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Let us recall what a persistence diagram is

A persistence diagram is a collection of points associated with a
continuous filtering function ϕ : X → R. An example for ϕ = x :

Persistence diagrams can be compared by a matching distance dmatch.
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Persistence diagram associated with the pair (P ,w)

What can we do in the case ϕ : X → R2?

If we have a bifiltration given by a function ϕ = (ϕ1,ϕ2) : X → R2, we
can consider a unit vector (w.r.t. ‖.‖∞) w = (a,1−a) with a positive
slope, and a point P = (b,−b). Every choice of P and w defines a
filtration {Xt} of X , where Xt is the set of points of X that are both
under and on the left of the point P + tw . As a consequence, each
choice of P and w defines a persistence diagram Dϕ (a,b).
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The 2-dimensional matching distance

By multiplying the coordinates of each point in Dϕ (a,b) by

min{a,1−a} we obtain the normalized persistence diagram D̂ϕ (a,b).
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The 2-dimensional matching distance Dmatch(ϕ,ψ)

Now, we can define the 2D matching distance Dmatch(ϕ,ψ) between
ϕ and ψ by setting

Dmatch(ϕ,ψ) := sup(a,b) dmatch(D̂ϕ (a,b),D̂ψ (a,b)).

Theorem

Dmatch(ϕ,ψ)≤ ‖ϕ−ψ‖∞.

Remark. The previous theorem strongly depends on the
normalization of persistence diagrams.

The distance Dmatch(ϕ,ψ) has been introduced in the paper
[S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional
size functions for shape comparison, Journal of Mathematical Imaging
and Vision, vol. 32 (2008), n. 2, 161–179.]
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Computation of the 2D matching distance

In the paper

S. Biasotti, A. Cerri, P. Frosini, D. Giorgi,
A new algorithm for computing the 2-dimensional matching distance
between size functions,
Pattern Recognition Letters, vol. 32 (2011), n. 14, 1735–1746

we proposed a method to compute Dmatch(ϕ,ψ) for 2D persistent
homology in degree 0 and made our first experiments.

The results showed a strange phenomenon that we are going to
illustrate in the next slides.

Remark: As for the generalization of the previously cited algorithm
to multidimensional persistence in any degree see the paper [A. Cerri,
P. Frosini, A new approximation algorithm for the matching distance
in multidimensional persistence, AMS Acta, 2971 (2011)].
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Computation of the 2D matching distance

Remarks:

• In principle, 2D persistent homologies can be also compared by
using the interleaving distance ([M. Lesnick, The theory of the
interleaving distance on multidimensional persistence modules,
Foundations of Computational Mathematics, vol. 15 (2015), n. 3,
613–650]). Unfortunately, as noted in that paper, the question of if
and how the interleaving distance on multidimensional persistence
modules can be computed remains open. This fact justifies the
interest in the 2D matching distance Dmatch(ϕ,ψ).

• As for the visualization of 2D persistence modules we point out the
interesting paper [M. Lesnick, M. Wright, Interactive Visualization
of 2-D Persistence Modules, arXiv:1512.00180].
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Our first experiments in 3D shape comparison

Let us have a look at some pictures taken from the previously cited
paper on the 2D matching distance, illustrating the first results that
we obtained in 3D shape comparison.

The objects that we compare are displayed on the left of each figure.

The color at (a,b) represents the value dmatch(D̂ϕ (a,b),D̂ψ (a,b)).

The largest values are in red and brown, the lowest ones are in blue.

The values at points (a,b) with |b| large are not displayed, since they
just represent the 1-dimensional persistence of the two components of
ϕ = (ϕ1,ϕ2) and are not relevant for our exposition.

We recall that we are interested in Dmatch(ϕ,ψ), i.e. the supremum
of dmatch(D̂ϕ (a,b),D̂ψ (a,b)), for 0 < a < 1 and b ∈ R.

11 of 37



Result 1

Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a,b) with a approximately equal to 1/2.
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Result 2

Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a,b) with a approximately equal to 1/2.
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Result 3

Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a,b) with a approximately equal to 1/2.
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Result 4

Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a,b) with a approximately equal to 1/2.
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A conjecture

In our experiments, it seemed that all the relevant information was
given by lines with a = 1/2, i.e. lines with slope 1.

At the beginning we thought that this phenomenon was just a
coincidence. So we looked for other examples, showing global maxima
at points (a,b) with a 6= 1/2, but our search was unsuccessful.

After that, we started to think that some interesting principle might
be hidden in the results of our experiments.
We formulated this conjecture:

Conjecture

sup0<a<1,b∈R dmatch(D̂ϕ (a,b),D̂ψ (a,b)) =

supb∈R dmatch(D̂ϕ ( 1
2 ,b),D̂ψ ( 1

2 ,b)).

In other words: Can we confine ourselves to assume a = 1/2?
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Another reason supporting our conjecture

In the paper [A.Cerri, C. Landi, Hausdorff stability of persistence
spaces, Foundations of Computational Mathematics, vol. 16 (2016),
n. 2, 343–367] the authors show that the computation of the
Hausdorff distance between persistent spaces can be made by
matching points in the persistence spaces along lines having direction
(1, . . . ,1).

Remark: The concept of persistence space is a generalization of the
concept of persistence diagram to the case of filtering functions
taking values in Rk .

The previous result suggests that something special happens in the
direction (1,1), when we consider the 2-dimensional case.
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Looking for a proof of our conjecture

We started to look for a proof of our conjecture but we realized that
we needed to change our definition of matching distance in order to
proceed.

Indeed the classical definition of matching distance does not require

that the matchings between the persistence diagrams D̂ϕ (a,b),

D̂ψ (a,b) are COHERENT to each other as a and b change. This
means that the classical definition does not require that the
matchings change “continuously” when a and b change continuously.

To proceed in our proof we needed this property.
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The problem of incoherent matchings

At the beginning of our research we thought that the matchings σa,b

between D̂ϕ (a,b) and D̂ψ (a,b) would be coherent to each other in a
natural way, and tried to prove this property.

We observe that the concept of coherent matchings is of topological
nature and depends on the stability of persistence diagrams with
respect to the bottleneck distance: in other words, it is based on the
fact that the persistence diagrams D̂ϕ (a,b), D̂ψ (a,b) change
continuously with respect to a and b. Indeed, without this continuity
we could not establish which point in D̂ϕ (a,b) corresponds to which

point in D̂ϕ (a′,b′), for (a′,b′) close to (a,b).
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A näıve (and wrong) solution to the coherence problem

Our first (and näıve) idea was the following one. We should fix a pair
(ā, b̄) and a matching σā,b̄ between D̂ϕ (ā, b̄) and D̂ψ (ā, b̄). Then we
should construct a coherent family of matchings σa,b between

D̂ϕ (a,b) and D̂ψ (a,b), by means of this procedure:

1. We choose a path c , going from (ā, b̄) to (a,b).

2. For each P̄ ∈ D̂ϕ (c(0)) we follow the path P(t) ∈ D̂ϕ (c(t)) such

that P(0) = P̄. Similarly, we follow the path Q(t) ∈ D̂ψ (c(t)), such
that Q(0) = σā,b̄(P̄). We assume that these paths are continuous.

3. We define σa,b(P(1)) := Q(1).

Roughly speaking, we could try to transport the matching σā,b̄ to
other pairs (a,b) by using the stability of the normalized persistence
diagrams D̂ϕ (a,b) and D̂ψ (a,b), i.e. the fact that they depend
continuously on a and b.

21 of 37



A näıve solution to the coherence problem

The previously proposed approach has a problem. If D̂ϕ (c(t̄))
contains a multiple point for a t̄ ∈ [0,1], the path P(t) is not
well-defined. An analogous problem holds for Q(t). Indeed, during
collisions the identity of points is not preserved and we are not able to
follow them.

The consequent natural idea is the one of following the movements of
points of D̂ϕ (a,b) avoiding the pairs (a,b) for which points of

D̂ϕ (a,b) with multiplicity greater than one exist.

Therefore, we restrict ourselves to consider pairs (a,b) in the set
Reg(ϕ) := {(a,b) : D̂ϕ (a,b) does not contain multiple points}.
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A key difficulty in our näıve solution

Unfortunately, the previous approach still has a problem.
Indeed, the definition of σa,b(P(1)) := Q(1) depends on the choice of
the path c : [0,1]→ Reg(ϕ)∩Reg(ψ), going from (ā, b̄) to (a,b).
Precisely, it depends on the homotopy class of c relative to (ā, b̄) and
(a,b).

We call this fact the monodromy phenomenon in 2-dimensional
persistent homology.

For more details about the monodromy phenomenon in 2-dimensional
persistent homology we refer the interested reader to the paper
[A. Cerri, M. Ethier, P. Frosini, A study of monodromy in the
computation of multidimensional persistence, Proceedings of the 17th
IAPR International Conference on Discrete Geometry for Computer
Imagery, LNCS 7749, 2013, 192–202].
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An example of monodromy in 2D persistent homology

(SEE MOVIE)
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The monodromy phenomenon as an obstruction

The existence of monodromy implies that each loop in Reg(ϕ)
induces a permutation on D̂ϕ (ā, b̄). In other words, we cannot

establish which point in D̂ϕ (ā, b̄) corresponds to which point in

D̂ϕ (a,b), since the answer depends on the path that we follow from
(ā, b̄) to (a,b) in the parameter space Reg(ϕ)∩Reg(ψ). As a
consequence, different paths going from (ā, b̄) to (a,b) can “transport
σā,b̄ to (a,b) in a different way”.

Does monodromy prevent us from proceeding in our research and
from defining a coherent 2-dimensional matching distance?

Fortunately, the answer is no, as we will show in the next slides.
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Working assumptions

To simplify the exposition, in what follows we state our results by
assuming that the topological space X is a manifold M
homeomorphic to the m-sphere Sm, with m ≥ 2.

In particular, this implies that all normalized persistence diagrams
D̂ϕ (ā, b̄), D̂ψ (ā, b̄) contain a single point at infinity in degree 0 and
m, and no point at infinity in the other homology degrees.

In this way, the problem of continuously extending a matching can be
restricted to considering only proper points, as there are no
ambiguities in following the evolution of points at infinity.
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Working assumptions

Also, we assume that

1. the functions ϕ,ψ : M → R2 are normal, i.e. the sets of singular
pairs for ϕ and ψ are discrete;

2. a real value ε > 0 exists such that if two proper points P1,P2 of
D̂ϕ (ā, b̄) have Euclidean distance less than ε from the diagonal
∆ := {(u,v) ∈R2 : u = v}, then the Euclidean distance between P1

and P2 is not smaller than ε, for all regular (a,b). The same
property holds for D̂ψ (ā, b̄). In plain words, this assumption means
that the diagonal ∆ “does not contain double points of the
persistence diagrams of ϕ and ψ”.
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Transporting a matching along a homotopy

Now, we need to specify the concept of transporting a proper point P̄
of the persistence diagram of f along a homotopy fτ := H(τ, ·)
between two continuous functions f ,g : M → R.

Let us consider a continuous path P(τ) describing the “movement of
the point P̄” in the persistent diagrams of the functions H(τ, ·), while
τ changes in an interval [0, τ̄].

We say that the path P(τ) is admissible for H if

1. P(τ) belongs to the persistence diagram of fτ for every τ ∈ [0, τ̄];

2. P(τ) meets ∆ at a finite number of points;

3. P(τ) “does not stop” at any point of ∆ if it can “move on” in the
set ∆+ := {(u,v) ∈ R2 : u < v}.
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Transporting a matching along a homotopy

The following important statement holds.

Proposition

Let H(τ, ·) be a homotopy between two continuous functions
f ,g : M → R. For every point P̄ that belongs to the persistence
diagram of f and has multiplicity 1, an ε > 0 and a unique path
P : [0,ε]→∆+∪∆ exist, such that P(0) = P̄ and the path P(τ) is
admissible for the restriction of H(τ, ·) to the set [0,ε].

We say that the homotopy H transports P̄ to P(ε).
The previous statement guarantees that we can follow the movements
of each point in the persistence diagram, during the homotopy H.
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Transporting a matching along a path

In particular, the following statement holds for any continuous
filtering function ϕ : M → R2.

Proposition

Let c : [0,1]→ Reg(ϕ) be a continuous path with c(0) = (a,b). For
every proper point P̄ ∈ D̂ϕ (a,b), a unique path P : [0,1]→∆+∪∆
admissible for c exists, such that P(0) = P̄.

We say that c transports P̄ to P(1) with respect to ϕ.

REMARK: If P(τ) reaches the diagonal u = v , the definition of
admissible path implies that P(τ) is assumed to stop there until it
possibly “comes out from the diagonal” at the same point where it
entered. Hence, P(τ) cannot “move along the diagonal”.
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Transporting a matching along a path

Now, let us consider two continuous filtering functions
ϕ,ψ : M → R2. We need to define the concept of transporting a
matching between D̂ϕ (a,b) and D̂ψ (a,b) along a path
c : [0,1]→ Reg(ϕ)∩Reg(ψ) with c(0) = (a,b).

Let σa,b be a matching between D̂ϕ (a,b) and D̂ψ (a,b), with (a,b) an
element of Reg(ϕ)∩Reg(ψ). We can naturally associate to σa,b a

matching σc(1) : D̂ϕ (c(1))→ D̂ψ (c(1)). We set σc(1)(P ′) = Q ′ if and

only if c transports P̄ to P ′ with respect to ϕ and Q̄ to Q ′ with
respect to ψ. We also say that c transports σa,b to σc(1) along c with
respect to the pair (ϕ,ψ).

We are now ready to introduce the coherent 2D matching distance.
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Coherent 2D matching distance

Definition

Choose a point (a,b) ∈ Reg(ϕ)∩Reg(ψ). Let Γ be the set of all
continuous paths c : [0,1]→ Reg(ϕ)∩Reg(ψ) with c(0) = (a,b). Let
S be the set of all matchings σ : D̂ϕ (c(0))→ D̂ψ (c(0)). For every

σ ∈ S and every c ∈ Γ, let T
(ϕ,ψ)
c (σ) be the matching obtained by

transporting σ along c with respect to the pair (ϕ,ψ). We define the
coherent 2D matching distance CDmatch(ϕ,ψ) as

CDmatch(ϕ,ψ) := max

{
min
σ∈S

sup
c∈Γ

cost
(

T
(ϕ,ψ)
c (σ)

)
,γ∞

}
,

where γ∞ is the maximum varying (a,b) of the distance between the
point at infinity of D̂ϕ (a,b) and the point at infinity of D̂ψ (a,b) for
degrees 0 and m, and 0 for the other degrees.
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Properties of CDmatch

Proposition

The definition of CDmatch(ϕ,ψ) does not depend on the choice of the
point (a,b) ∈ Reg(ϕ)∩Reg(ψ).

Proposition

CDmatch(ϕ,ψ) is a pseudo-distance.

Theorem

Dmatch(ϕ,ψ)≤ CDmatch(ϕ,ψ)≤ ‖ϕ−ψ‖∞.
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Recap

• Examples suggest that in 2-dimensional persistent homology just
filtrations defined by lines with slope 1 might be relevant.

• The attempt of proving the previous statement leads to modify the
definition of 2-dimensional matching distance by requiring that the
matchings associated with the lines are coherent to each other.

• The search for coherent families of matchings leads to discover the
phenomenon of monodromy in 2-dimensional persistent homology,
as an obstruction to construct such families.

• The transport of matchings along paths allows to overcome that
obstruction and to introduce the coherent 2D matching distance.

• We are working on the proof that just filtrations defined by lines
with slope 1 are relevant for the computation of the coherent 2D
matching distance.
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