Aut-invariant quasimorphisms on free products

Bastien Karlhofer

University of Aberdeen

3rd May, 2021

Definition (Aut-invariant quasimorphism)

 Let G be a group. A map ψ: G → ℝ is called a quasimorphism if there exists a constant D ≥ 0 such that

 $|\psi(g) + \psi(h) - \psi(gh)| \le D$ for all $g, h \in G$.

Definition (Aut-invariant quasimorphism)

 Let G be a group. A map ψ: G → ℝ is called a quasimorphism if there exists a constant D ≥ 0 such that

 $|\psi(g) + \psi(h) - \psi(gh)| \le D$ for all $g, h \in G$.

• ψ is called *homogeneous* if it satisfies $\psi(g^n) = n\psi(g)$ for all $g \in G$ and all $n \in \mathbb{Z}$.

Definition (Aut-invariant quasimorphism)

 Let G be a group. A map ψ: G → ℝ is called a quasimorphism if there exists a constant D ≥ 0 such that

 $||\psi(g) + \psi(h) - \psi(gh)| \le D$ for all $g, h \in G$.

- ψ is called *homogeneous* if it satisfies $\psi(g^n) = n\psi(g)$ for all $g \in G$ and all $n \in \mathbb{Z}$.
- If ψ(φ(g)) = ψ(g) for all g ∈ G, φ ∈ Aut(G), then ψ is called Aut-invariant.

Let $\psi \colon G \to \mathbb{R}$ be a quasimorphism. Then the *homogenisation* $\bar{\psi} \colon G \to \mathbb{R}$ of ψ is defined by $\bar{\psi}(g) = \lim_{n \in \mathbb{N}} \frac{\psi(g^n)}{n}$ for all $g \in G$.

Let $\psi \colon G \to \mathbb{R}$ be a quasimorphism. Then the *homogenisation* $\bar{\psi} \colon G \to \mathbb{R}$ of ψ is defined by $\bar{\psi}(g) = \lim_{n \in \mathbb{N}} \frac{\psi(g^n)}{n}$ for all $g \in G$.

Lemma

The homogenisation $\bar{\psi}$ of a quasimorphism $\psi: G \to \mathbb{R}$ is a homogeneous quasimorphism. Moreover, it satisfies $|\bar{\psi}(g) - \psi(g)| \leq D(\psi)$ for any $g \in G$.

Let $\psi \colon G \to \mathbb{R}$ be a quasimorphism. Then the *homogenisation* $\bar{\psi} \colon G \to \mathbb{R}$ of ψ is defined by $\bar{\psi}(g) = \lim_{n \in \mathbb{N}} \frac{\psi(g^n)}{n}$ for all $g \in G$.

Lemma

The homogenisation $\bar{\psi}$ of a quasimorphism $\psi \colon G \to \mathbb{R}$ is a homogeneous quasimorphism. Moreover, it satisfies $|\bar{\psi}(g) - \psi(g)| \leq D(\psi)$ for any $g \in G$.

Remark

Any homogeneous quasimorphism is invariant under inner automorphisms.

Examples

• Σ_∞ admits no unbounded quasimorphism since no element has infinite order

Examples

- Σ_∞ admits no unbounded quasimorphism since no element has infinite order
- Z has the identity as unbounded quasimorphism, but no unbounded Aut-invariant quasimorphism since every element is in the same Aut-orbit as its inverse.

Examples

- Σ_∞ admits no unbounded quasimorphism since no element has infinite order
- Z has the identity as unbounded quasimorphism, but no unbounded Aut-invariant quasimorphism since every element is in the same Aut-orbit as its inverse.
- $D_\infty \cong \mathbb{Z}/2 * \mathbb{Z}/2$ admits no unbounded quasimorphism

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } w$ $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$.

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

• $A = B = \mathbb{Z}$:

$$f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$$

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

• $A = B = \mathbb{Z}$:

$$f_z(w) = 2 - \theta_{z^{-1}}(w)$$

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

• $A = B = \mathbb{Z}$:

$$f_z(w)=2-0$$

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

• $A = B = \mathbb{Z}$:

$$f_z(w)=2-0$$

• $A = \mathbb{Z}/2$, $B = \mathbb{Z}/3$:

$$f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$$

- イロト イロト イヨト イヨト 一日 - シタの

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

• $A = B = \mathbb{Z}$:

$$f_z(w)=2-0$$

• $A = \mathbb{Z}/2, B = \mathbb{Z}/3$:

$$f_z(w) = 2 - \theta_{z^{-1}}(w)$$

G = A * B. $z \in G$ reduced word. Define for $w \in G$ reduced

 $\theta_z(w) =$ maximal number of *disjoint* occurences of *z* in *w* $f_z(w) = \theta_z(w) - \theta_{z^{-1}}(w)$

 f_z is a quasimorphism of defect $D \leq 2$ for all reduced words z.

Example

G = A * B with $a \in A$, $b \in B$ nontrivial. Let $z = ab^2a$. Then $z^{-1} = a^{-1}b^{-2}a^{-1}$. Consider $w = ababab^2abab^2ababa$.

• $A = B = \mathbb{Z}$:

$$f_z(w)=2-0$$

• $A = \mathbb{Z}/2, B = \mathbb{Z}/3$:

 $f_z(w)=2-3$

$G \neq 1$ is freely indecomposable if $\nexists G_1 \neq 1, G_2 \neq 1$ such that $G \cong G_1 * G_2$.

 $G \neq 1$ is freely indecomposable if $\nexists G_1 \neq 1, G_2 \neq 1$ such that $G \cong G_1 * G_2$.

Theorem (Fouxe-Rabinovitch)

 $G \neq 1$ is freely indecomposable if $\nexists G_1 \neq 1, G_2 \neq 1$ such that $G \cong G_1 * G_2$.

Theorem (Fouxe-Rabinovitch)

 $G\neq 1$ is freely indecomposable if $\nexists G_1\neq 1,\,G_2\neq 1$ such that $G\cong G_1\ast G_2.$

Theorem (Fouxe-Rabinovitch)

Let $G = G_1 * \cdots * G_k$ where G_i freely indecomposable $\forall i$. Aut(G) is generated by the following types of automorphisms:

4 factor automorphisms: $Aut(G_i)$ applied to the factor G_i .

 $G \neq 1$ is freely indecomposable if $\nexists G_1 \neq 1, G_2 \neq 1$ such that $G \cong G_1 * G_2$.

Theorem (Fouxe-Rabinovitch)

- \bigcirc factor automorphisms: Aut(G_i) applied to the factor G_i .
- Partial conjugations: Let g ∈ G_i and j ≠ i. Define p_g: G → G to be conjugation by g on the letters belonging to G_j and to be the identity on all other letters.

 $G \neq 1$ is freely indecomposable if $\nexists G_1 \neq 1, G_2 \neq 1$ such that $G \cong G_1 * G_2$.

Theorem (Fouxe-Rabinovitch)

- factor automorphisms: Aut(G_i) applied to the factor G_i.
- Partial conjugations: Let g ∈ G_i and j ≠ i. Define p_g: G → G to be conjugation by g on the letters belonging to G_j and to be the identity on all other letters.
- swap automorphisms interchange two isomorphic factors.

 $G \neq 1$ is freely indecomposable if $\nexists G_1 \neq 1, G_2 \neq 1$ such that $G \cong G_1 * G_2$.

Theorem (Fouxe-Rabinovitch)

- factor automorphisms: Aut(G_i) applied to the factor G_i.
- Partial conjugations: Let g ∈ G_i and j ≠ i. Define p_g: G → G to be conjugation by g on the letters belonging to G_j and to be the identity on all other letters.
- swap automorphisms interchange two isomorphic factors.
- Iransvections: Assume G_i ≅ Z = ⟨s⟩ and a ∈ G. Send s → as or s → sa and all other letters to themselves.

Corollary

Let G_1 , G_2 be freely indecomposable, distinct from each other and both $\ncong \mathbb{Z}$. Then

Corollary

Let G_1 , G_2 be freely indecomposable, distinct from each other and both $\ncong \mathbb{Z}$. Then

 Out(G₁ * G₂) is generated by the images of Aut(G₁) and Aut(G₂) in Out(G₁ * G₂),

Corollary

Let G_1 , G_2 be freely indecomposable, distinct from each other and both $\not\cong \mathbb{Z}$. Then

- $Out(G_1 * G_2)$ is generated by the images of $Aut(G_1)$ and $Aut(G_2)$ in $Out(G_1 * G_2)$,
- If $\psi : G_1 * G_2 \to \mathbb{R}$ is a quasimorphism invariant under $Aut(G_1)$ and $Aut(G_2)$, then $\overline{\psi}$ is invariant under $Aut(G_1 * G_2)$.

Write $g \in A * B$ in reduced form.

<ロト < 回 > < 臣 > < 臣 > < 臣 > ○ Q ()

Write $g \in A * B$ in reduced form.

 \rightsquigarrow A-tuple $(g) = (a_1, \ldots, a_k)$ the tuple of letters from A in g.

Write $g \in A * B$ in reduced form.

 \rightsquigarrow A-tuple $(g) = (a_1, \ldots, a_k)$ the tuple of letters from A in g. Count how often any letter of (a_1, \ldots, a_k) appears consecutively.

Write $g \in A * B$ in reduced form.

 \rightsquigarrow A-tuple(g) = (a₁,..., a_k) the tuple of letters from A in g. Count how often any letter of (a₁,..., a_k) appears consecutively. \rightsquigarrow A-code(g) = (n₁,..., n_r) where n_i ∈ \mathbb{Z}_+ called A-code of g.

Write $g \in A * B$ in reduced form.

 \rightsquigarrow *A*-tuple(*g*) = (*a*₁,..., *a_k*) the tuple of letters from *A* in *g*. Count how often any letter of (*a*₁,..., *a_k*) appears consecutively. \rightsquigarrow *A*-code(*g*) = (*n*₁,..., *n_r*) where *n_i* ∈ \mathbb{Z}_+ called *A*-code of *g*. Similarly, obtain *B*-code(*g*) from *B*-tuple(*g*).

Write $g \in A * B$ in reduced form.

 \rightsquigarrow *A*-tuple(*g*) = (*a*₁,..., *a_k*) the tuple of letters from *A* in *g*. Count how often any letter of (*a*₁,..., *a_k*) appears consecutively. \rightsquigarrow *A*-code(*g*) = (*n*₁,..., *n_r*) where *n_i* ∈ \mathbb{Z}_+ called *A*-code of *g*. Similarly, obtain *B*-code(*g*) from *B*-tuple(*g*).

Example

Let G = A * B where $A = \mathbb{Z}/5$, B any group. Let $a \in A, b \in B$ be non-trivial. Consider

 $g = a^2 bababa^4 babab$
Definition

Write $g \in A * B$ in reduced form.

 \rightsquigarrow *A*-tuple(*g*) = (*a*₁,..., *a_k*) the tuple of letters from *A* in *g*. Count how often any letter of (*a*₁,..., *a_k*) appears consecutively. \rightsquigarrow *A*-code(*g*) = (*n*₁,..., *n_r*) where *n_i* ∈ \mathbb{Z}_+ called *A*-code of *g*. Similarly, obtain *B*-code(*g*) from *B*-tuple(*g*).

Example

Let G = A * B where $A = \mathbb{Z}/5$, B any group. Let $a \in A, b \in B$ be non-trivial. Consider

 $g = a^2 bababa^4 babab$ \rightsquigarrow A-tuple $(g) = (a^2, a, a, a^4, a, a)$

Definition

Write $g \in A * B$ in reduced form.

 \rightsquigarrow *A*-tuple(*g*) = (*a*₁,..., *a_k*) the tuple of letters from *A* in *g*. Count how often any letter of (*a*₁,..., *a_k*) appears consecutively. \rightsquigarrow *A*-code(*g*) = (*n*₁,..., *n_r*) where *n_i* ∈ \mathbb{Z}_+ called *A*-code of *g*. Similarly, obtain *B*-code(*g*) from *B*-tuple(*g*).

Example

Let G = A * B where $A = \mathbb{Z}/5$, B any group. Let $a \in A, b \in B$ be non-trivial. Consider

$$g = a^2 bababa^4 babab$$

 $\rightsquigarrow A$ -tuple $(g) = (a^2, a, a, a^4, a, a)$
 $\rightsquigarrow A$ -code $(g) = (1, 2, 1, 2)$

Definition

Write $g \in A * B$ in reduced form.

 \rightarrow A-tuple(g) = (a₁,..., a_k) the tuple of letters from A in g. Count how often any letter of (a₁,..., a_k) appears consecutively. \rightarrow A-code(g) = (n₁,..., n_r) where n_i ∈ Z₊ called A-code of g. Similarly, obtain B-code(g) from B-tuple(g).

Example

Let G = A * B where $A = \mathbb{Z}/5$, B any group. Let $a \in A, b \in B$ be non-trivial. Consider

$$g = a^2 bababa^4 babab$$

 $\rightsquigarrow A$ -tuple $(g) = (a^2, a, a, a^4, a, a)$
 $\rightsquigarrow A$ -code $(g) = (1, 2, 1, 2)$
 B -code $(g) = (6)$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $\overline{B} \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A$ -code(g) = (1, 2, 1, 2)

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A \text{-code}(g) = (1, 2, 1, 2)$ $\rightsquigarrow \theta_z^A(g) = 2$ and $\theta_{\overline{z}}^A(g) = 1$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A\text{-code}(g) = (1, 2, 1, 2)$ $\rightsquigarrow \theta_z^A(g) = 2$ and $\theta_{\overline{z}}^A(g) = 1$ $\rightsquigarrow f_z^A(g) = 2 - 1 = 1$.

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A\text{-code}(g) = (1, 2, 1, 2)$ $\rightsquigarrow \theta_z^A(g) = 2$ and $\theta_{\overline{z}}^A(g) = 1$ $\rightsquigarrow f_z^A(g) = 2 - 1 = 1$.

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A\text{-code}(g^2) = (1, 2, 1, 2, 1, 2, 1, 2)$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A\text{-code}(g^2) = (1, 2, 1, 2, 1, 2, 1, 2)$ $\rightsquigarrow \theta_z^A(g^2) = 4$ and $\theta_{\overline{z}}^A(g^2) = 3$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A\text{-code}(g^2) = (1, 2, 1, 2, 1, 2, 1, 2)$ $\rightsquigarrow \theta_z^A(g^2) = 4$ and $\theta_z^A(g^2) = 3$ $\rightsquigarrow f_z^A(g^2) = 4 - 3 = 1$.

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2). $g = a^2 bababa^4 babab$ $\rightsquigarrow A \cdot \operatorname{code}(g^2) = (1, 2, 1, 2, 1, 2, 1, 2)$ $\rightsquigarrow \theta_z^A(g^2) = 4$ and $\theta_z^A(g^2) = 3$ $\rightsquigarrow f_z^A(g^2) = 4 - 3 = 1$. In fact: $f_z^A(g^n) = 1$ for all $n \in \mathbb{N}$.

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2, 3). $h = a^2 b a b a b a^4 b a^4 b$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2, 3). $h = a^2 bababa^4 ba^4 ba^4 b$ $\rightsquigarrow A$ -code(h) = (1, 2, 3)

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2, 3). $h = a^2 bababa^4 ba^4 ba^4 b$ $\rightsquigarrow A \operatorname{-code}(h) = (1, 2, 3)$ $\rightsquigarrow \theta_z^A(h) = 1$ and $\theta_{\overline{z}}^A(h) = 0$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2, 3). $h = a^2 bababa^4 ba^4 ba^4 b$ $\rightsquigarrow A \text{-code}(h) = (1, 2, 3)$ $\rightsquigarrow \theta_z^A(h) = 1$ and $\theta_{\overline{z}}^A(h) = 0$ $\rightsquigarrow f_z^A(h) = 1$

G = A * B. Let $z = (n_1, ..., n_k)$ be a tuple of positive integers. Define for $w \in G$ reduced and $\overline{z} = (n_k, ..., n_1)$:

 $\theta_z^A(w) = \text{maximal number of } disjoint \text{ occurences of } z \text{ in } A\text{-code}(w)$ $f_z^A(w) = \theta_z^A(w) - \theta_{\overline{z}}^A(w),$

Example

Let G = A * B where $A = \mathbb{Z}/5$, $B \neq \mathbb{Z}$ freely indecomposable. Let $a \in A, b \in B$ be non-trivial. Let z = (1, 2, 3). $h = a^2 bababa^4 ba^4 ba^4 b$ $\rightsquigarrow A \text{-code}(h) = (1, 2, 3)$ $\rightsquigarrow \theta_z^A(h) = 1$ and $\theta_{\overline{z}}^A(h) = 0$ $\rightsquigarrow f_z^A(h) = 1$ In fact: $f_z^A(h^n) = n$ for all $n \in \mathbb{N}$.

Proposition

Let G = A * B where A and B are freely indecomposable and both not infinite cyclic. Let z be a tuple of positive integers which is not a cyclic permutation of \overline{z} . Then

Proposition

Let G = A * B where A and B are freely indecomposable and both not infinite cyclic. Let z be a tuple of positive integers which is not a cyclic permutation of \overline{z} . Then

• if $A \ncong B$ and $C \in \{A, B\}$ is such that $C \ncong \mathbb{Z}/2$, then the homogenisation $\overline{f_z}^C$ of the quasimorphism f_z^C is an unbounded Aut-invariant quasimorphism on G;

Proposition

Let G = A * B where A and B are freely indecomposable and both not infinite cyclic. Let z be a tuple of positive integers which is not a cyclic permutation of \overline{z} . Then

• if $A \ncong B$ and $C \in \{A, B\}$ is such that $C \ncong \mathbb{Z}/2$, then the homogenisation $\overline{f_z^C}$ of the quasimorphism f_z^C is an unbounded Aut-invariant quasimorphism on G;

² if $A \cong B \cong \mathbb{Z}/2$, then the sum $\bar{f}_z^A + \bar{f}_z^B$ is an unbounded Aut-invariant quasimorphism on *G*.

Theorem (K.)

Let G = A * B be the free product of two non-trivial freely indecomposable groups A and B. Assume G is not the infinite dihedral group. Then G admits infinitely many linearly independent homogeneous Aut-invariant quasimorphisms, all of which vanish on single letters.

PSL(2, ℤ) ≅ ℤ/2 * ℤ/3 admits infinitely many linearly independent homogeneous Aut-invariant quasimorphisms.

- PSL(2, ℤ) ≅ ℤ/2 * ℤ/3 admits infinitely many linearly independent homogeneous Aut-invariant quasimorphisms.
- *H* ⊂ *G* characteristic subgroup. If *G*/*H* admits an unbounded Aut-invariant quasimorphism, then so does *G*.

- PSL(2, ℤ) ≅ ℤ/2 * ℤ/3 admits infinitely many linearly independent homogeneous Aut-invariant quasimorphisms.
- *H* ⊂ *G* characteristic subgroup. If *G*/*H* admits an unbounded Aut-invariant quasimorphism, then so does *G*.
- $SL(2,\mathbb{Z})$ as central extension of $PSL(2,\mathbb{Z})$ by $\mathbb{Z}/2$.

- PSL(2, ℤ) ≅ ℤ/2 * ℤ/3 admits infinitely many linearly independent homogeneous Aut-invariant quasimorphisms.
- *H* ⊂ *G* characteristic subgroup. If *G*/*H* admits an unbounded Aut-invariant quasimorphism, then so does *G*.
- $SL(2,\mathbb{Z})$ as central extension of $PSL(2,\mathbb{Z})$ by $\mathbb{Z}/2$.
- B₃ braid group on 3 strands as central extension of PSL(2, ℤ) by ℤ.

- PSL(2, ℤ) ≅ ℤ/2 * ℤ/3 admits infinitely many linearly independent homogeneous Aut-invariant quasimorphisms.
- *H* ⊂ *G* characteristic subgroup. If *G*/*H* admits an unbounded Aut-invariant quasimorphism, then so does *G*.
- $SL(2,\mathbb{Z})$ as central extension of $PSL(2,\mathbb{Z})$ by $\mathbb{Z}/2$.
- B₃ braid group on 3 strands as central extension of PSL(2, ℤ) by ℤ.
- ℤ *_ℤ ℤ for p, q ≥ 3. Knot groups of torus knots if gcd(p,q) = 1.

Let $\Gamma = (V, E)$ be a graph. Define $W_{\Gamma} = (*_{v \in V} G_v)/N$, where N is the normal subgroup generated by all $[G_v, G_w]$ where $(v, w) \in E$ and $G_v \in \{\mathbb{Z}/2, \mathbb{Z}\}$.

・ロト・日下・ 山田 ト 山田 ト ショー

Outlook

• What about free products with more than one factor?

Does Z/2 * Z/2 * Z/2 admit an unbounded Aut-invariant quasimorphism?

Does F_n admit an unbounded Aut-invariant quasimorphism?

Outlook

- What about free products with more than one factor?
 - Often can project to the two factor case.
- Does Z/2 * Z/2 * Z/2 admit an unbounded Aut-invariant quasimorphism?

Does F_n admit an unbounded Aut-invariant quasimorphism?

Outlook

What about free products with more than one factor?

- Often can project to the two factor case.
- Can symmetrise if not only $\mathbb{Z}/2$'s or too many \mathbb{Z} 's.
- Does Z/2 * Z/2 * Z/2 admit an unbounded Aut-invariant quasimorphism?

Does F_n admit an unbounded Aut-invariant quasimorphism?
Outlook

- What about free products with more than one factor?
 - Often can project to the two factor case.
 - Can symmetrise if not only $\mathbb{Z}/2$'s or too many \mathbb{Z} 's.
- Does $\mathbb{Z}/2 * \mathbb{Z}/2 * \mathbb{Z}/2$ admit an unbounded Aut-invariant quasimorphism?
 - Original counting quasimorphisms are unbounded but not Aut-invariant.

Does F_n admit an unbounded Aut-invariant quasimorphism?

Outlook

- What about free products with more than one factor?
 - Often can project to the two factor case.
 - Can symmetrise if not only $\mathbb{Z}/2$'s or too many \mathbb{Z} 's.
- Does $\mathbb{Z}/2 * \mathbb{Z}/2 * \mathbb{Z}/2$ admit an unbounded Aut-invariant quasimorphism?
 - Original counting quasimorphisms are unbounded but not Aut-invariant.
 - Cannot forget about partial conjugations anymore.
- Does F_n admit an unbounded Aut-invariant quasimorphism?

Outlook

- What about free products with more than one factor?
 - Often can project to the two factor case.
 - Can symmetrise if not only $\mathbb{Z}/2$'s or too many \mathbb{Z} 's.
- Does Z/2 * Z/2 * Z/2 admit an unbounded Aut-invariant quasimorphism?
 - Original counting quasimorphisms are unbounded but not Aut-invariant.
 - Cannot forget about partial conjugations anymore.
- Does *F_n* admit an unbounded Aut-invariant quasimorphism?
 - Have to deal with transvections of both factors now which seems hard to do explicitly.

Let $G \trianglelefteq \hat{G}$. Consider $[\hat{G}, G] \le G$ generated by [F, g] and their inverses where $F \in \hat{G}$ and $g \in G$. For $x \in [\hat{G}, G]$:

Let $G \trianglelefteq \hat{G}$. Consider $[\hat{G}, G] \le G$ generated by [F, g] and their inverses where $F \in \hat{G}$ and $g \in G$. For $x \in [\hat{G}, G]$:

$$cl_{\hat{G},G}(x) := \min\{n \mid g = \prod_{i=1}^{n} [F,g]^{\pm 1} \text{ where } F_i \in \hat{G}, g_i \in G\}$$
$$scl_{\hat{G},G}(x) := \lim_{n} \frac{cl_{\hat{G},G}(x^n)}{n}$$

Let $G \trianglelefteq \hat{G}$. Consider $[\hat{G}, G] \le G$ generated by [F, g] and their inverses where $F \in \hat{G}$ and $g \in G$. For $x \in [\hat{G}, G]$:

$$cl_{\hat{G},G}(x) := \min\{n \mid g = \prod_{i=1}^{n} [F,g]^{\pm 1} \text{ where } F_i \in \hat{G}, g_i \in G\}$$
$$scl_{\hat{G},G}(x) := \lim_{n} \frac{cl_{\hat{G},G}(x^n)}{n}$$

G = A * B for A, B freely indecomposable. Then $Inn(G) \cong G$. $\rightsquigarrow scl_{Aut(G),Inn(G)} =: scl_{Aut(G)}$ is defined on G.

Let $G \trianglelefteq \hat{G}$. Consider $[\hat{G}, G] \le G$ generated by [F, g] and their inverses where $F \in \hat{G}$ and $g \in G$. For $x \in [\hat{G}, G]$:

$$cl_{\hat{G},G}(x) := \min\{n \mid g = \prod_{i=1}^{n} [F,g]^{\pm 1} \text{ where } F_i \in \hat{G}, g_i \in G\}$$
$$scl_{\hat{G},G}(x) := \lim_{n} \frac{cl_{\hat{G},G}(x^n)}{n}$$

G = A * B for A, B freely indecomposable. Then $Inn(G) \cong G$. $\rightsquigarrow scl_{Aut(G),Inn(G)} =: scl_{Aut(G)}$ is defined on G.

Lemma (Kawasaki-Kimura)

Assume $G \cong \text{Inn}(G)$, ϕ homogeneous Aut-invariant quasimorphism on G. Then for $x \in [\text{Aut}(G), G] \leq G$ have

Let $G \trianglelefteq \hat{G}$. Consider $[\hat{G}, G] \le G$ generated by [F, g] and their inverses where $F \in \hat{G}$ and $g \in G$. For $x \in [\hat{G}, G]$:

$$cl_{\hat{G},G}(x) := \min\{n \mid g = \prod_{i=1}^{n} [F,g]^{\pm 1} \text{ where } F_i \in \hat{G}, g_i \in G\}$$
$$scl_{\hat{G},G}(x) := \lim_{n} \frac{cl_{\hat{G},G}(x^n)}{n}$$

G = A * B for A, B freely indecomposable. Then $Inn(G) \cong G$. $\rightsquigarrow scl_{Aut(G),Inn(G)} =: scl_{Aut(G)}$ is defined on G.

Lemma (Kawasaki-Kimura)

Assume $G \cong \text{Inn}(G)$, ϕ homogeneous Aut-invariant quasimorphism on G. Then for $x \in [\text{Aut}(G), G] \leq G$ have

$$\operatorname{scl}_{\operatorname{Aut}}(x) \geq \frac{1}{2} \frac{|\phi(x)|}{D(\phi)}.$$

Theorem (K.)

Let G = A * B be a free product of freely indecomposable groups and assume that G is not the infinite dihedral group. Then there always exist elements $g \in G$ with positive Aut-invariant stable commutator length $scl_{Aut}(g) > 0$.

Thank you for your attention!