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Definition (Aut-invariant quasimorphism)

Let G be a group. A map ψ : G → R is called a
quasimorphism if there exists a constant D ≥ 0 such that

|ψ(g) + ψ(h)− ψ(gh)| ≤ D for all g , h ∈ G .

ψ is called homogeneous if it satisfies ψ(gn) = nψ(g) for all
g ∈ G and all n ∈ Z.

If ψ(ϕ(g)) = ψ(g) for all g ∈ G , ϕ ∈ Aut(G ), then ψ is
called Aut-invariant.
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Definition

Let ψ : G → R be a quasimorphism. Then the homogenisation
ψ̄ : G → R of ψ is defined by ψ̄(g) = limn∈N

ψ(gn)
n for all g ∈ G .

Lemma

The homogenisation ψ̄ of a quasimorphism ψ : G → R is a
homogeneous quasimorphism. Moreover, it satisfies
|ψ̄(g)− ψ(g)| ≤ D(ψ) for any g ∈ G.

Remark

Any homogeneous quasimorphism is invariant under inner
automorphisms.
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Examples

Σ∞ admits no unbounded quasimorphism since no element
has infinite order

Z has the identity as unbounded quasimorphism, but no
unbounded Aut-invariant quasimorphism since every element
is in the same Aut-orbit as its inverse.

D∞ ∼= Z/2 ∗ Z/2 admits no unbounded quasimorphism
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Brooks’ counting quasimorphisms

G = A ∗ B. z ∈ G reduced word. Define for w ∈ G reduced

θz(w) = maximal number of disjoint occurences of z in w

fz(w) = θz(w)− θz−1(w)

fz is a quasimorphism of defect D ≤ 2 for all reduced words z .

Example

G = A ∗ B with a ∈ A, b ∈ B nontrivial. Let z = ab2a. Then
z−1 = a−1b−2a−1. Consider w = ababab2abab2ababa.

A = B = Z:

fz(w) = θz(w)− θz−1(w)

A = Z/2, B = Z/3:

fz(w) = θz(w)− θz−1(w)
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Definition

G 6= 1 is freely indecomposable if @G1 6= 1,G2 6= 1 such that
G ∼= G1 ∗ G2.

Theorem (Fouxe-Rabinovitch)

Let G = G1 ∗ · · · ∗Gk where Gi freely indecomposable ∀i . Aut(G )
is generated by the following types of automorphisms:

1 factor automorphisms: Aut(Gi ) applied to the factor Gi .

2 partial conjugations: Let g ∈ Gi and j 6= i . Define
pg : G → G to be conjugation by g on the letters belonging to
Gj and to be the identity on all other letters.

3 swap automorphisms interchange two isomorphic factors.

4 transvections: Assume Gi
∼= Z = 〈s〉 and a ∈ G. Send s → as

or s → sa and all other letters to themselves.
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Corollary

Let G1, G2 be freely indecomposable, distinct from each other and
both � Z. Then

Out(G1 ∗ G2) is generated by the images of Aut(G1) and
Aut(G2) in Out(G1 ∗ G2),

If ψ : G1 ∗ G2 → R is a quasimorphism invariant under
Aut(G1) and Aut(G2), then ψ̄ is invariant under Aut(G1 ∗ G2).
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Definition

Write g ∈ A ∗ B in reduced form.

 A-tuple(g) = (a1, . . . , ak) the tuple of letters from A in g .

Count how often any letter of (a1, . . . , ak) appears consecutively.

 A-code(g) = (n1, . . . , nr ) where ni ∈ Z+ called A-code of g .

Similarly, obtain B-code(g) from B-tuple(g).

Example

Let G = A ∗ B where A = Z/5, B any group. Let a ∈ A, b ∈ B be
non-trivial. Consider

g = a2bababa4babab

 A-tuple(g) = (a2, a, a, a4, a, a)

 A-code(g) = (1, 2, 1, 2)

B-code(g) = (6)
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Definition (Code quasimorphisms)

G = A ∗ B. Let z = (n1, . . . , nk) be a tuple of positive integers.
Define for w ∈ G reduced and z̄ = (nk , . . . , n1):

θAz (w) = maximal number of disjoint occurences of z in A-code(w)

f Az (w) = θAz (w)− θAz̄ (w),

Example

Let G = A ∗ B where A = Z/5, B 6= Z freely indecomposable. Let
a ∈ A, b ∈ B be non-trivial. Let z = (1, 2).
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 θAz (g) = 2 and θAz̄ (g) = 1

 f Az (g) = 2− 1 = 1.
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Proposition

Let G = A ∗ B where A and B are freely indecomposable and both
not infinite cyclic. Let z be a tuple of positive integers which is not
a cyclic permutation of z̄ . Then

1 if A � B and C ∈ {A,B} is such that C � Z/2, then the
homogenisation f̄ Cz of the quasimorphism f Cz is an unbounded
Aut-invariant quasimorphism on G ;

2 if A ∼= B � Z/2, then the sum f̄ Az + f̄ Bz is an unbounded
Aut-invariant quasimorphism on G .
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Theorem (K.)

Let G = A ∗ B be the free product of two non-trivial freely
indecomposable groups A and B. Assume G is not the infinite
dihedral group. Then G admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms, all of
which vanish on single letters.



Examples

PSL(2,Z) ∼= Z/2 ∗ Z/3 admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms.

H ⊂ G characteristic subgroup. If G/H admits an unbounded
Aut-invariant quasimorphism, then so does G .

SL(2,Z) as central extension of PSL(2,Z) by Z/2.

B3 braid group on 3 strands as central extension of PSL(2,Z)
by Z.

Z ∗Z Z for p, q ≥ 3. Knot groups of torus knots if
gcd(p, q) = 1.
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Application: RAAGs and RACGs

Let Γ = (V ,E ) be a graph. Define WΓ = (∗v∈VGv )/N, where N is
the normal subgroup generated by all [Gv ,Gw ] where (v ,w) ∈ E
and Gv ∈ {Z/2,Z}.

Ga Gb Gc Gd Ge

Ga Gb 1 Gd Ge

p

WΓ

(Ga × Gb) ∗ (Gc × Gd)

 unbounded Aut-invariant quasimorphisms on WΓ.
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Outlook

What about free products with more than one factor?

Often can project to the two factor case.
Can symmetrise if not only Z/2’s or too many Z’s.

Does Z/2 ∗ Z/2 ∗ Z/2 admit an unbounded Aut-invariant
quasimorphism?

Original counting quasimorphisms are unbounded but not
Aut-invariant.
Cannot forget about partial conjugations anymore.

Does Fn admit an unbounded Aut-invariant quasimorphism?

Have to deal with transvections of both factors now which
seems hard to do explicitly.
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Definition

Let G E Ĝ . Consider [Ĝ ,G ] ≤ G generated by [F , g ] and their
inverses where F ∈ Ĝ and g ∈ G . For x ∈ [Ĝ ,G ]:

clĜ ,G (x) := min{n | g =
n∏

i=1

[F , g ]±1 where Fi ∈ Ĝ , gi ∈ G}

sclĜ ,G (x) := lim
n

clĜG (xn)

n

G = A ∗ B for A,B freely indecomposable. Then Inn(G ) ∼= G .

 sclAut(G),Inn(G) =: sclAut(G) is defined on G .

Lemma (Kawasaki-Kimura)

Assume G ∼= Inn(G ), φ homogeneous Aut-invariant quasimorphism
on G. Then for x ∈ [Aut(G ),G ] ≤ G have

sclAut(x) ≥ 1

2

|φ(x)|
D(φ)

.
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Theorem (K.)

Let G = A ∗ B be a free product of freely indecomposable groups
and assume that G is not the infinite dihedral group. Then there
always exist elements g ∈ G with positive Aut-invariant stable
commutator length sclAut(g) > 0.



Thank you for your attention!


