(T , T ).

Example 4. Let C1, C2 ⊆ R3 be the closed curves of parametric equations γ1(t) =
(cos t, sin t, 0) and γ2(t) = (cos t, sin t, sin t cos t) for 0 ≤ t ≤ 2π. If κ and τ denote
respectively the curvature and the torsion of the curves, then take both ϕ : C1 → R2

and ψ : C2 → R2 as the pair (κ, τ ). Since ϕ(C1) = {(1, 0)}, κ(C2) = [1/2,
√

5],
τ (C2) = [−3/4, 3/4] we have Θ(f) =

√
5− 1, for every f ∈ H(C1, C2), and therefore

σ([(C1,ϕ)], [(C2,ψ)]) =
√

5− 1.
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Before proceeding, we wish to point out that using natural size distances (pos-
sibly with a different choice of morphisms in the category) we can express several
mathematical concepts. For example, if M and N are two closed C0-submanifolds
of a Euclidean space, the congruence relation between M and N can be expressed
in terms of size distances. Let us take the size pairs (M×M, ϕ), and (N ×N , ψ),
where ϕ(P1, P2) = ‖P1 − P2‖2 and ψ(Q1, Q2) = ‖Q1 −Q2‖2. It is possible to prove
that the natural size distance between [(M×M, ϕ)], and [(N × N , ψ)] vanishes
if and only if M and N are congruent (here the “right” set of morphisms from
(M ×M, ϕ) to (N × N , ψ) is the set of homeomorphisms f × f , where f is a
homeomorphism from M to N ).

Analogously, using natural size distances we can express similarity or isometry
between M and N or even simpler concepts, such as “having the same number of
bumps”, that can be used for applicative tasks.

Unfortunately, natural size distances are in general much more difficult to com-
pute than in the previous examples. We observe that in each of these examples the
computation of σ is trivial. In fact, we can find a morphism f such that Θ(f) equals
the Hausdorff distance dH(Im(ϕ), Im(ψ)) between the image sets. Since Θ(g) ≥ dH ,
for every morphism g, it is obvious that σ = Θ(f) = dH . However, this is not gen-
erally the case and the computation of σ is much more difficult. We also point out
that in Examples 2, 3 and 4 the images of ϕ and ψ are different sets and therefore
σ > 0.

Since the direct computation of natural size distances is hard to perform, size
functions have been introduced (see [5], [6], [7], [8] and [9]) to obtain useful lower
bounds. In fact, they are easily computable, even from an algorithmic point of
view. The approach to size functions arises from a direct generalization of the
concept of homotopy, but it leads to “objects” lacking in algebraic structure. So, on
the one hand, size functions do not correspond to the classical concept of homotopy
groups while, on the other hand, their lack of algebraic structure reduces their
ability to distinguish between “objects”. For this purpose in the next Section we
shall introduce the concept of the size homotopy group, an algebraic tool which
allows us to obtain more efficient lower bounds for natural size distances.

3 Size homotopy groups

Consider a size pair (M,ϕ) and ξ � η ∈ Rk, such that Mξ 6= ∅. For every

fixed point P ∈ Mξ, let LP (ξ) be the set of loops in Mξ based at P . Two

loops α, β ∈ LP (ξ) are said to be (ϕ � η) -homotopic if and only if there exists a
homotopy from α to β, pointed at P , in the space Mη (such a homotopy will be
called a (ϕ � η)-homotopy).

Definition 4. The quotient of the space of loops LP (ξ) modulo the equivalence
relation of (ϕ � η)-homotopy admits a natural structure of group. We shall call it
the first size homotopy group of (M,ϕ), based at P and associated to (ξ,η). We
shall denote this group by π1((M,ϕ), P, (ξ,η)) (or simply by π1(ξ,η), when the
size pair and the base point are clearly specified).
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Remark 2. The previous definition could be naturally extended in order to define the
concept of i-th size homotopy group. It is interesting to point out that, for i = 0, we
obtain a set π0(ξ,η), whose cardinality equals the value of the size function `(M,ϕ)

at (ξ,η) (cf. [9]).

As a simple example of size homotopy groups we give the following:

Example 5. Consider the sphere S ⊆ R3 of equation x2 + y2 + z2 = 1 and set
ϕ(x, y, z) = |z| for every (x, y, z) ∈ S. Moreover, choose P = (1, 0, 0) as base point.
The following statements hold when 0 ≤ ξ ≤ η:

1. if η < 1, then π1((S, ϕ), P, (ξ, η)) ∼= Z;

2. if η ≥ 1, then π1((S, ϕ), P, (ξ, η)) is a trivial group.

Remark 3. If Mξ 6= ∅, then π1((M,ϕ), P, (ξ,η)) is naturally isomorphic to the

subgroup i#(π1(Mξ, P )) of π1(Mη , P ), where i# is the homomorphism between

fundamental groups, canonically induced by the inclusion map i : Mξ →Mη . In

particular, for every η ∈ Rk and for a fixed base point, the size homotopy group
π1(η,η) coincides with the fundamental group of the space Mη .

The natural isomorphism between size homotopy groups and subgroups of the
fundamental group of a suitable space prompts us to introduce the following nota-
tions.

Let M1 ⊆ M2 be non-empty topological spaces and P ∈ M1. If i : M1 →
M2 is the inclusion map, we define the group π̃1(M1,M2, P )

def
= i#(π1(M1, P )).

Obviously π̃1(M1,M2, P ) ≤ π1(M2, P ) (the symbol ≤ means “subgroup of”) and,
by the first homomorphism theorem, π̃1(M1,M2, P ) ∼= π1(M1, P )/ker(i#).

The above notation provides a different way of looking at size homotopy groups.
In fact, if (M,ϕ) is a size pair and ξ � η ∈ Rk, then Mξ ⊆ Mη. Therefore, for

each P ∈Mξ, we have π1((M,ϕ), P, (ξ,η)) ∼= π̃1(Mξ,Mη, P ).

Lemma 5. If M1 ⊆ M2 ⊆ M3 ⊆ M4 are topological spaces, then the group
π̃1(M1,M4, P ) is a subgroup of a quotient of π̃1(M2,M3, P ), for each P ∈M1.

Proof. Let ihk : Mh →Mk be the inclusion maps (for 1 ≤ h ≤ k ≤ 4). We easily
obtain :

π̃1(M1,M4, P ) = i14#(π1(M1, P )) = i24# ◦ i12#(π1(M1, P ))

= i24#(π̃1(M1,M2, P )) ≤ i24#(π1(M2, P )) = π̃1(M2,M4, P ).

Since

π̃1(M2,M4, P ) = i34# ◦ i23#(π1(M2, P ))

= i34#(π̃1(M2,M3, P )) ∼= π̃1(M2,M3, P )/ker(j),

where j = i34#|π̃1(M2,M3,P ), the result is obtained. �
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The main property of size homotopy groups is given by the following:

Proposition 6. Assume that h = (h1, h2, . . . , hk) ∈ Rk verifies the condition
σ([(M,ϕ)], [(N ,ψ)]) < hi for every index i. Then for every ξ,η ∈ Rk such that
ξ + h � η − h and for every point P ∈Mξ the following statement holds:

(∗) There exists a point Q ∈ Nξ+h, with |ψi(Q) − ϕi(P )| < hi for every index

i, such that the group π1((M,ϕ), P, (ξ,η)) is isomorphic to a subgroup of a
quotient of π1((N ,ψ), Q, (ξ + h,η − h)).

Proof. We can take a homeomorphism f ∈ H(M,N ), such that Θ(f) < hi for every
index i. Moreover, Mξ

∼= f(Mξ) ⊆ Nξ+h ⊆ Nη−h ⊆ f(Mη) ∼= Mη and, since

f is a homeomorphism,

π1((M,ϕ), P, (ξ,η)) ∼= π̃1(Mξ,Mη , P ) ∼= π̃1(f(Mξ), f(Mη), Q),

where Q = f(P ). By Lemma 5, the group π̃1(f(Mξ), f(Mη), Q) is isomorphic to

a subgroup of a quotient of π̃1(Nξ+h,Nη−h, Q) ∼= π1((N ,ψ), Q, (ξ+ h,η− h)). �

In order to make the assertion of this proposition clear, we provide an example.

Example 6. In R3 consider the 2-spheres S1 and S2 of equations x2 +y2 +z2 = 4 and
x2 + y2 + z2 = 9, respectively. Then consider the model of the projective plane P1

(resp. P2) obtained as the set of pairs of antipodal points in S1 (resp. S2), denoted
by [(x, y, z)]. We define the measuring functions ϕ : P1 → R and ψ : P2 → R by
[(x, y, z)] 7→ z2. We obtain σ([(P1, ϕ)], [(P2, ψ)]) = 5, that is the Hausdorff distance
between ϕ(P1) and ψ(P2). For 0 ≤ ξ ≤ η the following statements hold (assume
P = [(2, 0, 0)] and Q = [(3, 0, 0)]):

π1((P1, ϕ), P, (ξ, η)) ∼=
{
Z if η < 4
Z2 if η ≥ 4

; π1((P2, ϕ), Q, (ξ, η)) ∼=
{
Z if η < 9
Z2 if η ≥ 9

.

In particular π1

(
(P1, ϕ), P, (0, 12)) ∼= Z2 and π1

(
(P2, ψ), Q, (6, 6)) ∼= Z. Compare

this fact with the assertion of Proposition 6 (set M = P1, N = P2, ξ = 0, η = 12
and h = 6).

Now we state the main result of this work.

Theorem 7. Assume there exist ξ̄, η̄, ξ̂, η̂ ∈ Rk with ξ̄ � η̄, ξ̂ � η̂ and a point
P ∈M¯ξ such that the following property holds:

(⊗) For each point Q ∈ N
ξ̂

, such that |ψi(Q)−ϕi(P )| < hi
def
= min{ξ̂i−ξ̄i, η̄i−η̂i} for

every index i, the group π1((M,ϕ), P, (ξ̄, η̄)) is not isomorphic to a subgroup
of any quotient of π1((N ,ψ), Q, (ξ̂, η̂)).

Then σk([(M,ϕ)], [(N ,ψ)]) ≥ min1≤i≤k hi.
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Proof. On the contrary, suppose σk([(M,ϕ)], [(N ,ψ)]) < h = min1≤i≤k hi. There-
fore, we can take a homeomorphism f : M → N such that Θk(f) < h. If we
define h = (h1, h2, . . . , hk), then ξ̂ � ξ̄ + h, η̄ − h � η̂ and we have f(M¯ξ) ⊆
N¯ξ+h ⊆ Nξ̂ ⊆ Nη̂ ⊆ Nη̄−h ⊆ f(Mη̄). So, the point Q = f(P ) belongs

to N
ξ̂

, with |ψi(Q) − ϕi(P )| < hi for every index i. By Lemma 5 the group

π̃1(f(M¯ξ), f(Mη̄), Q) ∼= π̃1(M¯ξ,Mη̄, P ) ∼= π1((M,ϕ), P, (ξ̄, η̄)) is isomorphic

to a subgroup of a quotient of π̃1(Nξ̂,Nη̂, Q) ∼= π1((N ,ψ), Q, (ξ̂, η̂)) and this is

a contradiction. �

Now let (N ,ψ) be a size pair such that N is a C1-submanifold of a Euclidean
space and ψ ∈ C1(N ,Rk). A point P ∈ N will be called pseudo-critical for ψ if the
convex hull of the set {∇ψ1,∇ψ2, . . . ,∇ψk} contains the null vector of the tangent
space of N at P . We shall denote the set of pseudo-critical points of N by C(N ,ψ).

Notice that, when k = 1, all pseudo-critical points are genuine critical points for
ψ.

Lemma 8. If P /∈ C(N ,ψ) then there exists a path λ : [0, 1]→ N , with λ(0) = P
and ψ(λ(t)) � ψ(P ) for each t, such that λ(1) ∈ C(N ,ψ).

Proof. First of all, define ξ = ψ(P ) and for each δ > 0, let δ = (δ, δ, . . . , δ) (k times).
If P /∈ C(N ,ψ), then there exists a vector v belonging to the tangent space of N at
P , such that ∇ψi · v < 0 for every i. So, there exist δ > 0, a point P ′ ∈ Nξ−δ and

a path γ from P to P ′, such that each ψi ◦ γ is strictly decreasing. Now, let Γ be
the arc-connected component of P ′ in Nξ and define Γδ = Γ∩Nξ−δ. We show that

Γδ is a closed subspace of N and therefore is compact. Let (Rn)n∈N be a sequence
of points of Γδ converging to a point R. Of course, R ∈ Nξ−δ and, furthermore,

there exists an (arc-connected) open neighborhood UR of R, such that UR ⊆ Nξ.

For a suitable n̄ ∈ N, the point Rn̄ belongs to UR and it is easy to take a path in Nξ
from P ′ to R, via Rn̄. Therefore, R also belongs to Γ and, as a consequence, Γδ is
compact. Now, if Q′ is a global minimum point for the restriction of ψ1 to Γδ, then
the path λ = γ ∗ γ′, where γ′ is any path in Nξ from P ′ to Q′, gives the statement.

For, if Q′ /∈ C(N ,ψ), then we can take a path ρ : [0, 1] → N such that ρ(0) = Q′

and each ψi ◦ ρ is strictly decreasing. Obviously, ρ(t) ∈ Nξ−δ for every t ∈ [0, 1]

and, since ψ1(ρ(1)) < ψ1(Q′), we get the contradiction. �

As a consequence we obtain the following:

Proposition 9. Assume that h = (h1, h2, . . . , hk) ∈ Rk verifies the condition hi >
σ([(M,ϕ)], [(N ,ψ)]) for every index i. Then for every ξ,η ∈ Rk with ξ+h � η−h
and every point P ∈Mξ the following statement holds:

(�) There exists a point R ∈ Nξ+h ∩C(N ,ψ) such that the group

π1((M,ϕ), P, (ξ,η))

is isomorphic to a subgroup of a quotient of π1((N ,ψ), R, (ξ + h,η − h)).
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Proof. Let Q be the point of Proposition 6. If Q ∈ C(N ,ψ) the thesis is proved by
settingR = Q. IfQ 6∈ C(N ,ψ), then there exists, by the previous lemma, a continu-
ous path λ inNξ+h from Q to a pseudo-critical point Q′. We take R = Q′ and, since

the homomorphism λ# : π1((N ,ψ), Q, (ξ+h,η−h))→ π1((N ,ψ), Q′, (ξ+h,η−h))
defined by λ#([α]) = [λ−1 ∗ α ∗ λ] is an isomorphism, the statement follows from
Proposition 6. �

One can prove the following, in the same way as Theorem 7.

Theorem 10. Assume there exist ξ̄, η̄, ξ̂, η̂ ∈ Rk with ξ̄ � η̄, ξ̂ � η̂ and a point
P ∈M¯ξ such that the following property holds:

(⊕) For each point R ∈ N
ξ̂
∩C(N ,ψ), the group π1((M,ϕ), P, (ξ̄, η̄)) is not iso-

morphic to a subgroup of any quotient of π1((N ,ψ), R, (ξ̂, η̂)).

Then σk([(M,ϕ)], [(N ,ψ)]) ≥ min1≤i≤k
{

min{ξ̂i − ξ̄i, η̄i − η̂i}
}

.

We point out that Theorems 7 and 10 allow us to obtain lower bounds for natural
size distances, from the knowledge of the size homotopy groups π1((N ,ψ), Q, (ξ̂, η̂))
and π1((M,ϕ), P, (ξ̄, η̄)), by varying Q and P . Since the direct computation of
σ([(M,ϕ)], [(N ,ψ)]) requires the study of all homeomorphisms from M to N , the
usefulness of our approach is clear. Now we shall give an example of this procedure.

Example 7. Consider the two tori T , T ′ ⊂ R3 generated by the rotation around
the y-axis of the circles lying in the plane yz and with centers A = (0, 0, 3) and
B = (0, 0, 4), and radii 2 and 1, respectively (see Figure 1). As measuring function ϕ
(resp. ϕ′) on T (resp. on T ′) we take the restriction to T (resp. to T ′) of the function
ζ : R3 → R, ζ(x, y, z) = z. We point out that, for both T and T ′, the image of the
measuring function is the closed interval [−5, 5]. We want to prove that the natural
size distance between [(T , ϕ)] and [(T ′, ϕ′)] is 2. In order to do that, let us consider
the homeomorphism f , that takes each point of the former torus to the point having
the same toroidal coordinates in the latter. We can easily verify that Θ(f) = 2. So
we have only to prove that σ([(T , ϕ)], [(T ′, ϕ′)]) ≥ 2. This inequality follows from
Theorem 7 by choosing P = (0, 0,−5), ξ̄ = 1, η̄ = 5−δ, ξ̂ = η̂ = 3−δ and observing
that if δ is any small enough positive number, then π1((T , ϕ), P, (1, 5− δ)) ∼= Z ∗Z
and π1((T ′, ϕ′), R, (3− δ, 3− δ)) ∼= Z for each R ∈ T ′3−δ. From Theorem 7 we obtain
σ([(T , ϕ)], [(T ′, ϕ′)]) ≥ min{(3− δ)− 1, (5− δ)− (3− δ)} = 2− δ. This implies the
desired inequality.

Observe that, in Example 7, the natural size distance is strictly greater than the
(vanishing) Hausdorff distance between the images of the two measuring functions.

It is also interesting to point out that, in our example, size homotopy groups
give more information than size functions. In fact, the size functions of (T , ϕ) and
(T ′, ϕ′) are both trivial and therefore do not give any positive lower bound for the
natural size distance.

Acknowledgements. The authors wish to thank M. Ferri and L. Verardi for
their helpful advice.
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Figure 1: Theorem 7 allows us to prove that σ([(T , ϕ)], [(T ′, ϕ′)]) = 2.
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