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Our basic questions

We are interested in these questions:

• Is there a general metric model to compare data in TDA?

• What should be the role of the observer in such a model?

• How could we approximate the metric used in that model?

Our talk will be devoted to illustrate these questions and to propose
some answers by means of a mathematical approach based on
persistent homology and group invariant non-expansive operators.
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Assumptions in our model

Truth often depends on the observer’s perspective:

Multiple perspectives are usually unavoidable! In the past this
observation was mostly confined to the philosophical debate, but
nowadays it starts to be quite relevant also in several scientific
applications involving Information Technology.
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Assumptions in our model

We will make these assumptions:

1. No object can be studied in a direct and absolute way. Any object
is only knowable through acts of measurement made by an
observer.

2. Any act of measurement can be represented as a function defined
on a topological space.

3. The observer usually acquires measurement data by applying
operators to the functions describing these data. These operators
are frequently endowed with some invariances that are relevant for
the observer.

4. Only the observer is entitled to decide about data similarity.
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Assumptions in our model
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An example of measurement
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Another example of measurement
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Another example of measurement
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An example of operator
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Choice of the operators

• The observer cannot usually choose the functions representing the
measurement data, but he/she can often choose the operators that
will be applied to those functions.

• The choice of the operators reflects the invariances that are
relevant for the observer.

• In some sense we could state that the observer can be represented
as a collection of (suitable) operators, endowed with the invariance
he/she has chosen.

In the first part of this talk we will mainly examine the case of
operators that act on a space Φ of continuous functions and take Φ
to itself. We will also assume that these operators preserve the
self-homeomorphisms of X .
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From comparing sets in Rn to comparing functions

Instead of directly focusing on the objects we are interested in, we
focus on the filtering functions describing the measurements we make
on them, and on the “glasses” that we use “to observe” the
functions. In our approach, these “glasses” are G -operators which act
on the filtering functions.
These operators represent the observer’s perspective.

In some sense, the family of operators defines the observer.
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Natural pseudo-distance associated with a group G

First of all we need a definition allowing us to formalize the
comparison of data in our model.

Definition

Let X be a compact space. Let G be a subgroup of the group
Homeo(X ) of all homeomorphisms f : X → X . The pseudo-distance
dG : C 0(X ,R)×C 0(X ,R)→ R defined by setting

dG (ϕ,ψ) = inf
g∈G

max
x∈X
|ϕ(x)−ψ(g(x))|

is called the natural pseudo-distance associated with the group G .

In plain words, the definition of dG is based on the attempt of finding
the best correspondence between the functions ϕ,ψ by means of
homeomorphisms in G .
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A possible objection

A possible objection: “The use of the group of homeomorphisms
makes the natural pseudo-distance dG difficult to apply. For example,
in shape comparison two objects are usually not homeomorphic, hence
this pseudo-metric cannot be applied to real problems.”

This objection can be faced by recalling that the homeomorphisms
do not concern the “objects” but the space where the
measurements are made. For example, if we take a grey level
image, our measurement space can be modelled as the real plane and
each image can be represented as a function from R2 to R. Therefore,
the space X is not given by the (possibly non-homeomorphic) objects
displayed in the picture, but by the topological space R2.
Analogously, each subset of the 3D space can be associated with a
probability density describing the probability that each point p ∈ R3

belongs to the considered object. In this case the space X is R3.
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G -invariant non-expansive operators

The natural pseudo-distance dG represents our ground truth.

Unfortunately, dG is difficult to compute. This is also a consequence
of the fact that we can easily find subgroups G of Homeo(X ) that
cannot be approximated with arbitrary precision by smaller finite
subgroups of G (i.e. G = group of rigid motions of X = R3).

Nevertheless, in this talk we will show that dG can be approximated
with arbitrary precision by means of a DUAL approach based on
persistent homology and G -invariant non-expansive operators.

This research is based on an ongoing joint research project with
Grzegorz Jab loński (Jagiellonian University - Poland and IST -

Austria)
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G -invariant non-expansive operators

Let us consider the following objects:

• A triangulable space X with nontrivial homology in degree k .

• A set Φ of continuous functions from X to R, containing at least
the set of the constant functions taking every finite value c with
|c| ≤ supϕ∈Φ ‖ϕ‖∞.

• A topological subgroup G of Homeo(X ) that acts on Φ by
composition on the right.

• A subset F of the set F all(Φ,G ) of all non-expansive G -operators
from Φ to Φ.
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The operator space F all(Φ,G )

In plain words, F ∈F all(Φ,G ) means that

1. F : Φ→ Φ

2. F (ϕ ◦g) = F (ϕ)◦g . (F is a G -operator)

3. ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞. (F is non-expansive)

The operator F is not required to be linear.

Some simple examples of F , taking Φ equal to the set of all
continuous functions ϕ : S1→ R and G equal to the group of all
rotations of S1:

• F (ϕ) := the constant function ψ : S1→ R taking the value maxϕ;

• F (ϕ) defined by setting F (ϕ)(x) := max
{

ϕ
(
x− π

8

)
,ϕ
(
x + π

8

)}
;

• F (ϕ) defined by setting F (ϕ)(x) := 1
2

(
ϕ
(
x− π

8

)
+ ϕ

(
x + π

8

))
.
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The pseudo-metric DF
match

For every ϕ1,ϕ2 ∈ Φ we set

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch(ρk(F (ϕ1)),ρk(F (ϕ2)))

where ρk(ψ) denotes the persistent Betti number function (i.e. the
rank invariant) of ψ in degree k , while dmatch denotes the usual
bottleneck distance that is used to compare the persistence diagrams
associated with ρk(F (ϕ1)) and ρk(F (ϕ2)).

Proposition

DF
match is a G -invariant and stable pseudo-metric on Φ.

The G -invariance of DF
match means that for every ϕ1,ϕ2 ∈Φ and every

g ∈ G the equality DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1,ϕ2) holds.
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An equivalence result

We observe that the pseudo-distance DF
match and the natural

pseudo-distance dG are defined in quite different ways.

In particular, the definition of DF
match is based on persistent homology,

while the natural pseudo-distance dG is based on the group of
homeomorphisms G .

In spite of this, the following statement holds:

Theorem

If F = F all(Φ,G ), then the pseudo-distance DF
match coincides with the

natural pseudo-distance dG on Φ.
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Our main idea

The previous theorem suggests to study DF
match instead of dG .

To this end, let us choose a finite subset F ∗ of F , and consider the
pseudo-metric

DF ∗
match(ϕ1,ϕ2) := max

F∈F ∗
dmatch(ρk(F (ϕ1)),ρk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ.

Obviously, DF ∗
match ≤ DF

match.

Furthermore, if F ∗ is dense enough in F , then the new
pseudo-distance DF ∗

match is close to DF
match.

In order to make this point clear, we need the next theoretical result.
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Compactness of F all(Φ,G )

The following result holds:

Theorem

If Φ is a compact metric space with respect to the sup-norm, then
F all(Φ,G ) is a compact metric space with respect to the distance d
defined by setting

d(F1,F2) := max
ϕ∈Φ
‖F1(ϕ)−F2(ϕ)‖∞

for every F1,F2 ∈F .
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Approximation of F all(Φ,G )

This statement follows:

Corollary

Assume that the metric space Φ is compact with respect to the
sup-norm. Let F be a subset of F all(Φ,G ). For every ε > 0, a finite
subset F ∗ of F exists, such that∣∣∣DF ∗

match(ϕ1,ϕ2)−DF
match(ϕ1,ϕ2)

∣∣∣≤ ε

for every ϕ1,ϕ2 ∈ Φ.

This corollary implies that the pseudo-distance DF
match can be

approximated computationally, at least in the compact case.
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Two references

• Patrizio Frosini, Grzegorz Jab loński, Combining persistent
homology and invariance groups for shape comparison, Discrete &
Computational Geometry, vol. 55 (2016), n. 2, pages 373-409.

• Patrizio Frosini, Towards an observer-oriented theory of shape
comparison, Proceedings of the 8th Eurographics Workshop on 3D
Object Retrieval, Lisbon, Portugal, May 7-8, 2016, A. Ferreira, A.
Giachetti, and D. Giorgi (Editors), 5-8.
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GIPHOD

Joint project with Grzegorz Jab loński (Jagiellonian University and IST
Austria) and Marc Ethier (Université de Saint-Boniface - Canada)
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator

GIPHOD is an on-line demonstrator, allowing the user to choose an
image and an invariance group. GIPHOD searches for the most similar
images in the dataset, with respect to the chosen invariance group.
Purpose: to show the use of our theoretical approach for image
comparison.
Dataset: 10.000 quite simple grey-level synthetic images obtained by
adding randomly chosen bell-shaped functions. The images are coded
as functions from R2 to [0,1].

GIPHOD can be tested at http://giphod.ii.uj.edu.pl.
All suggestions are greatly appreciated and welcomed (please send
them to grzegorz.jablonski@uj.edu.pl)
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

We will now show some results obtained by GIPHOD when the
invariance group G is the group of isometries:
Some data about the pseudo-metric DF

match in this case:

• The images are coded as functions from R2→ [0,1];

• Mean distance between images: 0.2984;

• Standard deviation of distance between images: 0.1377;

• Number of GINOs that have been used: 5.
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

List of GINOs that have been used in the following image
retrievals, where the invariance group G is the group of
isometries:

• F (ϕ) = ϕ.

• F (ϕ) := constant function taking each point to the value∫
R2 ϕ(x) dx .

• F (ϕ) defined by setting

F (ϕ)(x) :=
∫
R2

ϕ(x−y) ·β (‖y‖2) dy

where β : R→ R is an integrable function with∫
R2 |β (‖y‖2)| dy ≤ 1. Three GINOs of this kind have been used.
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries
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Some work in progress

Some work is in progress, concerning these three lines of research:

• Change of the topologies used on X and G .

• Extension of our approach to operators taking the space Φ (where
a group G acts) to a different space of functions Ψ (where another
group H acts).

• Study of the algebra of GINOs both in the case (Φ,G ) = (Ψ,H)
and in the case (Φ,G ) 6= (Ψ,H).

(Joint work with Nicola Quercioli)
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Some work in progress: New topologies on X and G

Let X be a set. Let Φ be a non-empty subset of the set of all
bounded functions from X to R, endowed with the norm ‖ · ‖∞.
We assume that Φ is compact and contains at least the constant
functions taking every value c with |c | ≤ supϕ∈Φ ‖ϕ‖∞.Wealso consider
a group G ⊆ Homeo(X ), acting on Φ by composition on the right.

We endow X with the initial topology, i.e. the coarsest topology on
X such that every function in Φ is continuous. In other words, on X
we consider this pseudo-metric: dX (x1,x2) := supϕ∈Φ |ϕ(x1)−ϕ(x2)|.

We endow the group G with the pseudo-metric
DG (g1,g2) := supϕ∈Φ ‖ϕ ◦g1−ϕ ◦g2‖∞. G is a topological group that
acts continuously on Φ by composition on the right.

We will also assume that X and G are compact, and say that (Φ,G )
is a perception pair.
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Some work in progress: Changing (Φ,G ) into (Ψ,H)

We wish to extend our theoretical approach to the case of different
perception pairs. In order to do that, we consider (Φ,G ) as a
category whose objects are the elements of the compact space Φ and
whose arrows are the elements of the topological group G .

Each functor F : (Φ,G )→ (Ψ,H) is called a Group Invariant
Non-expansive Operator (GINO) if:

• F is group invariant: F (ϕ ◦g) = F (ϕ)◦F (g) for every
ϕ ∈ Φ,g ∈ G ;

• F is non-expansive on Φ: ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞ for
every ϕ1,ϕ2 ∈ Φ;

• F is non-expansive on G : DH(F (g1),F (g2))≤ DG (g1,g2) for every
g1,g2 ∈ G .
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Some work in progress: The metric space of GINOs
from (Φ,G ) to (Ψ,H)

We can endow the set of all GINOs from (Φ,G ) to (Ψ,H) with this
metric: dF (F1,F2) :=
max

{
supϕ∈Φ ‖F1(ϕ)−F2(ϕ)‖∞,supg∈G DG (F1(g),F2(g))

}
.

Theorem

The metric space of GINOs from (Φ,G ) to (Ψ,H) is compact.

Corollary

The metric space of GINOs from (Φ,G ) to (Ψ,H) can be
ε-approximated by a finite subset.
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Some work in progress: Extending the definition of

DF
match to the case (Φ,G ) 6= (Ψ,H)

The previous corollary opens the way to the computational
approximation of the following pseudo-metric.
Let us consider a set F of GINOs from (Φ,G ) to (Ψ,H).

Fore every ϕ1,ϕ2 ∈ Φ we set

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch(ρk(F (ϕ1)),ρk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ, where ρk(ψ) denotes the persistent Betti
numbers function (i.e. the rank invariant) of ψ ∈Ψ in degree k , while
dmatch denotes the usual bottleneck distance that is used to compare
the persistence diagrams associated with ρk(F (ϕ1)) and ρk(F (ϕ2)).
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Some work in progress: Extending the definition of

DF
match to the case (Φ,G ) 6= (Ψ,H)

Proposition

DF
match is a G -invariant and stable pseudo-metric on Φ.

The G -invariance of DF
match means that for every ϕ1,ϕ2 ∈ Φ and every

g ∈ G the equality DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1,ϕ2) holds.

The stability of DF
match means that DF

match is upper-bounded by the
natural pseudo-distance dG :
DF

match(ϕ1,ϕ2)≤ dG (ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞.
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The algebra of GINOs

Our approach to G-invariant TDA is based on the availability of
GINOs.

How could we build new GINOs from other GINOs?

A simple method consists in using the properties of functors and
producing new GINOs by composition of other GINOs: If F1 is a
GINO from (Φ,G ) to (Ψ,H) and F2 is a GINO from (Ψ,H) to (χ,K ),
then F2 ◦F1 is a GINO from (Φ,G ) to (χ,K ).
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Building GINOs via 1-Lipschitzian functions

We can also produce new GINOs by means of a 1-Lipschitzian
function applied to other GINOs:

Proposition

Assume that two perception categories (Φ,G ), (Ψ,H) are given. Let
L be a 1-Lipschitzian map from Rn to R, where Rn is endowed with
the norm ‖(x1, . . . ,xn)‖∞ := max1≤i≤n |xi |. Assume also that F1, . . . ,Fn
are GINOs from (Φ,G ) to (Ψ,H) that coincide on the
homeomorphisms in G . Let us define L ∗(F1, . . . ,Fn) : Φ→Ψ by
setting L ∗(F1, . . . ,Fn)(ϕ)(x) := L (F1(ϕ)(x), . . . ,Fn(ϕ)(x)). We also
set L ∗(F1, . . . ,Fn)(g) = F1(g) = . . . = Fn(g) for every g ∈ G . Then
L ∗(F1, . . . ,Fn) is a GINO from (Φ,G ) to (Ψ,H).

From this proposition the following three results follow.
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Building new GINOs via translations, weighted
averages and the maximum operator

Proposition (Translation)

Let F be a GINO from (Φ,G ) to (Ψ,H). Then the operator Fb that is
defined as Fb(ϕ) = ϕ−b on Φ and as Fb(g) = F (g) on G is a GINO
from (Φ,G ) to (Ψ,H) for every b ∈ R.

Proposition (Weighted average)

Assume that F1, . . . ,Fn are GINOs from (Φ,G ) to (Ψ,H), that they
coincide on the homeomorphisms in G , and that (a1, . . . ,an) ∈ Rn

with ∑
n
i=1 |ai | ≤ 1. Then the operator F that is defined as

F (ϕ) = ∑
n
i=1 aiFi (ϕ) on Φ and as F (g) = F1(g) = . . . = Fn(g) on G is

a GINO from (Φ,G ) to (Ψ,H).
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Building new GINOs via translations, weighted
averages and the maximum operator

Proposition (Maximum)

Assume F1, . . . ,Fn are GINOs from (Φ,G ) to (Ψ,H), and that they
coincide on the homeomorphisms in G . Then the operator F that is
defined as F (ϕ) = maxi Fi (ϕ) on Φ and as
F (g) = F1(g) = . . . = Fn(g) on G is a GINO from (Φ,G ) to (Ψ,H).
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An interesting GINO in kD persistent homology

Previous propositions imply the following statement.

Proposition

Assume F1, . . . ,Fn are GINOs from (Φ,G ) to (Ψ,H), and that they
coincide on the homeomorphisms in G . Assume also that (a1, . . . ,an),
(b1, . . . ,bn) ∈ Rn, with a1, . . . ,an > 0, ∑

n
i=1 ai = 1 and ∑

n
i=1 bi = 0.

Then the operator F that is defined as

F (ϕ) = max

{
minj aj
a1

· (F1(ϕ)−b1), . . . ,
minj aj
an

· (Fn(ϕ)−bn)

}
on Φ and as F (g) = F1(g) = . . . = Fn(g) on G is a GINO from

(Φ,G ) to (Ψ,H).
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An interesting GINO in kD persistent homology

The previous proposition shows an interesting link between the theory
of GINOs and the reduction of multidimensional persistent Betti
numbers to 1D persistent Betti numbers.
We recall that this reduction is done by means of the operator that
takes each Rn-valued function ϕ = (ϕ1, . . . ,ϕn) to the R-valued
functions

ϕ(a,b) := max

{
minj aj
a1

· (ϕ1−b1), . . . ,
minj aj
an

· (ϕn−bn)

}
with a1, . . . ,an > 0, ∑

n
i=1 ai = 1 and ∑

n
i=1 bi = 0. The key point is

that each sublevel set of ϕ can be represented as a sublevel set of the
filtering function ϕ(a,b), so that our operator can be used to reduce a
multidimensional filtration to a collection of 1D-filtrations.
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An interesting GINO in kD persistent homology

The collection of the 1D-filtrations associated with the lines
p(t) = (a,1−a)t + (b,−b) such that a,b ∈ R with 0 < a< 1 is
equivalent to the 2D-filtration associated with the filtering function
p 7→ (x(p),y(p)).

[A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, C. Landi, Betti numbers in
multidimensional persistent homology are stable functions,
Mathematical Methods in the Applied Sciences, vol. 36 (2013),
1543-1557.]
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Conclusions

In this talk we have supported these statements:

• Data comparison is based on acts of measurement made by an
observer. The acts of measurement can be represented as a
function defined on a topological space X . The observer can be
seen as a collection of G -invariant operators, applied to the
functions describing the data.

• These functions can be compared by means of the natural
pseudo-distance associated with any subgroup G of Homeo(X ).

• Persistent homology can be used to approximate the natural
pseudo-metric dG . This can be done by means of a method that is
based on non-expansive G -operators. This method is stable with
respect to noise.
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