COMPITINO DI GEOMETRIA 2

17 Dicembre 2018

Esercizio 1. Siano $p_1, \ldots, p_m \in \mathbb{R}[x_0, \ldots, x_n]$ polinomi omogenei a coefficienti reali nelle variabili x_0,\ldots,x_n e sia $Z\subset\mathbb{P}^n(\mathbb{R})$ il relativo luogo degli zeri, dotato della topologia di sottospazio. Mostrare che Z è compatto.

Soluzione. Poiché $\mathbb{P}^n(\mathbb{R})$ è compatto, è sufficiente mostrare che Z è chiuso. Indichiamo con $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{P}^n(\mathbb{R})$ la proiezione al quoziente. Dato $i \leq m$, sia $\hat{Z}_i \subset \mathbb{R}^{n+1}$ il luogo degli zeri di p_i e sia $Z_i = \pi(\hat{Z}_i)$ la sua immagine in $\mathbb{P}^n(\mathbb{R})$. Allora per definizione $Z=Z_1\cap\ldots\cap Z_n$. Poiché p_i definisce una funzione continua $\mathbb{R}^{n+1} \to \mathbb{R}$, il luogo degli zeri \hat{Z}_i è chiuso in \mathbb{R}^{n+1} , vediamo che siccome p_i è omogeneo allora \hat{Z}_i è saturo relativamente alla proiezione π . Se infatti $\lambda \in \mathbb{R}$, allora

$$p_i(\lambda x_0, \dots, \lambda x_n) = \lambda^{d_i} p_i(x_0, \dots, x_n)$$

dove d_i indica il grado di p_i : dunque \hat{Z}_i è unione di rette per l'origine, vale a dire $\hat{Z}_i = \pi^{-1}(\pi(Z_i))$. Pertanto dalla definizione di topologia quoziente Z_i è chiuso in $\mathbb{P}^n(\mathbb{R})$, e Z è chiuso in quanto intersezione di chiusi.

Esercizio 2. Sia X uno spazio di Hausdorff compatto e sia $f: X \to X$ un'applicazione continua di X in sé stesso. Mostrare che esiste un chiuso non vuoto $C \subset X$ tale che f(C) = C.

Suggerimento. Considerare la famiglia di sottospazi definita ponendo $X_0 = X$ e $X_n = f(X_{n-1})$ (n > 0), e applicare la caratterizzazione della compattezza in termini di famiglie di chiusi.

Soluzione. Poiché X è compatto di Hausdorff, osserviamo che f è un'applicazione chiusa. Poniamo $X_0 = X$ e, per n > 0, definiamo $X_n = f(X_{n-1})$: allora $\mathcal{C} = \{X_n\}_{n \in \mathbb{N}}$ è una famiglia di chiusi non vuoti di X. In altri termini, abbiamo $X_n = f^n(X)$: dunque $X_{n+1} \subset X_n$ per ogni $n \geq 0$. In particolare, vediamo che \mathcal{C} ha la proprietà dell'intersezione finita. Poiché X è compatto, segue dalla caratterizzazione dei compatti in termini di famiglie di chiusi con la proprietà dell'intersezione finita che $X_{\infty} := \bigcap_n X_n$ è chiuso non vuoto.

Chiaramente $X_{\infty} \subset f(X_{\infty})$. Per mostrare il viceversa, fissiamo $x \in X_{\infty}$ e facciamo vedere che $f^{-1}(x) \cap X_{\infty}$ è non vuoto. Dato $n \in \mathbb{N}$, sia $Y_n = f^{-1}(x) \cap X_n$: questo è chiuso in quanto X è Hausdorff, ed è non vuoto in quanto $x \in X_{\infty}$. Pertanto $\{Y_n\}_{n\in\mathbb{N}}$ è una famiglia di chiusi di X inscatolati uno dentro l'altro, e di conseguenza soddisfa la proprietà dell'intersezione finita. Dalla caratterizzazione della compattezza già usata precedentemente otteniamo quindi che $f^{-1}(x) \cap X_{\infty} =$ $\bigcap_{n\in\mathbb{N}}Y_n$ è non vuoto.

Esercizio 3. Consideriamo l'azione $\mathbb{Z} \times \mathbb{C}^m \to \mathbb{C}^m$ definita ponendo

$$n * (z_1, \dots, z_m) = 3^n (z_1, \dots, z_m).$$

- i) Mostrare che il quoziente \mathbb{C}^m/\mathbb{Z} è uno spazio compatto non di Hausdorff.
- ii) Mostrare che l'azione si restringe a un'azione propria

$$\mathbb{Z} \times (\mathbb{C}^m \setminus \{0\}) \to (\mathbb{C}^m \setminus \{0\}).$$

iii) Determinare un dominio fondamentale per l'azione ristretta, e determinare il quoziente $(\mathbb{C}^m \setminus \{0\})/\mathbb{Z}$.

Soluzione. Poniamo $X = \mathbb{C}^m/\mathbb{Z}$, e sia $\pi : \mathbb{C}^m \to X$ la proiezione al quoziente.

i) Sia

$$Z = \{ v \in \mathbb{C}^m \mid ||v|| \le 1 \}.$$

Allora Z è compatto. D'altra parte la restrizione $\pi_{|Z}:Z\to X$ è suriettiva: dato $v\in\mathbb{C}^m,$ per ogni $n\in\mathbb{N}$ vale

$$\pi(v) = \pi(\frac{1}{3^n}v),$$

e per n sufficientemente grande abbiamo $3^n > ||v||$, da cui $\frac{1}{3^n}v \in \mathbb{Z}$. Pertanto X è compatto in quanto immagine di un compatto.

Per mostrare che X non è di Hausdorff, vediamo che l'unico aperto \mathbb{Z} -stabile di \mathbb{C}^m contenente 0 è \mathbb{C}^m stesso. Sia infatti $U \subset \mathbb{C}^m$ un aperto contenente 0 e sia $B_{\epsilon}(0) \subset U$ una palla centrata in 0 contenuta in U. Dato $v \in \mathbb{C}^m$, abbiamo $\frac{1}{3^n}v \in B_{\epsilon}(0)$ per ogni n con $3^n > ||v||/\epsilon$. Pertanto U interseca ogni orbita di \mathbb{Z} in \mathbb{C} , e se U è \mathbb{Z} -stabile deve essere $U = \mathbb{C}^m$. Ciò implica che $\pi(0)$ non può essere separato da alcun punto di X: se $v \in \mathbb{C}^m \setminus \{0\}$, allora non esistono aperti disgiunti di X che separano $\pi(0)$ e $\pi(v)$.

ii) Mostriamo che, per ogni $u, v \in \mathbb{C}^m \setminus \{0\}$, esistono intorni $u \in U$ e $v \in V$ in $\mathbb{C}^m \setminus \{0\}$ tali che $n * U \cap V \neq \emptyset$ per al più finiti $n \in \mathbb{Z}$.

Dato $k \in \mathbb{Z}$, sia $C_k \subset \mathbb{C}^m$ la corona circolare chiusa centrata in 0 di raggi 3^k e 3^{k+1} . Osserviamo che l'azione di \mathbb{Z} permuta tali corone circolari: se $n \in \mathbb{Z}$, allora $n * C_k = C_{n+k}$. Inoltre abbiamo che

$$n * C_{k_1} \cap C_{k_2} \neq \emptyset \iff k_2 - k_1 - 1 \le n \le k_2 - k_1 + 1.$$

Segue che l'azione è propria. Siano infatti $u,v\in\mathbb{C}^m\smallsetminus\{0\}$, allora esistono intorni $u\in U$ e $v\in V$ che siano contenuti nell'unione di due corone consecutive, diciamo $U\subset C_{k_1}\cup C_{k_1+1}$ e $V\subset C_{k_2}\cup C_{k_2+1}$. Segue che, se $n*U\cap V\neq\emptyset$, allora deve essere $k_2-k_1-2\leq n\leq k_2-k_1+2$, dunque esistono al più finiti n per cui $n*U\cap V\neq\emptyset$.

iii) Consideriamo di nuovo le corone circolari C_k del punto precedente. Come già osservato, abbiamo $n*C_{k_1}\cap C_{k_2}\neq\emptyset$ se e solo se $k_2-k_1-1\leq n\leq k_2-k_1+1$. Se $n\neq k_2-k_1$, osserviamo che questa intersezione è ridotta a una delle due circonferenze al bordo della corona. Pertanto abbiamo

$$n * C_{k_1}^{\circ} \cap C_{k_2}^{\circ} \neq \emptyset \quad \Longleftrightarrow \quad n = k_2 - k_1.$$

Ciò implica che la corona circolare C_k è un dominio fondamentale per l'azione di \mathbb{Z} su $\mathbb{C}^m \smallsetminus \{0\}$.

Per determinare il quoziente, possiamo restringere il quoziente al dominio fondamentale C_0 . Sia \sim la relazione di equivalenza indotta su C_0 e determiniamo C_0/\sim . Osserviamo che l'applicazione $v\mapsto (||v||,\frac{1}{||v||}v)$ induce un omeomorfismo $C_0\simeq [1,3]\times S^{2m-1}$, e che in questa decomposizione la relazione \sim identifica, per ogni $v\in S^{2m-1}$, il punto (1,v) con (3,v). Denotiamo con \sim la relazione su [1,3]

che identifica gli estremi dell'intervallo. Allora $[1,3]/\!\!\sim$ è omeomorfo a S^1 , dunque dall proprietà universale dei quozienti otteniamo un'applicazione continua

$$\varphi: C_0/\sim \longrightarrow S^1\times S^{2m-1},$$

che per costruzione è biunivoca. D'altra parte $S^1 \times S^{2m-1}$ è uno spazio di Hausdorff, e C_0/\sim è compatto in quanto C_0 è compatto: dunque φ è chiusa, pertanto è un omeomorfismo.