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Abstract

Multidimensional persistence mostly studies topological features of shapes b
analyzing the lower level sets of vector-valued functions, called filtetumgtions.
As is well known, in the case of scalar-valued filtering functions, persistemol-
ogy groups can be studied through their persistent Betti numbers, i.@nteasions
of the images of the homomorphisms induced by the inclusions of lower level sets
into each other. Whenever such inclusions exist for lower level setsatbrvalued
filtering functions, we can consider the multidimensional analogue of persidti
numbers. Varying the lower level sets, we get that persistent Betti nsncherbe
seen as functions taking pairs of vectors to the set of non-negativeistég this pa-
per we prove stability of multidimensional persistent Betti numbers. Moragaigec
we prove that small changes of the vector-valued filtering functions impyysonall
changes of persistent Betti numbers functions. This result can be ettayrassum-
ing the filtering functions to be just continuous. Multidimensional stability opeas th
way to a stable shape comparison methodology based on multidimensional persis
tence. In order to obtain our stability theorem, some other new results amedicr
continuous filtering functions. They concern the finiteness of persiBettit num-
bers for vector-valued filtering functions, and the representation visigpence di-
agrams of persistent Betti numbers, as well as their stability, in the casealaf-sc
valued filtering functions. Finally, from the stability of multidimensional persisten
Betti numbers we obtain a lower bound for the natural pseudo-distance.
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1 Introduction

The study of the topology of data is attracting more and mtentaon from the mathe-
matical community. This challenging subject of researchagivated by the large amount
of scientific contexts where it is required to deal with gizdive geometric information.
Indeed, the topological approach allows us to greatly rednhe complexity of the data
by focusing the analysis just on their relevant part. Thieagch area is widely discussed
in[2, 4].

Persistence

Persistent homology has turned out to be a key mathematiettdad for studying the
topology of data, with applications in an increasing nuntfdrelds, ranging from shape
description (e.g., [8, 9, 29, 34]) to data simplification J2hd hole detection in sensor
networks [15]. Recent surveys on the topic include [19, 20336. Persistent homology
describes topological events occurring through the fiirabf a topological space .
Filtrations are usually expressed by real functipns X — R calledfiltering functions
The main idea underlying this approach is that the most itapdpiece of information
enclosed in geometrical data is usually the one thapesistent with respect to the
defining parameters.

The analysis of persistent topological events in the loweell sets of the functions
(e.g., creation, merging, cancellation of connected carapts, tunnels, voids) is impor-
tant for capturing a global description of the data undedytrhese events can be en-
coded in the form of a parameterized version of the Betti numkeown in the literature
aspersistent Betti numbeif21], arank invariant[7], and, for theOth homology, asize
function[23, 28, 34].

Motivations

Until recently, research on persistence has mainly focosetthe use of scalar functions
for describing filtrations. The extent to which this theognde generalized to a situa-
tion in which two or more functions characterize the datauisently under investigation
[1, 3, 5, 7]. This generalization to vector-valued functias usually known as thilul-
tidimensional Persistence Theowyhere the adjective multidimensional refers to the fact
that filtering functions are vector-valued, and has no conoes with the dimensionality
of the space under study. The use of vector-valued filtetimgtions in this context, in-
troduced in [25] for persistence of homotopy groups, ersatile analysis of richer data
structures.

One of the most important open questions in current resedraht multidimensional
persistent homology concerns thiability problem In plain words, we need to determine
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how the computation of invariants in this theory is affedbydthe unavoidable presence
of noise and approximation errors. Indeed, it is clear tingt@gata acquisition is subject
to perturbations and, if persistent homology were not stablen distinct computational
investigations of the same object could produce compleatiglgrent results. Obviously,
this would make it impossible to use such a mathematicaryhieaeal applications.

Prior works

The problem of stability in persistent homology has beedistiiby Cohen-Steiner, Edels-
brunner and Harer in [12] for scalar filtering functions. Byngsa descriptor called per-
sistence diagranthey prove that persistent Betti numbers are stable unaarrpations
of filtering functions with respect to the max-norm, proddéat the considered filtering
functions ardame The same problem is studied in [13] for tame Lipschitz fiorgd. In
[11], Chazalet al. introduce the concept gfersistence modulgnd prove stability under
the assumption that it is finite-dimensional. The problenstability for scalar filtering
functions is also approached in [14], where it is solved Isuasng that the considered
filtering functions are no more than continuous, but onlytfe Oth homology.

Multidimensional persistence was firstly investigated 25][as regards homotopy
groups, and by Carlsson and Zomorodian in [6] as regards lmgyohodules. In this
context, the first stability result has been obtained foiOtinehomology in [1]: A distance
between the Oth persistent Betti numbers, also cadiee functionshas been introduced
and proven to be stable under perturbations of continuoowrgalued filtering func-
tions. Such a result has been partially extended in [3] foh@mology degrees, under
the restrictive assumption that the vector-valued filgrinnctions aremax-tame This
condition is quite technical and, in general, it is unknowmew it is satisfied.

Contributions of the paper

In this paper we present new stability results, for bothascahd vector-valued continuous
filtering functions, that are not limited by the restrictsoof tameness and max-tameness
(see Theorem 3.13 and Theorem 4.4). More precisely, we phatehe persistent Betti
numbers of nearby scalar or vector-valued filtering funtiare “close to each other” in
the sense expressed by a suitable matching distance. Alengdy, we also prove the
following new theorems.

The first relevant result is the proof of tRéniteness Theorem 2.3stating that, if the
space under study is triangulable and the vector-valuetifiy function is continuous,
then the associated persistent Betti numbers (hereafter PB8l$inite. The importance
of this result relies on the fact that the finiteness of PBN=guired in a number of
intermediate steps eventually leading to the definitiop@fsistence diagram@efini-
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tion 3.5). The finiteness of PBNs has revealed to be fundarnalsta in other related
works [11, 12]. In these papers, it is gained as a direct @presgce of assuming that the
filtering functions (in [12]) or the persistence modules|[@id]) aretame On the other
hand, the finiteness of PBNSs for filtering functions that at gontinuous requires a
specific proof.

Persistence diagrams are a key ingredient of the presest pagether with the use
of Cech homology over a field. Indeed, our second relevant resstle Representation
Theorem 3.11 stating that, with the use &fech homology, the PBNs of a scalar-valued
filtering function can be completely described by a persistediagram.

As an immediate consequence of the Representation TheofemiBfollows that
any distance between persistence diagrams induces aatitatween one-dimensional
PBNSs. This justifies the introduction of tineatching distancerecalled in Definition 3.12,
leading us to prove the third relevant result of this pagerCine-Dimensional Stability
Theorem 3.13 Roughly speaking, this theorem states that small changé® afonsid-
ered scalar-valued filtering functions, with respect to rtteex-norm, induce only small
changes in the associated PBNs, with respect to the matclstamde.

The One-Dimensional Stability Theorem 3.13 is a necessapytewards the last and
main contribution of the paper, i.e. thédultidimensional Stability Theorem 4.4. This
stability result for the multidimensional setting requirgs to use some ideas recently de-
veloped to investigatdultidimensional Size TheofiL]. The proof of multidimensional
stability is obtained by reduction to the one-dimensiorae; via an appropriate folia-
tion in half-planes of the domain of the PBNs associated witlector-valued filtering
function. Indeed, it is possible to prove that each restmcof a multidimensional PBNs
function to one of these half-planes turns out to be a onesdgiwnal PBNs function
of a suitable possibly non-tamecontinuous scalar-valued filtering function (see Theo-
rem 4.2). This approach implies that the comparison of twéichimmensional PBNs can
be performed leaf by leaf by appropriately measuring théadte of one-dimensional
PBNSs. Therefore, the stability of multidimensional peesigte is a consequence of the
one-dimensional persistence stability for continuousriifty functions, i.e. of the One-
Dimensional Stability Theorem 3.13. Another aspect of tBN® stability problem is
considered in th&tability w.r.t. leaf perturbations Theorem 4.5. This result shows that
small changes of the foliation leaves, with respect to thg-n@m, produce only small
changes in the associated PBNs, with respect to the matclsitagnde.

As a corollary of the Multidimensional Stability Theorem 4we obtain a lower bound
for the natural pseudo-distanc& he natural-pseudo distance, introduced in [16] and fur-
ther studied in [17, 18], is a dissimilarity measure for tiggacal spaces endowed with
vector-valued continuous functions that is intrinsicdigrd to compute, motivating the
interest in methods for its estimation.
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Working assumptions

Following [12], we will work with triangulable topologicapaces.

The considered filtering functions are assumed to bedastinuous thus weaken-
ing the tameness and the max-tameness requirements ofrfdgBh respectively. The
reasons of this choice are manifold. Firstly, our geneasilin from tame to continuous
functions is a positive answer to a question risen in [12¢dBely, the one-dimensional
reduction of multidimensional persistent homology is naesgible in the setting of tame
functions, as it was already observed in [3], but it luckilyed in the wider setting of
continuous functions.

The choice of working witlCech homology is motivated by the fact that, having the
continuity axiom, it allows us to prove the Representatioedrem 3.11. Even assuming
tameness, this result would not hold for singular and sicmdltheories, which guarantee
a complete description of one-dimensional PBNs only outsisket of vanishing measure,
as explained in Section 2.2.1. In the framework of persts-.‘:eéech homology has al-
ready been considered by Robins in [31, 32]. Moreover(beh approach to homology
theory is currently being investigated for computationaigmses [30].

To conclude, we find it necessary to warn the reader of a teahdecision we have
taken. This paper arises from the observation that the prooflready adopted fdith
homology perfectly works also fdith homology once some basic properties are granted,
with suitable technical adaptations. In the following, val§ state and prove completely
these necessary properties but we will only sketch whatevebe found in the original
papers for the sake of conciseness, fairness and reagdbdivever, in the present paper,
terminology will stick to that of Persistence Theory as mastpossible.

2 PBNs: Definitions and first properties

In this paper, the following relations and < are defined irR™: for « = (uy, ..., u,)
andv = (vq,...,v,), We sayu = v (resp.d < 9) if and only if u; < v; (resp.u; <
v;) for every indexi = 1,...,n. Moreover,R" is endowed with the usuahax-norm:
| (w1, ua, ... up)|l o = Maxi<i<n |l

We shall use the following notation&™ will be the open sef(4,v) € R" x R™ :
@ < v'}. For everyn-tupled = (u4,...,u,) € R™ and for every functiog : X — R",
we shall denote bX (7 < @) the set{z € X : p;(x) <wu;, i =1,...,n}.

The definition below extends the concept of the persistemidhagy group to a multi-
dimensional setting.

Definition 2.1 (Persistent homology grouplet & € Z. Let X be a topological space,
andg : X — R™ a continuous function. Let,g“’”) C Ho(X (@ = @) = Hy(X(F < D))
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be the homomorphism induced by the inclusion mé&p”) : X (G < @) — X (@ < 7)
with @ < @, whereH, denotes théth Cech homology group. i < 7, the image ofr,(;’ﬁ)
is called themultidimensionakth persistent homology group 0K, ) at (@, ¢), and is
denoted by " (X, @).

In other words, the groupl>” (X, 3) contains all and only the homology classes of
cycles born before or at and still alive aty.

For details abouEech homology, the reader can refer to [22, Ch. IX].

In what follows, we shall work with coefficients in a fieldl, so that homology groups
are vector spaces. Therefore, they can be completely Besddry their dimension, leading
to the following definition (cf. [7, 21]).

Definition 2.2 (Persistent Betti Numbers Functionhe functiongz : AT — N U {co}
defined by

—

B(1, V) = dimim W,(iﬁ’a) = dim I:I,gﬁ’v)(X, %)
will be called thepersistent Betti numbers functioh , briefly PBNSs.

Obviously, for eactt € Z, we have different PBN§; of ¢ (which should be denoted
Bz, Say) but, for the sake of notational simplicity, we omit exdpany reference tb. This
will also apply to the notations used for other conceptsimplaper, such as multiplicities
and persistence diagrams.

We shall prove in Theorem 2.3 that Xf is triangulable 3z never attains the valus.

2.1 Properties of multidimensional PBNs

The next Theorem 2.3 ensures that, if the considered tomalogpaces are assumed
to be triangulable, multidimensional PBNs (Definition 2.2¢ éinite even dropping the
tameness condition requested in [12]. We underline tha&®Bdés finiteness is not obvious
from the assumption that the space is triangulable. Indbedower level sets with respect
to a continuous function are not necessarily triangulapéess.

Theorem 2.3(Finiteness) Let X be a triangulable space, ang: X — R™ a continuous
function. Then, for everfii, v) € A™, it holds thatSz(u, v) < +oc.

Proof. SinceX is triangulable, we can assume that it is the support of algirajpcom-
plex K and that a distancéis defined onX, compatible with its topology.

Let us fix (@,7) € AT, and choose a real number> 0 such that, setting’ =
(g,...,6) E R", i+ 28 < 7.

We now show that there exist a functicfn: X — R, a subdivisionk” of K, and
a triangulationZ” of 1/(X), such that(i) the triple (¥, K", L") is simplicial, and(i:)
ma |[B(a) ~ (a) | <<



Persistent Betti numbers are stable functions 7

Indeed, by the uniform continuity of each compongnof 4, there exists a real num-
beré > 0 such that, fori = 1,...,n, |pi(x) — p;(2’)| < e for everyz, 2’ € X with
d(z,z') < 6. We take a subdivisior” of K such thatmesh(K’) < 4, and define
U(z) = F(x) for every vertexz of K'. Next, we consider the linear extensionfto
the other simplices of”. In this way,¢ is linear on each simplex dt”.

Sincezﬁ IS piecewise Iineam/?(X) is the underlying space of a simplicial complex
L. By taking suitable subdivisions” of K’ and L” of L/, 1 also maps simplices into
simplices and therefor(e/?, K" L") is simplicial (cf. [33, Thm. 2.14]). This proves).

To se€(iz), let us consider a pointbelonging to a simplex i&”, of verticesvy, . . . , v,.
Sincex = > A -u, with Ay, ..., > 0and) )\ =1, andJ is linear on each
simplex, it follows that||#(z) — (z)||. = [|F(z) — i A - d(v)||. = ||#(=) -
S e B0 = | S he Bl — Sy M), < S M| Be) — 8w, <
E.

We now prove that, since), K”, L") is simplicial, it holds thatt, (X (¢ < @ + &))
is finitely generated. Indeed, since the intersection betvaesimplex and a half-space is
triangulable, there exists a subdivisibff of L” such that)(X) N {Z € R" : < @ + &}
is triangulated by a subcomplex 6f’. By [33, Lemma 2.16], there is a subdivisiéf”
of K" such that(y), K", L") is simplicial. It follows thatX (¢ < @ + &) is triangulable,
and henceT, (X (¢ < @ + £)) is finitely generated.

Sinceu + 2" < v andglea}?c J(x) — zﬁ(x)”m < &, we have the inclusionX (g =<

@) 5 X 2 d+8) Iy X (@ < ), inducing the homomorphisn&,(X (3 < @)) %
H(X(J < @+8) 35 Hy(X(F < ). By recalling thatfT,(X (4 < @ + £)) is finitely
generated, and sin¢ém im j;, o i;, < dim im 7, we obtain the claim. O

We point out that, in our setting, the finiteness of PBNs woulthe guaranteed if they
were defined also on the boundary/f, i.e. for pairs(«, ') such that not all coordinates
differ. This motivates our choice of working only axi'.

The following Lemmas 2.4 and 2.5 generalize to the multichsenal setting analo-
gous results valid fon = 1. We omit the trivial proof of Lemma 2.4.

Lemma 2.4 (Monotonicity) Sz(u, ) is non-decreasing ini and non-increasing i
(with respect to the partial order relatior).

Lemma 2.5(Diagonal Jump)Let X, Y be two homeomorphic triangulable spaces, and
f : X — Y ahomeomorphism. Let: X — R", @/7: Y — R”™ be continuous functions.
Then, for everyu, v) € A*, and for everyh € R such that‘ng:é( H@(:c) — o f(x)H <

Te e’}

h, settingh = (h,...,h) € R", we haveBs(@ — h, 7 + h) < B(i, 7).

Proof. Sincemggc Hgﬁ(m) —o f(x)|| < h, we have the following commutative dia-

gram
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Hy(X(F =@ — h)) —*> H(X(F < T+ h))

l !

Hi(Y () = 1)) —— Hy (Y () < )
wherei, andj, are induced by inclusions, and the vertical homomorphismsraluced
by restrictions off and f~*, respectively. Thus the commutativity of the diagram iregli
thatdim im i, < dimim j;, yielding the claim. O

2.2 Properties of one-dimensional PBNs

Now we confine ourselves to the case= 1. Therefore, for the sake of simplicity, the
symbolsg, i, v will be replaced byp, u, v, respectively. We remark that* reduces to
be the sef(u,v) € R* : u < v}. Moreover, we use the following notation&: = 9A™,
A* = AT U{(u,00) : u € R}, andA* = A* UA.

2.2.1 Right-continuity of one-dimensional PBNs

In what follows we shall prove that, usirfgech homology, the one-dimensional PBNs
function is right-continuous with respect to betlndv, i.e.lim, ,+ £, (u, v) = B,(u,v)
andlim,_,;+ B,(u,v) = B,(u,v). This property will be necessary to completely charac-
terize PBNs by a persistence diagram, a descriptor whosataefiwill be recalled later
in this section. In the absence of right-continuity, peesise diagrams describe PBNs
only almost everywhere, thus justifying the uselgfch homology in this context.

The next example shows that the right-continuity in thealale © does not always
hold when persistent homology groups are defined using &ialbr singular homology,
even under the tameness assumption.

Example 2.6. Let X be a closed rectangle & containing a Warsaw circle (see Figure
1). Let alsop : X — R be the Euclidean distance from the Warsaw circle.

Figure 1: A lower level seX (¢ < u), for a sufficiently smalk: > 0, as considered in
Example 2.6, corresponds to a dilation (shaded) of our Wacs&le.
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Itis easy to see thatis tame onX (with respect to both singular aizech homology).
Moreover, the dimension of the singular persistent honyogrgule(”’”) (X, ) is equal
to 1 for v > u > 0 andw sufficiently small, whereas it is equal @ovhenu = 0, showing
that singular persistent homology is not right-continumuthe variableu.

Analogously, it is possible to show that simplicial or sifguthomologies do not en-

sure the right-continuity in the variable(see Appendix A).

Let us fix two real numberg < v and, foru < «' < «” < v, consider the following
commutative diagram

(' )

o <u)) —* Hy(X (o < "))
L9 l ) i (2-1)
k k

H(X{p < 0)) ——— Hy(X(p < 0)).

By recalling thatFI,ﬁ“’”) (X, ) =im w,(cu’”), from the above diagram (2.1) it is easy to see
that eachr""*") induces an injective map" ") : H""? (X, ¢) — H" (X, ¢). The
following Lemma 2.7 states that, for ever§y > «’ > @, with «” sufficiently close taz,

the mapsr,iu""") are all isomorphisms.

Lemma 2.7. Let (z,0) € AT, and lete!™"" : A“7(X, o) = H™" (X, p) be the
injective homomorphism of vector spaces induced by theﬂfréb"). Then there exists
@, with u < 4 < v, such that the maps,g”/’“/l) are isomorphisms for eveny, u” with

u<u <u <.

Proof. By the Finiteness Theorem 2.3 and the Monotonicity LemmatBete existsi,
withz < o < v, such thapy,(v’, v) = dim FI,E“”{’) (X, o) is finite and equal t¢, (v, ) =

(")

dim ﬁ,ﬁ“"’ﬁ)(X, ¢) wheneveru < v < «” < 4. Since the maps, are injective
(indeed they are inclusions), this implies that they aren@phisms. n

Analogously, by considering the commutative diagram
Hy (X (p < u)) s H(X(p <))
ﬂ_(u,v,)l 7"(“”1/,)\L
k (u/,v”) k
Hi (X (p < v')) Hi(X(p <0")),

we obtain surjective maps’ """ : A" (X, o) — H"")(X, ), and prove that they
are isomorphisms whenever, v” are sufficiently close to, with v < o' <v".

Lemma 2.8. Let (i, 0) € A*, and letr""*") + H"™)(X, ) — H™" (X, ) be the
surjective homomorphism of vector spaces induced by them{ﬁlafﬁ). Then there exists
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© > v such that the homomorphismgl’””) are isomorphisms for evenry, v” with v <
v <" < 0.

Proof. The proof is essentially the same as that of Lemma 2.7, afteeroing that the
mapsT,E”"”") are surjections between vector spaces of the same finitendiore O

Proposition 2.9(Right-Continuity) 3, (u, v) is right-continuous with respect to both the
variablesu andwv.

Proof. In order to prove thdim,_,;+ f,(u, v) = B,(a, v), by the Monotonicity Lemma 2.4,
it will suffice to show thatt! " (X, ) = H{"" (X, ©), wherei is taken as in Lemma 2.7.
To this end, we consider the following sequence of isomaipbi

(u',0)

ﬁ,ga’ﬁ)(X, ) =1im 71'](;1’6) =~ im 1131 T,
=~ Jimim 7" = lim B (X, ) = H") (X, o).
F

+—

Let us now show how these equivalences can be obtained.

Let us consider the inverse system of vector sp€<dé§(X<s0 < U’)),w,i“/’“")> over
the directed sefu’ € R : u < «' < 4} decreasingly ordered, and the constant inverse
system(Hk(X@D < 7)), w,iﬁ’@)>, recalling thatr"" is the identity.

Clearly the set of homomorphisnfs(""” : H,(X(p < u')) — Hi(X{(p < ))}isa
homomorphism of inverse systems because the diagram

(u’ ")

<)) —* Hy(X(p < u))

¥
W;iul’m i ﬂ_l(cu//,’ﬁ) l

7_(}(:1,17)

Hip(X{p < 1))

iS commutative.

By the continuity ofCech Theory (cf. [22, Thm. X, 3.1)}jim H,(X (p < «/)) =
e
H, (X (¢ < a)). Obviously,lim Hy,(X (p < 0)) = H(X{(p < 1)). Hence,w,(;’f’) is the
<
natural homomorphistim 7\* ) between the inverse limits. So, inf” = im lim 7"
— —
Moreover, since the inverse limit of vector spaces is an telkatctor, it preserves

(u',0)

epimorphisms and hence images. Therefore, it holds thﬁtﬂm,ﬁ“/’f’) =limimn, 7 =
— —

lim A" (X, ), where the last inverse limit is taken with respect to theise system

(_

<H,§“/’@)(X, gp),a,g“/’”")) over the directed sefu’ € R : u < «/ < 4} decreasingly

ordered, and"*") are the maps introduced in Lemma 2.7.

Finally, lim H"""(X, ) = H”(X, ). Indeed,lim H“"" (X, ¢) is the inverse
limit of a syé_tem of isomorphic vector spaces by Lemma 2.7.

Analogously for the variable, applying Lemma 2.8. ]



Persistent Betti numbers are stable functions 11

3 Stability of one-dimensional PBNs

In this section we prove the stability of PBNs for continuoaalar-valued filtering func-
tions (Theorem 3.13). This result generalizes the mainréraan [12], which requires
tame functions on triangulable spaces. Our proof reliesrmumaber of basic simple prop-
erties of PBNs that are completely analogous to those provddt 24] and used to show
the PBNs stability in the case of the Oth homology. For thisoeawe shall omit the
proofs of our statements when they are quite analogousdadfrpublished ones. Some
of these properties, such as those needed to introducesteeise diagrams, require the
finiteness of PBNs proved in the previous section. Along the we shall also prove the
Representation Theorem 3.11. It guarantees that one-diomah$BNs are completely
determined by persistence diagrams, even in the case algnshuous functions.

The following Lemmas 3.1 and 3.2 can be proved in the same walgeaanalogous
results holding when the homology degrers equal to O (see [14]).

Lemma 3.1. The following statements hold:
(i) Foreveryu < min g, B,(u,v) = 0.

(i7) For everyv > maxy, B,(u,v) is equal to the maximum number of linearly inde-
pendent classes iff;,(X) having at least one representativeiy < u).

We observe that Lemma 3(1) implies that, for every > max ¢, 8,(u,v) is inde-
pendent of.

Since, foru; < uy < v < w9, the maximum number of linearly independent homol-
ogy classes born between andu, and still linearly independent af is certainly not
smaller than the maximum number of those still linearly peledent at,, we have the
next result.

Lemma 3.2(Jump Monotonicity) Letwu,, us, v1, v2 be real numbers such that < u, <
v; < v9. It holds that

By(ug,v1) — Bo(ur, v1) > By(ug, va) — By(ur, v2).

Lemma 3.2 justifies the following definitions of multipligitSince we are working
with continuous instead of tame functions, we adopt the defirs introduced in [24]
rather than those of [12]. Although based on the same ideadifference relies on the
computation of multiplicity on a varying grid, instead of gdd one. So we can work with
an infinite number of (possibly accumulating) points withasitive multiplicity. Due to
the lack of a well-established terminology for points witha@sitive multiplicity, we call
themcornerpoints as in previous papers.
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Definition 3.3 (Proper cornerpoint)For every pointp = (u,v) € A™, we define the
numberu(p) as the minimum over all the positive real numbersith u + ¢ < v — ¢, of

Bolu+e,v—¢)—=By(u—ec,v—e)—Pyute,v+e)+ fo(u—ce,v+e).

The numberu(p) will be called themultiplicity of p for 5,. Moreover, we shall call a
proper cornerpoint fors,, any pointp € A* such that the numbex(p) is strictly positive.

Definition 3.4 (Cornerpoint at infinity) For every vertical line-, with equationu = u,
u € R, let us identifyr with (u,00) € A*, and define the numbe(r) as the minimum
over all the positive real numbesswith u 4+ ¢ < 1/¢, of

s (avet) g, (5o L).

The number:(r) will be called themultiplicity of = for 5,. When this finite number is
strictly positive, we call- acornerpoint at infinity for3,,.

The concept of cornerpoint allows us to introduce a repitasien of the PBNs, based
on the following definition [12].

Definition 3.5 (Persistence diagram)he persistence diagranb,, is the multiset of all
cornerpoints (both proper and at infinity) {6y, counted with their multiplicity, union the
points of A, counted with infinite multiplicity.

In order to show that persistence diagrams completely tesBBNs, we give some
technical results concerning cornerpoints.

The Monotonicity Lemma 2.4, the Right-Continuity Propositia.9 and the Jump
Monotonicity Lemma 3.2 imply the following result, by thensa arguments as in [24].

Proposition 3.6 (Propagation of Discontinuities)f p = (u,v) is a proper cornerpoint
for 3,, then the following statements hold:

(i) If u < wu < v, thenv is a discontinuity point fo,,(u, -);

(i1) If w < v < v, thenu is a discontinuity point fop,.(-, v).
If 7 = (u, c0) is a cornerpoint at infinity for3,,, then it holds that
(i77) If u < v, thenu is a discontinuity point fop,.(-, v).

We observe that any open arcwise connected neighborhoad iof a discontinuity
point for 3, contains at least one discontinuity point in the variabte v. Moreover, as a
consequence of the Jump Monotonicity Lemma 3.2, discoit§ipoints in the variable
propagate downwards, while discontinuity points in thaalale v propagate rightwards.
So, by applying the Finiteness Theorem 2.3, we obtain thpgsition below (cf. [24,
Prop. 6]).
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Proposition 3.7. For every pointp = (u,v) € A™, a real numbee > 0 exists such that
the open set

Wa(p) = {(uav) S RQ : |u—ﬂ| <ég, |U_@| < €,U7éﬂ,’l) 7&{)}
is contained inA*, and does not contain any discontinuity point for.

As a simple consequence of Lemma 3.1 and Definition 3.3, we ha following
proposition.

Proposition 3.8(Localization of Cornerpoints)if p = (u, v) is a proper cornerpoint for
B, thenp € {(u,v) € AT :minp < u < v < maxp}.

By applying Propositions 3.6, 3.7, and 3.8 it is easy to prbegfollowing result.

Proposition 3.9(Local Finiteness of Cornerpointdjor each strictly positive real number
e, B, has, at most, a finite number of cornerpointg{m, v) € R? : u + ¢ < v}.

We observe that it is easy to provide examples of persistéiaggams containing an
infinite number of proper cornerpoints, accumulating ohtodiagonalA.

Remark 3.10. The number of cornerpoints at infinity for, counted with their multiplic-
ities is equal talim H,(X), and hence it is finite and independent.of

The following Theorem 3.11 shows that persistence diagrantgiely determine one-
dimensional PBNs (the inverse also holds by definition ofipegsce diagram). We re-
mark that a similar result was given in [12], under the namé-tiangle LemmaOur
Representation Theorem differs from thdriangle Lemma in two respects. Firstly, our
assumptions on the functian are weaker. Secondly, thetriangle Lemma focuses not
on all the set\*, but only on the points with coordinates that are not homickdgritical
values.

Theorem 3.11(Representation Theoremfjor every(u,v) € A™, we have

Bomn) = 3 pl(u.v)).

(u,v)EA*
u<u,v>v

Proof. The claim is a consequence of the definitions of multiplidiBefinitions 3.3
and 3.4), together with the previous results about cornetpoand the Right-Continuity
Proposition 2.9, in the same way as done in [24]. ]

As a consequence of the Representation Theorem 3.11, amyaisbetween per-
sistence diagrams induces a distance between one-dimah8BNSs. This justifies the
following definition [14].
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Definition 3.12 (Matching distance)Let X, Y be triangulable spaces endowed with con-
tinuous functionsy : X — R, ¢ : Y — R. The (extendedjatching distance,, ...
betweens,, and 3, is defined by

dmaten (Be, By) = inf sup [lp —v(p)|lx . (3.1)

pED,

wherey ranges over all multi-bijections betweén, andD,,, and, for every = (u,v),q =
(u',v') in A%,

_ /_ /
p — ql|~ = min < max {|u — /|, |[v — v’} , max Y u7v “ ;
&Y 2 2

with the convention about points at infinity thad — y = vy — co = oo wheny # oo,

00 — 00 =0, § = 00, [oo| = 0o, min{c, 0o} = c andmax{c, oo} = oo.

In plain words,|-|| - measures the pseudo-distance between two ppiatslg as the
minimum between the cost of moving one point onto the othertae cost of moving
both points onto the diagonal, with respect to the max-nomoh @ender the assumption
that any two points of the diagonal have vanishing pseudtaxdce.

The termextendedneans thatl,,,...;, can take the value-oco. It will follow from our
One-Dimensional Stability Theorem 3.13 thigt,;., is finite whenX =Y.

When the number of cornerpoints is finite, the matching ofipsce diagrams is
related to the bottleneck transportation problem, and th&hing distance reduces to
the bottleneck distance [12]. In our case, however, the murobcornerpoints may be
countably infinite, because of our loose assumption on ttezifij function, that is only
required to be continuous.

We observe that, although the number of cornerpoints mayobatably infinite, in
(3.1) we can writenax instead okup andmin instead ofinf, as can be formally proven
using the same arguments as in [14, Thm. 28]. In other wordgjla-bijection ¥ exists
for whichdaicn (8,5, By) = maxpep, ||[p — 7(p)|| 5. Every such matching will henceforth
be calledoptimal

We are now ready to give the one-dimensional stability teeofor PBNs with con-
tinuous filtering functions. The proof relies on a cone cariton. The rationale behind
this construction is to directly apply the arguments usdgd 4, eliminating cornerpoints
at infinity, whose presence would require us to modify allpheofs. The reason for this
choice is to reduce technical aspects inside the proof.

The stability theorem below is a different result from the given in [12], weakening
the tameness requirement to continuity, and actually sglaine of the open problems
posed in that work by the authors.

Theorem 3.13(One-Dimensional Stability Theorem)et X be a triangulable space,
andy, ¢ : X — R two continuous functions. The,.,(8,, By) < max lo(x) — P (z)].
fAS
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Proof. In what follows we can assume thatis connected. Indeed, X hasr connected
components’, ..., C,, then the claim can be proved by induction after observirg th

D, = Ule Dw\ci'
For theOth homology, the claim has been proved in [14, Thm. 25].
Let us now consider théth homology withk > 0. We build the cone ok, X =

(X x I)/(X x {1}) (see Figure 2).
r .

Figure 2: The cone construction used in the proof of Theordr®.3 he cycles in the cone
are null-homologous.

t =

SinceX is triangulable, so is. We also consider the continuous functipn X — R
taking the class ofz,t) in X to the valuep(z) - (1 —t) + M - t, whereM = 3 -
(max |p| + max |¢|) + 1. This choice ofM, besides guaranteeing that, M) € A*
whenu < max |p|, max |1, will be useful later.

By construction, it holds that

o) = { g ST

Indeed, it is well known thaX is contractible (see [27, Lemma 21.13]), explaining why
Bz(u,v) = 0 whenv > M. The other case < M follows from the observation that, for
everyv < M, identifying X (¢ < v) x {0} with X (¢ < v), the lower level seX (» < v)

is a strong deformation retract 6f (¢ < v). To see this, it is sufficient to consider the
obvious retraction : (z,t) — = and the deformation retractidhi : X (¢ < v) x I —

X(p <w), H((z,t),s) = (z,t- (1 —s)). This yields the following commutative diagram
H(X (3 < ) — Hi(X (i < w))

ﬁ_I(Cu.,’u)l ﬂ_l(ﬁu,’u)l
"

Hy(X (¢ < v) =~ Hi(X (¢ < v)),
where the horizontal maps are isomorphisms induced, layd the vertical ones are the
homomorphisms introduced in Definition 2.1 for the respectpaces. Sd:],g“’”)()?, p) =
H,gu’v)(X, ) whenv < M.
Clearly, a point ofA™ is a proper cornerpoint fof,, if and only if it is a proper

cornerpoint forg;, with the ordinate strictly less thai/. Moreover, a poin{u, co) of
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A* is a cornerpoint at infinity for3,, if and only if the point(u, M) € AT is a proper
cornerpoint for3;. We remark that there are no cornerpointsv) for 5 whenmax |¢| <
v< M.

Analogously, we can construgt: X — R out of > with the same properties.

Itis possible to prove the inequality.aicn (35, B;) < max; ¢ ’g?)(:ﬁ) - zﬁ(f:)‘. Since
the proof of this claim is completely analogous to that of,[Tém. 25], we omit the
technical details remarking that it is precisely here thanima 2.5, and Propositions 3.6,
3.7, 3.8 and 3.9 are needed. Hence, sineg;  ; ‘@(:‘v‘) - @Z(EB‘)‘ = max lp(z) — ¥(x)
it is sufficient to show thad,,.atcn (B, By) < dmaten(Bs, @Z;)'

To this end, we can consider an optimal matchingetweenD; and D, for which
Amaten (B3, By) = maxzep, [P — 7(D) |- Sincey is optimal,y takes each poiru, v) €
Dg, with v = M, to a point(u’,v') € Dy, with v’ = M. Indeed, if it were not true,
ie. ¥((u, M)) = (v/,v") with v/ < M, thenv’ < max]|y|, since there are no cor-
nerpoints(v’,v') for B; with max|[y)| < + < M. By the choice ofM, we would
havel|(u, M) —5((u, M))|lz > max|p(z) — (x)|. This contradictslyaen (Fz. f7) <
max lo(x) — ¢(x)|. The same argument holds f@r', and this proves that maps cor-
nerpoints whose ordinate is smaller thennto cornerpoints whose ordinate is still below
M.

We now show that there exists a multi-bijectignbetweenD,, and D,,, such that
max,ep, [p— 1(p)llx = maxsep, 15— 7(5)llz. thus proving thatd,ee (B,. fs) <
dmaten(Bg, By). Indeed, we can defing : D, — Dy by settingy((u,v)) = 7((u,v))
if v < oo, and~v((u,v)) = (v, v), whereu' is the abscissa of the poift(u, M)), if
v = oo. This concludes the proof. n

Let us conclude this section by showing the following propef d,,,.:.., that will be
useful later.

Proposition 3.14.Let A € R, with A > 0. Letalsop : X — R, ¥ : Y — R be two
continuous filtering functions for the triangulable spacésndY’, respectively. Then, it
holds that

mateh (6%@7 BA@Z}) = A dateh (5907 67/1) :

Proof. First of all, let us observe that, {fu,v) € A*, then(\u, \v) € AT for A > 0.
Moreover, forA > 0, it holds thats,(u,v) = By.,(Au, Av), sinceX (o < u) = X(\-
¢ < u) for everyu € R. Then, by Definitions 3.3 and 3.4, for evefy,v) € A*, the
multiplicity of (u,v) for 5, is equal to the multiplicity of Au, Av) for ..,

Following the definition of the operat(||= in Definition 3.12, for everyu, v),(«’, v')
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in A*, we have

1A, Av) = (A, Ao')[[ss =

_ I,
- min{max {Nu—u'|, No—2'|} ,max{)\%, p— }}

= M (u, v) = (', ') |-

Thus the claim follows from the definition af,,.;., (Definition 3.12), and by observing
that the correspondence taking each paiw) € A* to the pair(\u, \v) € A* is actually
a bijection. n

4  Stability of multidimensional PBNs

We now provide the proof of the stability of multidimensibiaBNSs. It will be deduced
following the same arguments given in [1] to prove the sigiof multidimensional PBNs
for the case of the Oth homology.

The key idea is that a foliation in half-planes Af" can be given, such that the re-
striction of the multidimensional PBNs function to theseffd@nes turns out to be a
one-dimensional PBNs function in two scalar variables. Hpproach implies that the
comparison of two multidimensional PBNs functions can bdqguered leaf by leaf by
measuring the distance of appropriate one-dimensional ABiNgions. Therefore, the
stability of multidimensional persistence is a conseqeariche one-dimensional persis-
tence stability.

We start by recalling that the following parameterized figraf half-planes inRR™ x R™
is a foliation of A™ (cf. [1, Prop. 1]).

Definition 4.1 (Admissible pairs) For every vectot = (11, . .. ,1,) of R" such that; > 0
fori =1,...,n,and>." , [? = 1, and for every vectob = (by,...,b,) of R" such that

i=1"

>, b = 0, we shall say that the pa(rf, 5) is admissible We shall denote the set of

all admissible pairs ifR™ x R™ by Adm,,. Given an admissible pa(rf, 5), we define the
half-planew(zg) of R” x R™ by the following parametric equations:

fors,t € R, with s < ¢.

Since these haIf-pIanes(fg) constitute a foliation ofA™, for each(u, v) € A* there

exists one and only on(ef, 5) € Adm, suchthal@, 7) € m(;;). Observe thatandb only
depend onw, ¥).
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A first property of this foliation is that the restriction Gf to each leaf can be seen as
a particular one-dimensional PBNs function. Intuitively,&ach half plane ;; one can
find the PBNs corresponding to the filtration.&fobtained by sweeping thé line through
u andv parameterized by i) R—= R, with ~ 5 (1) = 7l +b.

A second property is that this filtration corresponds to the given by the lower level
sets of a certain scalar-valued continuous function. Batkdtproperties are stated in the
next theorem, analogous to [3, Thm. 2], and are intuitivelyven in Figure 3.

Theorem 4.2(Reduction Theorem)For every(i, ) € AT, let <f, 5) be the only admis-

sible pair such thati, 7) = (sl + b, tl + b) € m(i5)- Let moreoverp; 7 : X — R be the
continuous filtering function defined by setting

@@ () = minl; - max &
ThenX (5 = @) = X ((min; ;)¢ < s). Therefore

6@(6’ 17) = ﬁ(mini L) Yowa,m) (57 t) :

Proof. For everyd = (uy,...,u,) € R", withu; = sl; + b;,1 = 1,...,n, s € R, the
following equalities hold:

The last claim follows from the definition of PBNSs. O]

Definition 4.1 and Theorem 4.2 might appear unnecessanhpeusome. A naive idea
for proving stability via the one-dimensional reductiorgimi be to directly apply the one-
dimensional theory to the line throughandv. This does not work without introducing
the functionspz 7 and without a one-dimensional stability result for contins filtering
functions such as our Theorem 3.13. Indeed, an analogaulsf@stame functions would
not be applicable in our case since, as remarked in [3], thefdgame functions is not
closed under the maximum operator.

Finally, the most important property of our foliation is thaallows us to obtain an
analogue of the distanek, .., for the multidimensional case, denoted By, .;.., having
a particularly simple form, yet yielding the desired stépitesult.

Our definition of D,,..., is the natural one in order to compare multidimensional
PBNSs. Indeed, it boils down to matching cornerpointsgothat arise from the one-
dimensional filtration obtained sweeping the line througgind 7 with those ofy) along
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Figure 3: One-dimensional reduction of two-dimensional BBReft: a one-dimensional
filtration is constructed sweeping the line througlandv. A unit vector/ and a point
are used to parameterize this "neﬁﬁg)(T) = 7l + b. Right: the persistence diagram of

this filtration can be found on the Ieaff,;) of the foliation.

the same line. In our treatment this is accomplished usirayticplar parameterization of
this line. However this parameterization is not mandat@ter parameterizations of the
same line would yield the same distance, as it has been pinjé@]. In other words,
D,,qtcn 1S In SOMe way intrinsically defined.

D,aten, Was introduced in [3] (see also [1]), although in the narnogedting ofmax-
tame filtering functions, and can be rewritten as follows.

Definition 4.3 (Multidimensional matching distancelet X, Y be triangulable spaces
endowed with continuous functiogs: X — R”, J .Y — R"™. The (extendedultidi-
mensional matching distand®,,..., between3z and3 7 is defined as
Danaten (82 85) = 50 dunaten (Bpiay Brora ) - (4.1)
(@,7)eA+
The following theorem shows not only that,, ..., is a distance wheX = Y, but,
more importantly, the stability of multidimensional PBNghvrespect to this distance.

Theorem 4.4(Multidimensional Stability Theorem)if X is a triangulable space, then
Diaten is a distance on the sg¢fiz | 7 : X — R” continuoug. Moreover,

Dinaten (ﬁ@ 5@) < max H@(x) - J(@H

zeX 0o

Proof. Let us begin by observing that
dmatch <ﬁ(p(g,g) ’ 6¢(ﬁ75)> S max |(10(71,17) (.I') - w(ﬁ,ﬁ) (x)}

rxeX
max %(37) — b wz(:v) —b;

< min/; - max
7 ? ll ? i

rzeX

max||5(e) — G(a)||

zeX

< min/; - :
i min; [;
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where the first inequality follows applying the One-Dimamsl Stability Theorem 3.13,
sincey .7, Y@, are scalar-valued continuous filtering functions, while second in-
equality descends from the definition of; ) and ) (cf. Theorem 4.2). Therefore,
Dunate (85 is bounded bynas | #(x) — ()|

Let us now prove thab,,.., is a distance o{fz|g : X — R" continuous.
Since D,,...r, IS bounded, it takes values in the set of non-negative r&&seover, as
a consequence of the Reduction Theorem 4.2, the idefitity= 5 holds if and only
if Bmin; 1) 10@s = Bmingl)-1ys 107 EVErY (u,v) € A*. Recalling thatd,, ., is
positive-definite, for everyu, v) € A", Buin; 1) s = Blming b)) if and only
if dpaten (B(mini 1D, 6),B(mml 1)~ ) = 0. In virtue of Proposition 3.14, we have

dmatch (ﬁ (min; ;) )75 (min; 1;) 11/}(~ ﬂ)) = 0 if and only if dmatch (ﬁ(p(gyg)?ﬁlﬁ(mg)) = 01
for every(u, v) € A*. This proves thab,,,.;., iS actually positive-definite. The symmet-
ric property is obvious while the triangular inequalitylais in a standard way. n

Roughly speaking, we have thus proved that small changesantarwalued filtering
function induce small changes in the associated multidgiosal PBNs, with respect to
the distanceD, .01

Moreover, it is possible to prove that; is stable with respect to the choice of the
half-planes in the foliation. Indeed, the next theoremestdéihat small enough changes in
(f, 5) with respect to thenax-norm induce small changes Gf..in, 1,)-1¢,, ﬂ) with respect
to the matching distance. The proof is analogous to the oReay. 3 |n [1].

Theorem 4.5(Stability w.r.t. leaf perturbations)f X is a triangulable space endowed
with a continuous functioF : X — R™ and (I, b), (I, 1) are admissible pairs verifying
=T, <e b=V, <efore< _min {1;}, then, for everyi, 7) & . (@, 7') €
@y itholdsthat T

max||F(z) oo + lelle + 116l

“min (1~ o))

.....

dmatch <B(mini li)—lcp(gygpﬁ(mini l{i)_l‘p(ilyﬁ/)> <€

Proof. From Theorem 3.13, we have

dmatch <B(minili)—1<p(ﬁ,g>7ﬁ(minil,’i)‘lcp(i/j/)> < maX’(mlnl) Sp(ﬁ,ﬁ)(x)_(rniinl;)_lgp(w ’)( )’

zeX i

Fix now z € X, and denote by the index for WhIChmaX lf * is attained. By the
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definition of g 7 andy ), it follows that

SOZ(x)' bs —max%(xl), bi

. -V
— mZaXSOlCBl)/ bz
— b pi(x) = b
; l;
(lg — lg)QOg(.Z‘) — lgbg + lgbg
Ll
(l; = L) i) + 1p(b; — b)) + b(l; — 1)
B Ll
< ;= Lil|e()| + |1a]|0; — ba| + [bg][l; — 1]
= L1
e(|@(@) | + 1] + 118]].)
l;(l[ — 6)
e([|P(@) )l o + I o + 1101l )
min {l;(l; =€)} '

77777

(mins) ™ o) — (mink) ™ g ) (z) = max——
pi(z) —b;

o~
S~ —
~

~—

wi(x

IN

VAN

In the same manner we can see that

e(|3@)|. + l]l.c + 118]]..)
._Hllin {lLi(l; =€)}

=1,...,

(miin l;)_lgo(ﬁ,j/)(x) — (miin li)_lgo(@g)(x) <

Therefore,

max(|F(z)] oo + 1Ulloe + bl

21683?(‘(1111111 li)il(p(ﬁﬁ) (:E) - (IDZII] l;)il(p(ﬁ 717')(3:)' <e- Hllln {l7,<l7, _ 6)}

i=1,...,

and the claim is proved. n

Our definition ofD,,,.;.;, enables us to computationally compare topological datagusi
multidimensional PBNs in the same way as in [1] and, aboveadptain a lower bound
for the natural pseudo-distance as shown in the followirgjce.

5 The connection between the multidimensional match-
ing distance and the natural pseudo-distance

Another relevant reason to study the multidimensional matgdistanceD,,,.;., is the
possibility of obtaining lower bounds for the natural pseutistance.

We recall that, for any two topological spac&sY endowed with two continuous
functionsg : X — R™, J: Y — R", we can give the following definition.
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Definition 5.1 (Natural pseudo-distance) henatural pseudo-distandaetween the pairs
(X, ) and(Y; 1), denoted by ((X, ), (¥,¢)). is

(i) the numbetnf, max,cy ||@(z) — ¥(h(z))|| Whereh varies in the seH (X, Y) of
all the homeomorphisms betweéhandY’, if X andY are homeomorphic;

(i) +oo, if X andY are not homeomorphic.

We point out that the natural pseudo-distance is not a dist@ecause it can vanish
on two distinct pairs. However, it is symmetric, satisfies thangular inequality, and
vanishes on two equal pairs.

The natural pseudo-distance has been studied in [16, 17n18F case of scalar-
valued filtering functions on manifolds, and in [25] in theseaof vector-valued filtering
functions on manifolds.

As a simple but relevant consequence of the MultidimensiSteability Theorem 4.4
we obtain the following Theorem 5.2, stating that the muttiensional matching distance
furnishes a lower bound for the natural pseudo-distance.

Theorem 5.2. Let X, Y be two triangulable spaces endowed with two continuous func-
tions3: X — R", ¢ : Y — R™. Then

Dinaten(B5: 85) < 6 ((X,9), (v, 9)) .

Proof. We follow the same proof line used in [1] foth homology. IfH (X, Y) is empty
our statement is trivially true. Let us assuié.X, Y') # () and take any homeomorphism
h € H(X,Y). We observe that; = S ,. Moreover, for each homeomorphisim by
applying the Multidimensional Stability Theorem 4.4, wevda

Dmatch(ﬁcﬁa 61[;) - Dmatch(6g57 /Bq;oh> S gle%?{ ”‘5(1;) - 7E(fL(':(:))HOO

Since this is true for any homeomorphisnbetweenX andY’, it immediately follows
that Dynacen( B, 07) < 6 (X, 2), (v, ). =

We point out that, taking the maximum over all homology degrdheorem 5.2 yields
a lower bound that improves the one given in [1].

We recall that the natural pseudo-distance, involving@digible homeomorphisms be-
tween two triangulable spaces, is quite difficult to comptiteeorem 5.2 could represent
a useful and simple tool to estimate this metric.

Acknowledgmentd.he authors thank Francesca Cagliari (University of Bobggmd Marco Grandis (Uni-
versity of Genoa) for their helpful advice. However, theteus are solely responsible for any errors.

At the time of submission, the first author was visiting thét&a Recognition and Image Process-
ing Group, Institute of Computer Graphics and Algorithmagty of Informatics, Vienna University of
Technology, Austria, supported by the Austrian SciencedR&wWF) grant no. P20134-N13.

The last author partially carried out this work within theigity of ARCES “E. De Castro”, University

of Bologna.



Persistent Betti numbers are stable functions 23

A Appendix

The next example shows that the PBNs function is not rightiooaus in the variable

v when singular or simplicial homologies are considereceimdtofCech homology. We

recall that a case concerning the right-continuity in thealde « has been described in
Example 2.6.

Example A.1. Let S C R? be a sphere parameterized by polar coordingtes), —% <

6 < % and¢ < [0,2m). For everyp € [0,2n), consider orS the pathsy; : (—5,0) — S
andy} : (0,%) — S defined by setting, fof = 1,2, v,(¢) = (¢',¢') with ¢ = 6 and
¢ = (¢ + cot #) mod 27. We observe that each point of the $ét= {(0,¢) € S : 0 #
0Al6] # %} belongs to the image of one and only one pgthSuch curves approach more
and more a pole of the sphere on one side and the equatorngiadiinfinite number of
times, on the other side (see, for instance, in Figu(e)4the paths)2 and~2, lying in
the northern hemisphere). ’ ’

¢(S,<p),0 UA A*
...................... 0—2—_;
------- $(P) = ¢(Q)
(b)

Figure 4:(a) Two of the paths covering the northern hemisphere considarExample A.1(b) The Oth
PBNs of the functionp. On the discontinuity points highlighted in bold red, the ®BNs computed using
singular homology takes a value equal to 2, while usiegh homology, the value is equal to 1, showing
the right-continuity in the variable.

Then define the”™ function ¢* : S* — R that takes each poi? = ~;(0) € S*

to the valueexp —m sin(¢). Now extendy* to aC™ functiony : S — Rin
the only way possible. In plain words, this function drawsdge for¢ € (0,7), and a
valley for ¢ € (m, 2m). Moreover, observe that the poinfts= (Z, (3¢ + 1) mod 27) and

Q= (—g, (37” — 1) mod 27r) of the sphere are the unique local minimum pointg of

Let us now consider théth PBNs of . Its graph is depicted in Figure @). The
points P and (@ belong to the same arcwise connected component of the lewek det
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S{p < ¢) for everye > 0, whereas they do not far = 0, since the pathsig (i=1,2)
are an “obstruction” to constructing a continuous path friBrto Q. Hence, the singular
PBNs 3, for Oth homology is not right-continuous in the second varialtle & 0, for
anyu with min p < u < 0.
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