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Abstract

Multidimensional persistence mostly studies topological features of shapes by
analyzing the lower level sets of vector-valued functions, called filtering functions.
As is well known, in the case of scalar-valued filtering functions, persistent homol-
ogy groups can be studied through their persistent Betti numbers, i.e. the dimensions
of the images of the homomorphisms induced by the inclusions of lower level sets
into each other. Whenever such inclusions exist for lower level sets of vector-valued
filtering functions, we can consider the multidimensional analogue of persistent Betti
numbers. Varying the lower level sets, we get that persistent Betti numbers can be
seen as functions taking pairs of vectors to the set of non-negative integers. In this pa-
per we prove stability of multidimensional persistent Betti numbers. More precisely,
we prove that small changes of the vector-valued filtering functions imply only small
changes of persistent Betti numbers functions. This result can be obtained by assum-
ing the filtering functions to be just continuous. Multidimensional stability opens the
way to a stable shape comparison methodology based on multidimensional persis-
tence. In order to obtain our stability theorem, some other new results are proved for
continuous filtering functions. They concern the finiteness of persistentBetti num-
bers for vector-valued filtering functions, and the representation via persistence di-
agrams of persistent Betti numbers, as well as their stability, in the case of scalar-
valued filtering functions. Finally, from the stability of multidimensional persistent
Betti numbers we obtain a lower bound for the natural pseudo-distance.
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1 Introduction

The study of the topology of data is attracting more and more attention from the mathe-

matical community. This challenging subject of research ismotivated by the large amount

of scientific contexts where it is required to deal with qualitative geometric information.

Indeed, the topological approach allows us to greatly reduce the complexity of the data

by focusing the analysis just on their relevant part. This research area is widely discussed

in [2, 4].

Persistence

Persistent homology has turned out to be a key mathematical method for studying the

topology of data, with applications in an increasing numberof fields, ranging from shape

description (e.g., [8, 9, 29, 34]) to data simplification [21] and hole detection in sensor

networks [15]. Recent surveys on the topic include [19, 20, 26, 35]. Persistent homology

describes topological events occurring through the filtration of a topological spaceX.

Filtrations are usually expressed by real functionsϕ : X → R calledfiltering functions.

The main idea underlying this approach is that the most important piece of information

enclosed in geometrical data is usually the one that is “persistent” with respect to the

defining parameters.

The analysis of persistent topological events in the lower level sets of the functions

(e.g., creation, merging, cancellation of connected components, tunnels, voids) is impor-

tant for capturing a global description of the data under study. These events can be en-

coded in the form of a parameterized version of the Betti numbers known in the literature

aspersistent Betti numbers[21], a rank invariant [7], and, for the0th homology, asize

function[23, 28, 34].

Motivations

Until recently, research on persistence has mainly focusedon the use of scalar functions

for describing filtrations. The extent to which this theory can be generalized to a situa-

tion in which two or more functions characterize the data is currently under investigation

[1, 3, 5, 7]. This generalization to vector-valued functions is usually known as theMul-

tidimensional Persistence Theory, where the adjective multidimensional refers to the fact

that filtering functions are vector-valued, and has no connections with the dimensionality

of the space under study. The use of vector-valued filtering functions in this context, in-

troduced in [25] for persistence of homotopy groups, enables the analysis of richer data

structures.

One of the most important open questions in current researchabout multidimensional

persistent homology concerns thestability problem. In plain words, we need to determine
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how the computation of invariants in this theory is affectedby the unavoidable presence

of noise and approximation errors. Indeed, it is clear that any data acquisition is subject

to perturbations and, if persistent homology were not stable, then distinct computational

investigations of the same object could produce completelydifferent results. Obviously,

this would make it impossible to use such a mathematical theory in real applications.

Prior works

The problem of stability in persistent homology has been studied by Cohen-Steiner, Edels-

brunner and Harer in [12] for scalar filtering functions. By using a descriptor called aper-

sistence diagram, they prove that persistent Betti numbers are stable under perturbations

of filtering functions with respect to the max-norm, provided that the considered filtering

functions aretame. The same problem is studied in [13] for tame Lipschitz functions. In

[11], Chazalet al. introduce the concept ofpersistence moduleand prove stability under

the assumption that it is finite-dimensional. The problem ofstability for scalar filtering

functions is also approached in [14], where it is solved by assuming that the considered

filtering functions are no more than continuous, but only forthe 0th homology.

Multidimensional persistence was firstly investigated in [25] as regards homotopy

groups, and by Carlsson and Zomorodian in [6] as regards homology modules. In this

context, the first stability result has been obtained for the0th homology in [1]: A distance

between the 0th persistent Betti numbers, also calledsize functions, has been introduced

and proven to be stable under perturbations of continuous vector-valued filtering func-

tions. Such a result has been partially extended in [3] for all homology degrees, under

the restrictive assumption that the vector-valued filtering functions aremax-tame. This

condition is quite technical and, in general, it is unknown when it is satisfied.

Contributions of the paper

In this paper we present new stability results, for both scalar and vector-valued continuous

filtering functions, that are not limited by the restrictions of tameness and max-tameness

(see Theorem 3.13 and Theorem 4.4). More precisely, we provethat the persistent Betti

numbers of nearby scalar or vector-valued filtering functions are “close to each other” in

the sense expressed by a suitable matching distance. Along the way, we also prove the

following new theorems.

The first relevant result is the proof of theFiniteness Theorem 2.3, stating that, if the

space under study is triangulable and the vector-valued filtering function is continuous,

then the associated persistent Betti numbers (hereafter PBNs) are finite. The importance

of this result relies on the fact that the finiteness of PBNs is required in a number of

intermediate steps eventually leading to the definition ofpersistence diagrams(Defini-
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tion 3.5). The finiteness of PBNs has revealed to be fundamental also in other related

works [11, 12]. In these papers, it is gained as a direct consequence of assuming that the

filtering functions (in [12]) or the persistence modules (in[11]) are tame. On the other

hand, the finiteness of PBNs for filtering functions that are just continuous requires a

specific proof.

Persistence diagrams are a key ingredient of the present paper together with the use

of Čech homology over a field. Indeed, our second relevant resultis theRepresentation
Theorem 3.11, stating that, with the use of̌Cech homology, the PBNs of a scalar-valued

filtering function can be completely described by a persistence diagram.

As an immediate consequence of the Representation Theorem 3.11, it follows that

any distance between persistence diagrams induces a distance between one-dimensional

PBNs. This justifies the introduction of thematching distance, recalled in Definition 3.12,

leading us to prove the third relevant result of this paper, theOne-Dimensional Stability
Theorem 3.13. Roughly speaking, this theorem states that small changes ofthe consid-

ered scalar-valued filtering functions, with respect to themax-norm, induce only small

changes in the associated PBNs, with respect to the matching distance.

The One-Dimensional Stability Theorem 3.13 is a necessary step towards the last and

main contribution of the paper, i.e. theMultidimensional Stability Theorem 4.4. This

stability result for the multidimensional setting requires us to use some ideas recently de-

veloped to investigateMultidimensional Size Theory[1]. The proof of multidimensional

stability is obtained by reduction to the one-dimensional case, via an appropriate folia-

tion in half-planes of the domain of the PBNs associated with avector-valued filtering

function. Indeed, it is possible to prove that each restriction of a multidimensional PBNs

function to one of these half-planes turns out to be a one-dimensional PBNs function

of a suitable,possibly non-tame, continuous scalar-valued filtering function (see Theo-

rem 4.2). This approach implies that the comparison of two multidimensional PBNs can

be performed leaf by leaf by appropriately measuring the distance of one-dimensional

PBNs. Therefore, the stability of multidimensional persistence is a consequence of the

one-dimensional persistence stability for continuous filtering functions, i.e. of the One-

Dimensional Stability Theorem 3.13. Another aspect of the PBNs stability problem is

considered in theStability w.r.t. leaf perturbations Theorem 4.5. This result shows that

small changes of the foliation leaves, with respect to the max-norm, produce only small

changes in the associated PBNs, with respect to the matching distance.

As a corollary of the Multidimensional Stability Theorem 4.4, we obtain a lower bound

for thenatural pseudo-distance. The natural-pseudo distance, introduced in [16] and fur-

ther studied in [17, 18], is a dissimilarity measure for topological spaces endowed with

vector-valued continuous functions that is intrinsicallyhard to compute, motivating the

interest in methods for its estimation.
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Working assumptions

Following [12], we will work with triangulable topologicalspaces.

The considered filtering functions are assumed to be justcontinuous, thus weaken-

ing the tameness and the max-tameness requirements of [12] and [3], respectively. The

reasons of this choice are manifold. Firstly, our generalization from tame to continuous

functions is a positive answer to a question risen in [12]. Secondly, the one-dimensional

reduction of multidimensional persistent homology is not possible in the setting of tame

functions, as it was already observed in [3], but it luckily does in the wider setting of

continuous functions.

The choice of working witȟCech homology is motivated by the fact that, having the

continuity axiom, it allows us to prove the Representation Theorem 3.11. Even assuming

tameness, this result would not hold for singular and simplicial theories, which guarantee

a complete description of one-dimensional PBNs only outsidea set of vanishing measure,

as explained in Section 2.2.1. In the framework of persistence, Čech homology has al-

ready been considered by Robins in [31, 32]. Moreover, theČech approach to homology

theory is currently being investigated for computational purposes [30].

To conclude, we find it necessary to warn the reader of a technical decision we have

taken. This paper arises from the observation that the proofline already adopted for0th

homology perfectly works also forkth homology once some basic properties are granted,

with suitable technical adaptations. In the following, we shall state and prove completely

these necessary properties but we will only sketch whatevercan be found in the original

papers for the sake of conciseness, fairness and readability. However, in the present paper,

terminology will stick to that of Persistence Theory as muchas possible.

2 PBNs: Definitions and first properties

In this paper, the following relations� and≺ are defined inRn: for ~u = (u1, . . . , un)

and~v = (v1, . . . , vn), we say~u � ~v (resp.~u ≺ ~v) if and only if ui ≤ vi (resp.ui <

vi) for every indexi = 1, . . . , n. Moreover,Rn is endowed with the usualmax-norm:

‖(u1, u2, . . . , un)‖∞ = max1≤i≤n |ui|.

We shall use the following notations:∆+ will be the open set{(~u,~v) ∈ R
n × R

n :

~u ≺ ~v}. For everyn-tuple~u = (u1, . . . , un) ∈ R
n and for every function~ϕ : X → R

n,

we shall denote byX〈~ϕ � ~u 〉 the set{x ∈ X : ϕi(x) ≤ ui, i = 1, . . . , n}.

The definition below extends the concept of the persistent homology group to a multi-

dimensional setting.

Definition 2.1 (Persistent homology group). Let k ∈ Z. Let X be a topological space,

and~ϕ : X → R
n a continuous function. Letπ(~u,~v)

k : Ȟk(X〈~ϕ � ~u〉) → Ȟk(X〈~ϕ � ~v〉)
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be the homomorphism induced by the inclusion mapπ(~u,~v) : X〈~ϕ � ~u〉 →֒ X〈~ϕ � ~v〉

with ~u � ~v, whereȞk denotes thekth Čech homology group. If~u ≺ ~v, the image ofπ(~u,~v)
k

is called themultidimensionalkth persistent homology group of(X, ~ϕ) at (~u,~v), and is

denoted byȞ(~u,~v)
k (X, ~ϕ).

In other words, the group̌H(~u,~v)
k (X, ~ϕ) contains all and only the homology classes of

cycles born before or at~u and still alive at~v.

For details abouťCech homology, the reader can refer to [22, Ch. IX].

In what follows, we shall work with coefficients in a fieldK, so that homology groups

are vector spaces. Therefore, they can be completely described by their dimension, leading

to the following definition (cf. [7, 21]).

Definition 2.2 (Persistent Betti Numbers Function). The functionβ~ϕ : ∆+ → N ∪ {∞}

defined by

β~ϕ(~u,~v) = dim im π
(~u,~v)
k = dim Ȟ

(~u,~v)
k (X, ~ϕ)

will be called thepersistent Betti numbers functionof ~ϕ, briefly PBNs.

Obviously, for eachk ∈ Z, we have different PBNsβ~ϕ of ~ϕ (which should be denoted

β~ϕ,k, say) but, for the sake of notational simplicity, we omit adding any reference tok. This

will also apply to the notations used for other concepts in this paper, such as multiplicities

and persistence diagrams.

We shall prove in Theorem 2.3 that, ifX is triangulable,β~ϕ never attains the value∞.

2.1 Properties of multidimensional PBNs

The next Theorem 2.3 ensures that, if the considered topological spaces are assumed

to be triangulable, multidimensional PBNs (Definition 2.2) are finite even dropping the

tameness condition requested in [12]. We underline that thePBNs finiteness is not obvious

from the assumption that the space is triangulable. Indeed,the lower level sets with respect

to a continuous function are not necessarily triangulable spaces.

Theorem 2.3(Finiteness). LetX be a triangulable space, and~ϕ : X → R
n a continuous

function. Then, for every(~u,~v) ∈ ∆+, it holds thatβ~ϕ(~u,~v) < +∞.

Proof. SinceX is triangulable, we can assume that it is the support of a simplicial com-

plexK and that a distanced is defined onX, compatible with its topology.

Let us fix (~u,~v) ∈ ∆+, and choose a real numberε > 0 such that, setting~ε =

(ε, . . . , ε) ∈ R
n, ~u+ 2~ε ≺ ~v.

We now show that there exist a function~ψ : X → R
n, a subdivisionK ′′ of K, and

a triangulationL′′ of ~ψ(X), such that(i) the triple (~ψ,K ′′, L′′) is simplicial, and(ii)

max
x∈X

∥

∥

∥
~ϕ(x)− ~ψ(x)

∥

∥

∥

∞
< ε.
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Indeed, by the uniform continuity of each componentϕi of ~ϕ, there exists a real num-

ber δ > 0 such that, fori = 1, . . . , n, |ϕi(x) − ϕi(x
′)| < ε for everyx, x′ ∈ X with

d(x, x′) < δ. We take a subdivisionK ′ of K such thatmesh(K ′) < δ, and define
~ψ(x) = ~ϕ(x) for every vertexx of K ′. Next, we consider the linear extension of~ψ to

the other simplices ofK ′. In this way,~ψ is linear on each simplex ofK ′.

Since ~ψ is piecewise linear,~ψ(X) is the underlying space of a simplicial complex

L′. By taking suitable subdivisionsK ′′ of K ′ andL′′ of L′, ~ψ also maps simplices into

simplices and therefore(~ψ,K ′′, L′′) is simplicial (cf. [33, Thm. 2.14]). This proves(i).

To see(ii), let us consider a pointx belonging to a simplex inK ′, of verticesv1, . . . , vr.

Sincex =
∑r

i=1 λi · vi, with λ1, . . . , λr ≥ 0 and
∑r

i=1 λi = 1, and ~ψ is linear on each

simplex, it follows that
∥

∥~ϕ(x) − ~ψ(x)
∥

∥

∞
=

∥

∥~ϕ(x) −
∑r

i=1 λi ·
~ψ(vi)

∥

∥

∞
=

∥

∥~ϕ(x) −
∑r

i=1 λi · ~ϕ(vi)
∥

∥

∞
=

∥

∥

∑r
i=1 λi · ~ϕ(x)−

∑r
i=1 λi · ~ϕ(vi)

∥

∥

∞
≤

∑r
i=1 λi

∥

∥~ϕ(x)− ~ϕ(vi)
∥

∥

∞
<

ε.

We now prove that, since(~ψ,K ′′, L′′) is simplicial, it holds thatȞk(X〈~ψ � ~u + ~ε〉)

is finitely generated. Indeed, since the intersection between a simplex and a half-space is

triangulable, there exists a subdivisionL′′′ of L′′ such that~ψ(X) ∩ {~x ∈ R
n : ~x � ~u+ ~ε}

is triangulated by a subcomplex ofL′′′. By [33, Lemma 2.16], there is a subdivisionK ′′′

of K ′′ such that(~ψ,K ′′′, L′′′) is simplicial. It follows thatX〈~ψ � ~u + ~ε〉 is triangulable,

and hencěHk(X〈~ψ � ~u+ ~ε〉) is finitely generated.

Since~u + 2~ε ≺ ~v andmax
x∈X

∥

∥

∥
~ϕ(x)− ~ψ(x)

∥

∥

∥

∞
< ε, we have the inclusionsX〈~ϕ �

~u〉
i
→ X〈~ψ � ~u + ~ε〉

j
→ X〈~ϕ � ~v〉, inducing the homomorphismšHk(X〈~ϕ � ~u〉)

ik→

Ȟk(X〈~ψ � ~u + ~ε〉)
jk→ Ȟk(X〈~ϕ � ~v〉). By recalling thatȞk(X〈~ψ � ~u + ~ε〉) is finitely

generated, and sincedim im jk ◦ ik ≤ dim im jk, we obtain the claim.

We point out that, in our setting, the finiteness of PBNs would not be guaranteed if they

were defined also on the boundary of∆+, i.e. for pairs(~u,~v) such that not all coordinates

differ. This motivates our choice of working only on∆+.

The following Lemmas 2.4 and 2.5 generalize to the multidimensional setting analo-

gous results valid forn = 1. We omit the trivial proof of Lemma 2.4.

Lemma 2.4 (Monotonicity). β~ϕ(~u,~v) is non-decreasing in~u and non-increasing in~v

(with respect to the partial order relation�).

Lemma 2.5(Diagonal Jump). LetX, Y be two homeomorphic triangulable spaces, and

f : X → Y a homeomorphism. Let~ϕ : X → R
n, ~ψ : Y → R

n be continuous functions.

Then, for every(~u,~v) ∈ ∆+, and for everyh ∈ R such thatmax
x∈X

∥

∥

∥
~ϕ(x)− ~ψ ◦ f(x)

∥

∥

∥

∞
≤

h, setting~h = (h, . . . , h) ∈ R
n, we haveβ~ϕ(~u− ~h,~v + ~h) ≤ β~ψ(~u,~v).

Proof. Sincemax
x∈X

∥

∥

∥
~ϕ(x)− ~ψ ◦ f(x)

∥

∥

∥

∞
≤ h, we have the following commutative dia-

gram
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Ȟk(X〈~ϕ � ~u− ~h〉)
ik //

��

Ȟk(X〈~ϕ � ~v + ~h〉)

Ȟk(Y 〈~ψ � ~u〉)
jk // Ȟk(Y 〈~ψ � ~v〉)

OO

whereik andjk are induced by inclusions, and the vertical homomorphisms are induced

by restrictions off andf−1, respectively. Thus the commutativity of the diagram implies

thatdim im ik ≤ dim im jk, yielding the claim.

2.2 Properties of one-dimensional PBNs

Now we confine ourselves to the casen = 1. Therefore, for the sake of simplicity, the

symbols~ϕ, ~u,~v will be replaced byϕ, u, v, respectively. We remark that∆+ reduces to

be the set{(u, v) ∈ R
2 : u < v}. Moreover, we use the following notations:∆ = ∂∆+,

∆∗ = ∆+ ∪ {(u,∞) : u ∈ R}, and∆̄∗ = ∆∗ ∪∆.

2.2.1 Right-continuity of one-dimensional PBNs

In what follows we shall prove that, usinǧCech homology, the one-dimensional PBNs

function is right-continuous with respect to bothu andv, i.e.limu→ū+ βϕ(u, v) = βϕ(ū, v)

andlimv→v̄+ βϕ(u, v) = βϕ(u, v̄). This property will be necessary to completely charac-

terize PBNs by a persistence diagram, a descriptor whose definition will be recalled later

in this section. In the absence of right-continuity, persistence diagrams describe PBNs

only almost everywhere, thus justifying the use ofČech homology in this context.

The next example shows that the right-continuity in the variableu does not always

hold when persistent homology groups are defined using simplicial or singular homology,

even under the tameness assumption.

Example 2.6. LetX be a closed rectangle ofR2 containing a Warsaw circle (see Figure

1). Let alsoϕ : X → R be the Euclidean distance from the Warsaw circle.

Figure 1: A lower level setX〈ϕ ≤ u〉, for a sufficiently smallu > 0, as considered in
Example 2.6, corresponds to a dilation (shaded) of our Warsaw circle.
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It is easy to see thatϕ is tame onX (with respect to both singular andČech homology).

Moreover, the dimension of the singular persistent homology groupH(u,v)
1 (X,ϕ) is equal

to 1 for v > u > 0 andv sufficiently small, whereas it is equal to0 whenu = 0, showing

that singular persistent homology is not right-continuousin the variableu.

Analogously, it is possible to show that simplicial or singular homologies do not en-

sure the right-continuity in the variablev (see Appendix A).

Let us fix two real numbers̄u < v̄ and, forū < u′ ≤ u′′ < v̄, consider the following

commutative diagram

Ȟk(X〈ϕ ≤ u′〉)
π
(u′,u′′)
k //

π
(u′,v̄)
k ��

Ȟk(X〈ϕ ≤ u′′〉)

π
(u′′,v̄)
k ��

Ȟk(X〈ϕ ≤ v̄〉) id // Ȟk(X〈ϕ ≤ v̄〉).

(2.1)

By recalling thatȞ(u,v)
k (X,ϕ) = im π

(u,v)
k , from the above diagram (2.1) it is easy to see

that eachπ(u′,u′′)
k induces an injective mapσ(u′,u′′)

k : Ȟ
(u′,v̄)
k (X,ϕ) → Ȟ

(u′′,v̄)
k (X,ϕ). The

following Lemma 2.7 states that, for everyu′′ ≥ u′ > ū, with u′′ sufficiently close tōu,

the mapsσ(u′,u′′)
k are all isomorphisms.

Lemma 2.7. Let (ū, v̄) ∈ ∆+, and letσ(u′,u′′)
k : Ȟ

(u′,v̄)
k (X,ϕ) → Ȟ

(u′′,v̄)
k (X,ϕ) be the

injective homomorphism of vector spaces induced by the mapπ
(u′,u′′)
k . Then there exists

û, with ū < û < v̄, such that the mapsσ(u′,u′′)
k are isomorphisms for everyu′, u′′ with

ū < u′ ≤ u′′ ≤ û.

Proof. By the Finiteness Theorem 2.3 and the Monotonicity Lemma 2.4,there existŝu,

with ū < û < v̄, such thatβϕ(u′, v̄) = dim Ȟ
(u′,v̄)
k (X,ϕ) is finite and equal toβϕ(u′′, v̄) =

dim Ȟ
(u′′,v̄)
k (X,ϕ) wheneverū < u′ ≤ u′′ ≤ û. Since the mapsσ(u′,u′′)

k are injective

(indeed they are inclusions), this implies that they are isomorphisms.

Analogously, by considering the commutative diagram

Ȟk(X〈ϕ ≤ ū〉) id //

π
(ū,v′)
k ��

Ȟk(X〈ϕ ≤ ū〉)

π
(ū,v′′)
k ��

Ȟk(X〈ϕ ≤ v′〉)
π
(v′,v′′)
k // Ȟk(X〈ϕ ≤ v′′〉),

we obtain surjective mapsτ (v
′,v′′)

k : Ȟ
(ū,v′)
k (X,ϕ) → Ȟ

(ū,v′′)
k (X,ϕ), and prove that they

are isomorphisms wheneverv′, v′′ are sufficiently close tōv, with v̄ < v′ ≤ v′′.

Lemma 2.8. Let (ū, v̄) ∈ ∆+, and letτ (v
′,v′′)

k : Ȟ
(ū,v′)
k (X,ϕ) → Ȟ

(ū,v′′)
k (X,ϕ) be the

surjective homomorphism of vector spaces induced by the mapπ
(v′,v′′)
k . Then there exists
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v̂ > v̄ such that the homomorphismsτ (v
′,v′′)

k are isomorphisms for everyv′, v′′ with v̄ <

v′ ≤ v′′ ≤ v̂.

Proof. The proof is essentially the same as that of Lemma 2.7, after observing that the

mapsτ (v
′,v′′)

k are surjections between vector spaces of the same finite dimension.

Proposition 2.9(Right-Continuity). βϕ(u, v) is right-continuous with respect to both the

variablesu andv.

Proof. In order to prove thatlimu→ū+ βϕ(u, v̄) = βϕ(ū, v̄), by the Monotonicity Lemma 2.4,

it will suffice to show thatȞ(ū,v̄)
k (X,ϕ) ∼= Ȟ

(û,v̄)
k (X,ϕ), whereû is taken as in Lemma 2.7.

To this end, we consider the following sequence of isomorphisms

Ȟ
(ū,v̄)
k (X,ϕ) = im π

(ū,v̄)
k

∼= im lim
←
π
(u′,v̄)
k

∼= lim
←

im π
(u′,v̄)
k = lim

←
Ȟ

(u′,v̄)
k (X,ϕ) ∼= Ȟ

(û,v̄)
k (X,ϕ).

Let us now show how these equivalences can be obtained.

Let us consider the inverse system of vector spaces
(

Ȟk(X〈ϕ ≤ u′〉), π
(u′,u′′)
k

)

over

the directed set{u′ ∈ R : ū < u′ ≤ û} decreasingly ordered, and the constant inverse

system
(

Ȟk(X〈ϕ ≤ v̄〉), π
(v̄,v̄)
k

)

, recalling thatπ(v̄,v̄)
k is the identity.

Clearly the set of homomorphisms{π(u′,v̄)
k : Ȟk(X〈ϕ ≤ u′〉) → Ȟk(X〈ϕ ≤ v̄〉)} is a

homomorphism of inverse systems because the diagram

Ȟk(X〈ϕ ≤ u′〉)
π
(u′,u′′)
k //

π
(u′,v̄)
k ��

Ȟk(X〈ϕ ≤ u′′〉)

π
(u′′,v̄)
k ��

Ȟk(X〈ϕ ≤ v̄〉)
π
(v̄,v̄)
k // Ȟk(X〈ϕ ≤ v̄〉)

is commutative.

By the continuity ofČech Theory (cf. [22, Thm. X, 3.1]),lim
←
Ȟk(X〈ϕ ≤ u′〉) =

Ȟk(X〈ϕ ≤ ū〉). Obviously,lim
←
Ȟk(X〈ϕ ≤ v̄〉) = Ȟk(X〈ϕ ≤ v̄〉). Hence,π(ū,v̄)

k is the

natural homomorphismlim
←
π
(u′,v̄)
k between the inverse limits. So, imπ(ū,v̄)

k
∼= im lim

←
π
(u′,v̄)
k .

Moreover, since the inverse limit of vector spaces is an exact functor, it preserves

epimorphisms and hence images. Therefore, it holds that imlim
←
π
(u′,v̄)
k

∼= lim
←

im π
(u′,v̄)
k =

lim
←
Ȟ

(u′,v̄)
k (X,ϕ), where the last inverse limit is taken with respect to the inverse system

(

Ȟ
(u′,v̄)
k (X,ϕ), σ

(u′,u′′)
k

)

over the directed set{u′ ∈ R : ū < u′ ≤ û} decreasingly

ordered, andσ(u′,u′′)
k are the maps introduced in Lemma 2.7.

Finally, lim
←
Ȟ

(u′,v̄)
k (X,ϕ) ∼= Ȟ

(û,v̄)
k (X,ϕ). Indeed,lim

←
Ȟ

(u′,v̄)
k (X,ϕ) is the inverse

limit of a system of isomorphic vector spaces by Lemma 2.7.

Analogously for the variablev, applying Lemma 2.8.
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3 Stability of one-dimensional PBNs

In this section we prove the stability of PBNs for continuous scalar-valued filtering func-

tions (Theorem 3.13). This result generalizes the main theorem in [12], which requires

tame functions on triangulable spaces. Our proof relies on anumber of basic simple prop-

erties of PBNs that are completely analogous to those proved in [14, 24] and used to show

the PBNs stability in the case of the 0th homology. For this reason we shall omit the

proofs of our statements when they are quite analogous to already published ones. Some

of these properties, such as those needed to introduce persistence diagrams, require the

finiteness of PBNs proved in the previous section. Along the way we shall also prove the

Representation Theorem 3.11. It guarantees that one-dimensional PBNs are completely

determined by persistence diagrams, even in the case of justcontinuous functions.

The following Lemmas 3.1 and 3.2 can be proved in the same way as the analogous

results holding when the homology degreek is equal to 0 (see [14]).

Lemma 3.1. The following statements hold:

(i) For everyu < minϕ, βϕ(u, v) = 0.

(ii) For everyv ≥ maxϕ, βϕ(u, v) is equal to the maximum number of linearly inde-

pendent classes iňHk(X) having at least one representative inX〈ϕ ≤ u〉.

We observe that Lemma 3.1(ii) implies that, for everyv ≥ maxϕ, βϕ(u, v) is inde-

pendent ofv.

Since, foru1 ≤ u2 < v1 ≤ v2, the maximum number of linearly independent homol-

ogy classes born betweenu1 andu2 and still linearly independent atv1 is certainly not

smaller than the maximum number of those still linearly independent atv2, we have the

next result.

Lemma 3.2(Jump Monotonicity). Letu1, u2, v1, v2 be real numbers such thatu1 ≤ u2 <

v1 ≤ v2. It holds that

βϕ(u2, v1)− βϕ(u1, v1) ≥ βϕ(u2, v2)− βϕ(u1, v2).

Lemma 3.2 justifies the following definitions of multiplicity. Since we are working

with continuous instead of tame functions, we adopt the definitions introduced in [24]

rather than those of [12]. Although based on the same idea, the difference relies on the

computation of multiplicity on a varying grid, instead of a fixed one. So we can work with

an infinite number of (possibly accumulating) points with a positive multiplicity. Due to

the lack of a well-established terminology for points with apositive multiplicity, we call

themcornerpoints, as in previous papers.
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Definition 3.3 (Proper cornerpoint). For every pointp = (u, v) ∈ ∆+, we define the

numberµ(p) as the minimum over all the positive real numbersε, with u+ ε < v − ε, of

βϕ(u+ ε, v − ε)− βϕ(u− ε, v − ε)− βϕ(u+ ε, v + ε) + βϕ(u− ε, v + ε).

The numberµ(p) will be called themultiplicity of p for βϕ. Moreover, we shall call a

proper cornerpoint forβϕ any pointp ∈ ∆+ such that the numberµ(p) is strictly positive.

Definition 3.4 (Cornerpoint at infinity). For every vertical liner, with equationu = ū,

ū ∈ R, let us identifyr with (ū,∞) ∈ ∆∗, and define the numberµ(r) as the minimum

over all the positive real numbersε, with ū+ ε < 1/ε, of

βϕ

(

ū+ ε,
1

ε

)

− βϕ

(

ū− ε,
1

ε

)

.

The numberµ(r) will be called themultiplicity of r for βϕ. When this finite number is

strictly positive, we callr acornerpoint at infinity forβϕ.

The concept of cornerpoint allows us to introduce a representation of the PBNs, based

on the following definition [12].

Definition 3.5 (Persistence diagram). Thepersistence diagramDϕ is the multiset of all

cornerpoints (both proper and at infinity) forβϕ, counted with their multiplicity, union the

points of∆, counted with infinite multiplicity.

In order to show that persistence diagrams completely describe PBNs, we give some

technical results concerning cornerpoints.

The Monotonicity Lemma 2.4, the Right-Continuity Proposition 2.9 and the Jump

Monotonicity Lemma 3.2 imply the following result, by the same arguments as in [24].

Proposition 3.6 (Propagation of Discontinuities). If p̄ = (ū, v̄) is a proper cornerpoint

for βϕ, then the following statements hold:

(i) If ū ≤ u < v̄, thenv̄ is a discontinuity point forβϕ(u, ·);

(ii) If ū < v < v̄, thenū is a discontinuity point forβϕ(·, v).

If r̄ = (ū,∞) is a cornerpoint at infinity forβϕ, then it holds that

(iii) If ū < v, thenū is a discontinuity point forβϕ(·, v).

We observe that any open arcwise connected neighborhood in∆+ of a discontinuity

point forβϕ contains at least one discontinuity point in the variableu or v. Moreover, as a

consequence of the Jump Monotonicity Lemma 3.2, discontinuity points in the variableu

propagate downwards, while discontinuity points in the variablev propagate rightwards.

So, by applying the Finiteness Theorem 2.3, we obtain the proposition below (cf. [24,

Prop. 6]).
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Proposition 3.7. For every pointp̄ = (ū, v̄) ∈ ∆+, a real numberε > 0 exists such that

the open set

Wε(p̄) = {(u, v) ∈ R
2 : |u− ū| < ε, |v − v̄| < ε, u 6= ū, v 6= v̄}

is contained in∆+, and does not contain any discontinuity point forβϕ.

As a simple consequence of Lemma 3.1 and Definition 3.3, we have the following

proposition.

Proposition 3.8(Localization of Cornerpoints). If p̄ = (ū, v̄) is a proper cornerpoint for

βϕ, thenp̄ ∈ {(u, v) ∈ ∆+ : minϕ ≤ u < v ≤ maxϕ}.

By applying Propositions 3.6, 3.7, and 3.8 it is easy to prove the following result.

Proposition 3.9(Local Finiteness of Cornerpoints). For each strictly positive real number

ε, βϕ has, at most, a finite number of cornerpoints in{(u, v) ∈ R
2 : u+ ε < v}.

We observe that it is easy to provide examples of persistencediagrams containing an

infinite number of proper cornerpoints, accumulating onto the diagonal∆.

Remark 3.10. The number of cornerpoints at infinity forβϕ counted with their multiplic-

ities is equal todim Ȟk(X), and hence it is finite and independent ofϕ.

The following Theorem 3.11 shows that persistence diagramsuniquely determine one-

dimensional PBNs (the inverse also holds by definition of persistence diagram). We re-

mark that a similar result was given in [12], under the name ofk-triangle Lemma. Our

Representation Theorem differs from thek-triangle Lemma in two respects. Firstly, our

assumptions on the functionϕ are weaker. Secondly, thek-triangle Lemma focuses not

on all the set∆+, but only on the points with coordinates that are not homological critical

values.

Theorem 3.11(Representation Theorem). For every(ū, v̄) ∈ ∆+, we have

βϕ(ū, v̄) =
∑

(u,v)∈∆∗

u≤ū, v>v̄

µ((u, v)).

Proof. The claim is a consequence of the definitions of multiplicity(Definitions 3.3

and 3.4), together with the previous results about cornerpoints, and the Right-Continuity

Proposition 2.9, in the same way as done in [24].

As a consequence of the Representation Theorem 3.11, any distance between per-

sistence diagrams induces a distance between one-dimensional PBNs. This justifies the

following definition [14].
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Definition 3.12(Matching distance). LetX, Y be triangulable spaces endowed with con-

tinuous functionsϕ : X → R, ψ : Y → R. The (extended)matching distancedmatch
betweenβϕ andβψ is defined by

dmatch (βϕ, βψ) = inf
γ

sup
p∈Dϕ

‖p− γ(p)‖∞̃ , (3.1)

whereγ ranges over all multi-bijections betweenDϕ andDψ, and, for everyp = (u, v), q =

(u′, v′) in ∆̄∗,

‖p− q‖∞̃ = min

{

max {|u− u′|, |v − v′|} ,max

{

v − u

2
,
v′ − u′

2

}}

,

with the convention about points at infinity that∞ − y = y − ∞ = ∞ wheny 6= ∞,

∞−∞ = 0, ∞
2
= ∞, |∞| = ∞, min{c,∞} = c andmax{c,∞} = ∞.

In plain words,‖·‖∞̃ measures the pseudo-distance between two pointsp andq as the

minimum between the cost of moving one point onto the other and the cost of moving

both points onto the diagonal, with respect to the max-norm and under the assumption

that any two points of the diagonal have vanishing pseudo-distance.

The termextendedmeans thatdmatch can take the value+∞. It will follow from our

One-Dimensional Stability Theorem 3.13 thatdmatch is finite whenX = Y .

When the number of cornerpoints is finite, the matching of persistence diagrams is

related to the bottleneck transportation problem, and the matching distance reduces to

the bottleneck distance [12]. In our case, however, the number of cornerpoints may be

countably infinite, because of our loose assumption on the filtering function, that is only

required to be continuous.

We observe that, although the number of cornerpoints may be countably infinite, in

(3.1) we can writemax instead ofsup andmin instead ofinf, as can be formally proven

using the same arguments as in [14, Thm. 28]. In other words, amulti-bijection γ̄ exists

for whichdmatch (βϕ, βψ) = maxp∈Dϕ ‖p− γ̄(p)‖∞̃. Every such matching will henceforth

be calledoptimal.

We are now ready to give the one-dimensional stability theorem for PBNs with con-

tinuous filtering functions. The proof relies on a cone construction. The rationale behind

this construction is to directly apply the arguments used in[14], eliminating cornerpoints

at infinity, whose presence would require us to modify all theproofs. The reason for this

choice is to reduce technical aspects inside the proof.

The stability theorem below is a different result from the one given in [12], weakening

the tameness requirement to continuity, and actually solving one of the open problems

posed in that work by the authors.

Theorem 3.13(One-Dimensional Stability Theorem). Let X be a triangulable space,

andϕ, ψ : X → R two continuous functions. Thendmatch(βϕ, βψ) ≤ max
x∈X

|ϕ(x)− ψ(x)|.
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Proof. In what follows we can assume thatX is connected. Indeed, ifX hasr connected

componentsC1, . . . , Cr, then the claim can be proved by induction after observing that

Dϕ =
⋃r
i=1Dϕ|Ci

.

For the0th homology, the claim has been proved in [14, Thm. 25].

Let us now consider thekth homology withk > 0. We build the cone onX, X̃ =

(X × I)
/

(X × {1}) (see Figure 2).

X X̃ t = 0

t = 1

Figure 2: The cone construction used in the proof of Theorem 3.13. The cycles in the cone
are null-homologous.

SinceX is triangulable, so is̃X. We also consider the continuous functionϕ̃ : X̃ → R

taking the class of(x, t) in X̃ to the valueϕ(x) · (1 − t) + M · t, whereM = 3 ·

(max |ϕ| + max |ψ|) + 1. This choice ofM , besides guaranteeing that(u,M) ∈ ∆+

whenu ≤ max |ϕ|,max |ψ|, will be useful later.

By construction, it holds that

βϕ̃(u, v) =

{

βϕ(u, v), if v < M ;
0, if v ≥M .

Indeed, it is well known that̃X is contractible (see [27, Lemma 21.13]), explaining why

βϕ̃(u, v) = 0 whenv ≥ M . The other casev < M follows from the observation that, for

everyv < M , identifyingX〈ϕ ≤ v〉×{0} with X〈ϕ ≤ v〉, the lower level setX〈ϕ ≤ v〉

is a strong deformation retract of̃X〈ϕ̃ ≤ v〉. To see this, it is sufficient to consider the

obvious retractionr : (x, t) 7→ x and the deformation retractionH : X̃〈ϕ̃ ≤ v〉 × I →

X̃〈ϕ̃ ≤ v〉,H((x, t), s) = (x, t · (1− s)). This yields the following commutative diagram

Ȟk(X̃〈ϕ̃ ≤ u〉)
r′k //

π̃
(u,v)
k

��

Ȟk(X〈ϕ ≤ u〉)

π
(u,v)
k

��

Ȟk(X̃〈ϕ̃ ≤ v〉)
r′′k // Ȟk(X〈ϕ ≤ v〉),

where the horizontal maps are isomorphisms induced byr, and the vertical ones are the

homomorphisms introduced in Definition 2.1 for the respective spaces. So,̌H(u,v)
k (X̃, ϕ̃) ∼=

Ȟ
(u,v)
k (X,ϕ) whenv < M .

Clearly, a point of∆+ is a proper cornerpoint forβϕ if and only if it is a proper

cornerpoint forβϕ̃, with the ordinate strictly less thanM . Moreover, a point(u,∞) of
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∆∗ is a cornerpoint at infinity forβϕ if and only if the point(u,M) ∈ ∆+ is a proper

cornerpoint forβϕ̃. We remark that there are no cornerpoints(u, v) for βϕ̃ whenmax |ϕ| <

v < M .

Analogously, we can construct̃ψ : X̃ → R out ofψ with the same properties.

It is possible to prove the inequalitydmatch(βϕ̃, βψ̃) ≤ maxx̃∈X̃

∣

∣

∣
ϕ̃(x̃)− ψ̃(x̃)

∣

∣

∣
. Since

the proof of this claim is completely analogous to that of [14, Thm. 25], we omit the

technical details remarking that it is precisely here that Lemma 2.5, and Propositions 3.6,

3.7, 3.8 and 3.9 are needed. Hence, sincemaxx̃∈X̃

∣

∣

∣
ϕ̃(x̃)− ψ̃(x̃)

∣

∣

∣
= max

x∈X
|ϕ(x)− ψ(x)|,

it is sufficient to show thatdmatch(βϕ, βψ) ≤ dmatch(βϕ̃, βψ̃).

To this end, we can consider an optimal matchingγ̃ betweenDϕ̃ andDψ̃, for which

dmatch(βϕ̃, βψ̃) = maxp̃∈Dϕ̃
‖p̃− γ̃(p̃)‖∞̃. Sinceγ̃ is optimal,γ̃ takes each point(u, v) ∈

Dϕ̃, with v = M , to a point(u′, v′) ∈ Dψ̃, with v′ = M . Indeed, if it were not true,

i.e. γ̃((u,M)) = (u′, v′) with v′ < M , then v′ ≤ max |ψ|, since there are no cor-

nerpoints(u′, v′) for βψ̃ with max |ψ| < v′ < M . By the choice ofM , we would

have‖(u,M)− γ̃((u,M))‖∞̃ > max
x∈X

|ϕ(x)− ψ(x)|. This contradictsdmatch(βϕ̃, βψ̃) ≤

max
x∈X

|ϕ(x)− ψ(x)|. The same argument holds forγ̃−1, and this proves that̃γ maps cor-

nerpoints whose ordinate is smaller thanM into cornerpoints whose ordinate is still below

M .

We now show that there exists a multi-bijectionγ betweenDϕ andDψ, such that

maxp∈Dϕ ‖p− γ(p)‖∞̃ = maxp̃∈Dϕ̃
‖p̃− γ̃(p̃)‖∞̃, thus proving thatdmatch(βϕ, βψ) ≤

dmatch(βϕ̃, βψ̃). Indeed, we can defineγ : Dϕ → Dψ by settingγ((u, v)) = γ̃((u, v))

if v < ∞, andγ((u, v)) = (u′, v), whereu′ is the abscissa of the pointγ̃((u,M)), if

v = ∞. This concludes the proof.

Let us conclude this section by showing the following property of dmatch, that will be

useful later.

Proposition 3.14. Let λ ∈ R, with λ > 0. Let alsoϕ : X → R, ψ : Y → R be two

continuous filtering functions for the triangulable spacesX andY , respectively. Then, it

holds that

dmatch (βλ·ϕ, βλ·ψ) = λ · dmatch (βϕ, βψ) .

Proof. First of all, let us observe that, if(u, v) ∈ ∆+, then(λu, λv) ∈ ∆+ for λ > 0.

Moreover, forλ > 0, it holds thatβϕ(u, v) = βλ·ϕ(λu, λv), sinceX〈ϕ ≤ u〉 = X〈λ ·

ϕ ≤ λu〉 for everyu ∈ R. Then, by Definitions 3.3 and 3.4, for every(u, v) ∈ ∆∗, the

multiplicity of (u, v) for βϕ is equal to the multiplicity of(λu, λv) for βλ·ϕ.

Following the definition of the operator‖·‖∞̃ in Definition 3.12, for every(u, v),(u′, v′)
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in ∆∗, we have

‖(λu, λv)−(λu′, λv′)‖∞̃ =

=min

{

max {λ|u−u′|, λ|v−v′|} ,max

{

λ
v−u

2
, λ
v′−u′

2

}}

= λ‖(u, v)−(u′, v′)‖∞̃.

Thus the claim follows from the definition ofdmatch (Definition 3.12), and by observing

that the correspondence taking each pair(u, v) ∈ ∆∗ to the pair(λu, λv) ∈ ∆∗ is actually

a bijection.

4 Stability of multidimensional PBNs

We now provide the proof of the stability of multidimensional PBNs. It will be deduced

following the same arguments given in [1] to prove the stability of multidimensional PBNs

for the case of the 0th homology.

The key idea is that a foliation in half-planes of∆+ can be given, such that the re-

striction of the multidimensional PBNs function to these half-planes turns out to be a

one-dimensional PBNs function in two scalar variables. Thisapproach implies that the

comparison of two multidimensional PBNs functions can be performed leaf by leaf by

measuring the distance of appropriate one-dimensional PBNsfunctions. Therefore, the

stability of multidimensional persistence is a consequence of the one-dimensional persis-

tence stability.

We start by recalling that the following parameterized family of half-planes inRn×R
n

is a foliation of∆+ (cf. [1, Prop. 1]).

Definition 4.1 (Admissible pairs). For every vector~l = (l1, . . . , ln) of Rn such thatli > 0

for i = 1, . . . , n, and
∑n

i=1 l
2
i = 1, and for every vector~b = (b1, . . . , bn) of Rn such that

∑n
i=1 bi = 0, we shall say that the pair

(

~l,~b
)

is admissible. We shall denote the set of

all admissible pairs inRn × R
n byAdmn. Given an admissible pair

(

~l,~b
)

, we define the

half-planeπ(~l,~b) of Rn × R
n by the following parametric equations:

{

~u = s~l +~b

~v = t~l +~b

for s, t ∈ R, with s < t.

Since these half-planesπ(~l,~b) constitute a foliation of∆+, for each(~u,~v) ∈ ∆+ there

exists one and only one
(

~l,~b
)

∈ Admn such that(~u,~v) ∈ π(~l,~b). Observe that~l and~b only

depend on(~u,~v).
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A first property of this foliation is that the restriction ofβ~ϕ to each leaf can be seen as

a particular one-dimensional PBNs function. Intuitively, on each half planeπ(~l,~b) one can

find the PBNs corresponding to the filtration ofX obtained by sweeping the line through

~u and~v parameterized byγ(~l,~b) : R → R
n, with γ(~l,~b)(τ) = τ~l +~b.

A second property is that this filtration corresponds to the one given by the lower level

sets of a certain scalar-valued continuous function. Both these properties are stated in the

next theorem, analogous to [3, Thm. 2], and are intuitively shown in Figure 3.

Theorem 4.2(Reduction Theorem). For every(~u,~v) ∈ ∆+, let
(

~l,~b
)

be the only admis-

sible pair such that(~u,~v) = (s~l +~b, t~l +~b) ∈ π(~l,~b). Let moreoverϕ(~u,~v) : X → R be the

continuous filtering function defined by setting

ϕ(~u,~v)(x) = min
i
li ·max

i

ϕi(x)− bi
li

.

ThenX〈~ϕ � ~u〉 = X〈(mini li)
−1ϕ(~u,~v) ≤ s〉. Therefore

β~ϕ(~u,~v) = β(mini li)−1ϕ(~u,~v)
(s, t) .

Proof. For every~u = (u1, . . . , un) ∈ R
n, with ui = sli + bi, i = 1, . . . , n, s ∈ R, the

following equalities hold:

X〈~ϕ � ~u〉 = {x ∈ X : ϕi(x) ≤ ui, i = 1, . . . , n}

=

{

x ∈ X : max
i

ϕi(x)− bi
li

≤ s

}

=
{

x ∈ X : (min
i
li)
−1ϕ(~u,~v) ≤ s

}

= X〈(min
i
li)
−1ϕ(~u,~v) ≤ s〉.

The last claim follows from the definition of PBNs.

Definition 4.1 and Theorem 4.2 might appear unnecessarily cumbersome. A naive idea

for proving stability via the one-dimensional reduction might be to directly apply the one-

dimensional theory to the line through~u and~v. This does not work without introducing

the functionsϕ(~u,~v) and without a one-dimensional stability result for continuous filtering

functions such as our Theorem 3.13. Indeed, an analogous result for tame functions would

not be applicable in our case since, as remarked in [3], the set of tame functions is not

closed under the maximum operator.

Finally, the most important property of our foliation is that it allows us to obtain an

analogue of the distancedmatch for the multidimensional case, denoted byDmatch, having

a particularly simple form, yet yielding the desired stability result.

Our definition ofDmatch is the natural one in order to compare multidimensional

PBNs. Indeed, it boils down to matching cornerpoints of~ϕ that arise from the one-

dimensional filtration obtained sweeping the line through~u and~v with those of~ψ along
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tl+b

sl
+
b

~u
~v~l

~b

s

t

(~l,~b)

b1 + b2 = 0

ϕ1

ϕ2

π(~l,~b)

γ(~l,~b)

Figure 3: One-dimensional reduction of two-dimensional PBNs. Left: a one-dimensional
filtration is constructed sweeping the line through~u and~v. A unit vector~l and a point~b
are used to parameterize this line asγ(~l,~b)(τ) = τ~l +~b. Right: the persistence diagram of

this filtration can be found on the leafπ(~l,~b) of the foliation.

the same line. In our treatment this is accomplished using a particular parameterization of

this line. However this parameterization is not mandatory:Other parameterizations of the

same line would yield the same distance, as it has been provedin [10]. In other words,

Dmatch is in some way intrinsically defined.

Dmatch was introduced in [3] (see also [1]), although in the narrower setting ofmax-

tame filtering functions, and can be rewritten as follows.

Definition 4.3 (Multidimensional matching distance). Let X, Y be triangulable spaces

endowed with continuous functions~ϕ : X → R
n, ~ψ : Y → R

n. The (extended)multidi-

mensional matching distanceDmatch betweenβ~ϕ andβ~ψ is defined as

Dmatch

(

β~ϕ, β~ψ

)

= sup
(~u,~v)∈∆+

dmatch

(

βϕ(~u,~v)
, βψ(~u,~v)

)

. (4.1)

The following theorem shows not only thatDmatch is a distance whenX = Y , but,

more importantly, the stability of multidimensional PBNs with respect to this distance.

Theorem 4.4(Multidimensional Stability Theorem). If X is a triangulable space, then

Dmatch is a distance on the set{β~ϕ | ~ϕ : X → R
n continuous}. Moreover,

Dmatch

(

β~ϕ, β~ψ

)

≤ max
x∈X

∥

∥

∥
~ϕ(x)− ~ψ(x)

∥

∥

∥

∞
.

Proof. Let us begin by observing that

dmatch

(

βϕ(~u,~v)
, βψ(~u,~v)

)

≤ max
x∈X

∣

∣ϕ(~u,~v)(x)− ψ(~u,~v)(x)
∣

∣

≤ min
i
li ·max

x∈X

∣

∣

∣

∣

max
i

ϕi(x)− bi
li

−max
i

ψi(x)− bi
li

∣

∣

∣

∣

≤ min
i
li ·

max
x∈X

∥

∥

∥
~ϕ(x)− ~ψ(x)

∥

∥

∥

∞

mini li
,



20 Andrea Cerri, Barbara Di Fabio, Massimo Ferri, Patrizio Frosini, Claudia Landi

where the first inequality follows applying the One-Dimensional Stability Theorem 3.13,

sinceϕ(~u,~v), ψ(~u,~v) are scalar-valued continuous filtering functions, while the second in-

equality descends from the definition ofϕ(~u,~v) andψ(~u,~v) (cf. Theorem 4.2). Therefore,

Dmatch

(

β~ϕ, β~ψ

)

is bounded bymax
x∈X

∥

∥

∥
~ϕ(x)− ~ψ(x)

∥

∥

∥

∞
.

Let us now prove thatDmatch is a distance on{β~ϕ | ~ϕ : X → R
n continuous}.

SinceDmatch is bounded, it takes values in the set of non-negative reals.Moreover, as

a consequence of the Reduction Theorem 4.2, the identityβ~ϕ ≡ β~ψ holds if and only

if β(mini li)−1ϕ(~u,~v)
≡ β(mini li)−1ψ(~u,~v)

for every (~u,~v) ∈ ∆+. Recalling thatdmatch is

positive-definite, for every(~u,~v) ∈ ∆+, β(mini li)−1ϕ(~u,~v)
≡ β(mini li)−1ψ(~u,~v)

if and only

if dmatch
(

β(mini li)−1ϕ(~u,~v)
, β(mini li)−1ψ(~u,~v)

)

= 0. In virtue of Proposition 3.14, we have

dmatch

(

β(mini li)−1ϕ(~u,~v)
, β(mini li)−1ψ(~u,~v)

)

= 0 if and only if dmatch
(

βϕ(~u,~v)
, βψ(~u,~v)

)

= 0,

for every(~u,~v) ∈ ∆+. This proves thatDmatch is actually positive-definite. The symmet-

ric property is obvious while the triangular inequality follows in a standard way.

Roughly speaking, we have thus proved that small changes in a vector-valued filtering

function induce small changes in the associated multidimensional PBNs, with respect to

the distanceDmatch.

Moreover, it is possible to prove thatβ~ϕ is stable with respect to the choice of the

half-planes in the foliation. Indeed, the next theorem states that small enough changes in

(~l,~b) with respect to themax-norm induce small changes ofβ(mini li)−1ϕ(~u,~v)
with respect

to the matching distance. The proof is analogous to the one ofProp. 3 in [1].

Theorem 4.5(Stability w.r.t. leaf perturbations). If X is a triangulable space endowed

with a continuous function~ϕ : X → R
n and(~l,~b), (~l′,~b′) are admissible pairs verifying

‖~l −~l′‖∞ ≤ ǫ, ‖~b−~b′‖∞ ≤ ǫ for ǫ < min
j=1,...,n

{lj}, then, for every(~u,~v) ∈ π(~l,~b), (~u
′, ~v′) ∈

π(~l′,~b′), it holds that

dmatch

(

β(mini li)−1ϕ(~u,~v)
, β(mini l′i)

−1ϕ(~u′,~v′)

)

≤ ǫ ·
max
x∈X

‖~ϕ(x)‖∞ + ‖~l‖∞ + ‖~b‖∞

min
i=1,...,n

{li(li − ǫ)}
.

Proof. From Theorem 3.13, we have

dmatch

(

β(mini li)−1ϕ(~u,~v)
, β(mini l′i)

−1ϕ(~u′,~v′)

)

≤ max
x∈X

|(min
i
li)
−1ϕ(~u,~v)(x)−(min

i
l′i)
−1ϕ(~u′,~v′)(x)|.

Fix now x ∈ X, and denote bŷι the index for whichmax
i

ϕi(x)−bi
li

is attained. By the
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definition ofϕ(~u,~v) andϕ(~u′,~v′), it follows that

(min
i
li)
−1ϕ(~u,~v)(x)− (min

i
l′i)
−1ϕ(~u′,~v′)(x) = max

i

ϕi(x)− bi
li

−max
i

ϕi(x)− b′i
l′i

=
ϕι̂(x)− bι̂

lι̂
−max

i

ϕi(x)− b′i
l′i

≤
ϕι̂(x)− bι̂

lι̂
−
ϕι̂(x)− b′ι̂

l′ι̂

=
(l′ι̂ − lι̂)ϕι̂(x)− l′ι̂bι̂ + lι̂b

′
ι̂

lι̂l′ι̂

=
(l′ι̂ − lι̂)ϕι̂(x) + lι̂(b

′
ι̂ − bι̂) + bι̂(lι̂ − l′ι̂)

lι̂l′ι̂

≤
|l′ι̂ − lι̂||ϕι̂(x)|+ |lι̂||b

′
ι̂ − bι̂|+ |bι̂||lι̂ − l′ι̂|

lι̂l′ι̂

≤
ǫ(‖~ϕ(x)‖∞ + ‖~l‖∞ + ‖~b‖∞)

lι̂(lι̂ − ǫ)

≤
ǫ(‖~ϕ(x)‖∞ + ‖~l‖∞ + ‖~b‖∞)

min
i=1,...,n

{li(li − ǫ)}
.

In the same manner we can see that

(min
i
l′i)
−1ϕ(~u′,~v′)(x)− (min

i
li)
−1ϕ(~u,~v)(x) ≤

ǫ(‖~ϕ(x)‖∞ + ‖~l‖∞ + ‖~b‖∞)

min
i=1,...,n

{li(li − ǫ)}
.

Therefore,

max
x∈X

|(min
i
li)
−1ϕ(~u,~v)(x)− (min

i
l′i)
−1ϕ(~u′,~v′)(x)| ≤ ǫ ·

max
x∈X

‖~ϕ(x)‖∞ + ‖~l‖∞ + ‖~b‖∞

min
i=1,...,n

{li(li − ǫ)}

and the claim is proved.

Our definition ofDmatch enables us to computationally compare topological data using

multidimensional PBNs in the same way as in [1] and, above all,to obtain a lower bound

for the natural pseudo-distance as shown in the following section.

5 The connection between the multidimensional match-
ing distance and the natural pseudo-distance

Another relevant reason to study the multidimensional matching distanceDmatch is the

possibility of obtaining lower bounds for the natural pseudo-distance.

We recall that, for any two topological spacesX, Y endowed with two continuous

functions~ϕ : X → R
n, ~ψ : Y → R

n, we can give the following definition.
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Definition 5.1 (Natural pseudo-distance). Thenatural pseudo-distancebetween the pairs

(X, ~ϕ) and(Y, ~ψ), denoted byδ
(

(X, ~ϕ), (Y, ~ψ)
)

, is

(i) the numberinfhmaxx∈X ‖~ϕ(x)− ~ψ(h(x))‖∞ whereh varies in the setH(X, Y ) of

all the homeomorphisms betweenX andY , if X andY are homeomorphic;

(ii) +∞, if X andY are not homeomorphic.

We point out that the natural pseudo-distance is not a distance because it can vanish

on two distinct pairs. However, it is symmetric, satisfies the triangular inequality, and

vanishes on two equal pairs.

The natural pseudo-distance has been studied in [16, 17, 18]in the case of scalar-

valued filtering functions on manifolds, and in [25] in the case of vector-valued filtering

functions on manifolds.

As a simple but relevant consequence of the Multidimensional Stability Theorem 4.4

we obtain the following Theorem 5.2, stating that the multidimensional matching distance

furnishes a lower bound for the natural pseudo-distance.

Theorem 5.2. LetX, Y be two triangulable spaces endowed with two continuous func-

tions ~ϕ : X → R
n, ~ψ : Y → R

n. Then

Dmatch(β~ϕ, β~ψ) ≤ δ
(

(X, ~ϕ), (Y, ~ψ)
)

.

Proof. We follow the same proof line used in [1] for0th homology. IfH(X, Y ) is empty

our statement is trivially true. Let us assumeH(X, Y ) 6= ∅ and take any homeomorphism

h ∈ H(X, Y ). We observe thatβ~ψ = β~ψ◦h. Moreover, for each homeomorphismh, by

applying the Multidimensional Stability Theorem 4.4, we have

Dmatch(β~ϕ, β~ψ) = Dmatch(β~ϕ, β~ψ◦h) ≤ max
x∈X

‖~ϕ(x)− ~ψ(h(x))‖∞.

Since this is true for any homeomorphismh betweenX andY , it immediately follows

thatDmatch(β~ϕ, β~ψ) ≤ δ
(

(X, ~ϕ), (Y, ~ψ)
)

.

We point out that, taking the maximum over all homology degrees, Theorem 5.2 yields

a lower bound that improves the one given in [1].

We recall that the natural pseudo-distance, involving all possible homeomorphisms be-

tween two triangulable spaces, is quite difficult to compute. Theorem 5.2 could represent

a useful and simple tool to estimate this metric.
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A Appendix

The next example shows that the PBNs function is not right-continuous in the variable

v when singular or simplicial homologies are considered instead ofČech homology. We

recall that a case concerning the right-continuity in the variableu has been described in

Example 2.6.

Example A.1. Let S ⊂ R
3 be a sphere parameterized by polar coordinates(θ, φ), −π

2
≤

θ ≤ π
2

andφ ∈ [0, 2π). For everyφ ∈ [0, 2π), consider onS the pathsγ1φ : (−π
2
, 0) → S

andγ2φ : (0, π
2
) → S defined by setting, fori = 1, 2, γiφ(θ) = (θ′, φ′) with θ′ = θ and

φ′ = (φ + cot θ) mod 2π. We observe that each point of the setS∗ = {(θ, φ) ∈ S : θ 6=

0∧|θ| 6= π
2
} belongs to the image of one and only one pathγiφ. Such curves approach more

and more a pole of the sphere on one side and the equator, winding an infinite number of

times, on the other side (see, for instance, in Figure 4(a), the pathsγ2π
2

andγ23π
2

lying in

the northern hemisphere).

P̄

N 0 1

2 u

vφ(S,ϕ),0 ∆+

ϕ(P̄ ) = ϕ(Q̄)

(a) (b)

Figure 4:(a) Two of the paths covering the northern hemisphere considered in Example A.1.(b) The 0th
PBNs of the functionϕ. On the discontinuity points highlighted in bold red, the 0th PBNs computed using
singular homology takes a value equal to 2, while usingČech homology, the value is equal to 1, showing
the right-continuity in the variablev.

Then define theC∞ functionϕ∗ : S∗ → R that takes each pointP = γiφ(θ) ∈ S∗

to the valueexp

(

− 1

θ2(π
2
−|θ|)

2

)

sin(φ). Now extendϕ∗ to aC∞ functionϕ : S → R in

the only way possible. In plain words, this function draws a ridge forφ ∈ (0, π), and a

valley forφ ∈ (π, 2π). Moreover, observe that the points̄P ≡
(

π
4
, (3π

2
+ 1) mod 2π

)

and

Q̄ ≡
(

−π
4
, (3π

2
− 1) mod 2π

)

of the sphere are the unique local minimum points ofϕ.

Let us now consider the0th PBNs ofϕ. Its graph is depicted in Figure 4(b). The

pointsP̄ andQ̄ belong to the same arcwise connected component of the lower level set
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S〈ϕ ≤ ε〉 for everyε > 0, whereas they do not forε = 0, since the pathsγiπ
2

(i = 1, 2)

are an “obstruction” to constructing a continuous path fromP̄ to Q̄. Hence, the singular

PBNsβϕ for 0th homology is not right-continuous in the second variable at v = 0, for

anyu with minϕ ≤ u < 0.
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