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Definition (Aut-invariant quasimorphism)
» Let G be a group. Amap ¢v: G — R is called a
quasimorphism if there exists a constant D > 0 such that

[v(g) + 1 (h) —(gh)| < Dforall g, h € G.
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Definition (Aut-invariant quasimorphism)

» Let G be a group. Amap ¢v: G — R is called a
quasimorphism if there exists a constant D > 0 such that

[v(g) + 1 (h) —(gh)| < Dforall g, h € G.

» 1 is called homogeneous if it satisfies 1(g") = ny(g) for all
g€ Gandall neZ.

o If Y(p(g)) =1(g) forall g € G, ¢ € Aut(G), then 1 is
called Aut-invariant.



Let ¢: G — R be a quasimorphism. Then the h?mogenisation
$: G — R of ¢ is defined by (g) = limney &2 for all g € G.
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Any homogeneous quasimorphism is invariant under inner
automorphisms.



* 2 admits no unbounded quasimorphism since no element
has infinite order
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* 2 admits no unbounded quasimorphism since no element
has infinite order

* 7 has the identity as unbounded quasimorphism, but no
unbounded Aut-invariant quasimorphism since every element
is in the same Aut-orbit as its inverse.
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Examples

* 2, admits no unbounded quasimorphism since no element
has infinite order

® 7 has the identity as unbounded quasimorphism, but no
unbounded Aut-invariant quasimorphism since every element
is in the same Aut-orbit as its inverse.

* Dy = 7Z/2 % Z/2 admits no unbounded quasimorphism



Brooks' counting quasimorphisms
G = Ax B. z € G reduced word. Define for w € G reduced

0,(w) = maximal number of disjoint occurences of z in w

fo(w) = 02(w) — 0,-1(w)
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Brooks' counting quasimorphisms
G = Ax B. z € G reduced word. Define for w € G reduced

0,(w) = maximal number of disjoint occurences of z in w

fo(w) = 02(w) — 0,-1(w)

N]

f» is a quasimorphism of defect D < 2 for all reduced words z.

Example

G = Ax B with a € A, b € B nontrivial. Let z = ab%a. Then
z71 =27 1p=2371 Consider w = ababab?abab®ababa.
s A=B=17:

f,(w)=2-0
« A=Z/2, B=1/3

fz(w)=2-3



G # 1 is freely indecomposable if Gy # 1, G» # 1 such that
G = Gy * Gp.
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Let G = Gy x - - - * Gi where G; freely indecomposable Vi. Aut(G)
is generated by the following types of automorphisms:
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Definition
G # 1 is freely indecomposable if Gy # 1, G» # 1 such that
G = G1 * G2.

Theorem (Fouxe-Rabinovitch)

Let G = Gy x - - - * Gi where G; freely indecomposable Vi. Aut(G)
is generated by the following types of automorphisms:

® factor automorphisms: Aut(G;) applied to the factor G;.

® partial conjugations: Let g € G; and j # i. Define
pg: G — G to be conjugation by g on the letters belonging to
G; and to be the identity on all other letters.

® swap automorphisms interchange two isomorphic factors.

® transvections: Assume G =7 = (s) and a€ G. Send s — as
or s — sa and all other letters to themselves.



Let Gi1, Go be freely indecomposable, distinct from each other and
both 2 Z. Then
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Corollary
Let Gi1, Go be freely indecomposable, distinct from each other and
both 2 Z. Then
* Out(G; * Gy) is generated by the images of Aut(Gy) and
Aut(Gz) in Out(Gl * Gg),



Corollary
Let Gi1, Go be freely indecomposable, distinct from each other and
both 2 Z. Then
* Out(G; * Gy) is generated by the images of Aut(Gy) and
Aut(Gz) in Out(Gl * Gg),
* If ¢ G1 % G2 — R is a quasimorphism invariant under
Aut(Gp) and Aut(G), then ¢ is invariant under Aut(G; * Gy).



Write g € A% B in reduced form.
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Count how often any letter of (a1,. .., ax) appears consecutively.
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Let G = Ax B where A=7/5, B any group. Let a€ A, b € B be
non-trivial. Consider
g = a’bababa®babab
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Definition

Write g € Ax B in reduced form.

~ A-tuple(g) = (a1, ..., ak) the tuple of letters from A in g.
Count how often any letter of (a1,. .., ax) appears consecutively.
~> A-code(g) = (n1,...,n,) where n; € Z, called A-code of g.
Similarly, obtain B-code(g) from B-tuple(g).

Example

Let G = Ax B where A=7/5, B any group. Let a€ A, b € B be
non-trivial. Consider
g = a’bababa®babab
~ A-tuple(g) = (a%, a, a, 3%, a, a)
~ A-code(g) = (
J=

1,2,1,2)
B-code(g 6)



Definition (Code quasimorphisms)
G =AxB. Let z=(ny,...,nk) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., m):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

A (w) = 02(w) — 05 (w),
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Definition (Code quasimorphisms)

G =AxB. Let z=(n,...,nk) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., m):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

A (w) = 02(w) — 05 (w),

Example

Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
ae€ A, b€ B be non-trivial. Let z=(1,2).

g = a’bababa*babab
~ A-code(g) = (1,2,1,2)
) =

~07(g)=2 and 05(g)=1



Definition (Code quasimorphisms)

G =AxB. Let z=(ny,...,nk) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., m):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

A (w) = 02(w) — 05 (w),

Example

Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
ae€ A, b€ B be non-trivial. Let z=(1,2).

= a’bababa*babab
~ A-code(g ) (1 2,1,2)
~02g)=2 and 67(g)=1
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Definition (Code quasimorphisms)

G =AxB. Let z=(ny,...,nk) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., m):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

A (w) = 02(w) — 05 (w),

Example

Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
ae€ A, b€ B be non-trivial. Let z=(1,2).

= a’bababa*babab
~ A-code(g ) (1 2,1,2)
~02g)=2 and 67(g)=1
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Definition (Code quasimorphisms)

G=AxB. Let z=(ny,...,ng) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., n):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

A(w) — 0A(w) — 02(w)
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Example

Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
a € A, b € B be non-trivial. Let z = (1,2).

g = a’bababa*babab
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Definition (Code quasimorphisms)

G=AxB. Let z=(ny,...,ng) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., n):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

1 (w) = 6 (w) — 5 (w),
Example

Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
a € A, b € B be non-trivial. Let z = (1,2).

g = a’bababa*babab
~ A-code(g?) = (1,2,1,2,1,2,1,2)
~02(g’)=4 and 05(g*)=3



Definition (Code quasimorphisms)

G=AxB. Let z=(ny,...,ng) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., n):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

A(w) — 0A(w) — 02(w)

Z

Example

Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
a € A, b € B be non-trivial. Let z = (1,2).

g = a’bababa*babab
g°)=1(1,2,1,2,1,2,1,2)
g’)=4 and 62(g>) =3
g)=4-3=1.



Definition (Code quasimorphisms)

G=AxB. Let z=(ny,...,ng) be a tuple of positive integers.
Define for w € G reduced and z = (ng, ..., n):

02 (w) = maximal number of disjoint occurences of z in A-code(w)

z

£ (w) = 02(w) — 05 (w),

Example
Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
a € A, b € B be non-trivial. Let z = (1,2).

g = a’bababa*babab

~ A-code(g?) = (1,2,1,2,1,2,1,2)
~02g¥) =4 and 05(g?) =3
(gt =4 =3=

In fact: £A(g") =1 for all n € N.



Definition (Code quasimorphisms)

G=AxB. Let z=(ny,...,ny) be a tuple of positive integers.
Define for w € G reduced and zZ = (ny, ..., n):

02(w) = maximal number of disjoint occurences of z in A-code(w)

sz(W) = HZA(W) i (9/2—4(W),
Example
Let G = Ax B where A=17/5, B # 7Z freely indecomposable. Let
a€ A, b€ B be non-trivial. Let z =(1,2,3).

h = a®bababa®ba*ba’*b



Definition (Code quasimorphisms)
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Define for w € G reduced and zZ = (ny, ..., n):

02(w) = maximal number of disjoint occurences of z in A-code(w)

sz(W) = HZA(W) _ (9/2—4(W),

Example
Let G = Ax B where A=7/5, B # 7 freely indecomposable. Let
a€ A, b€ B be non-trivial. Let z =(1,2,3).
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Definition (Code quasimorphisms)

G=AxB. Let z=(ny,...,ny) be a tuple of positive integers.
Define for w € G reduced and zZ = (ny, ..., n):

02(w) = maximal number of disjoint occurences of z in A-code(w)

sz(W) = HZA(W) _ (9/2—4(W),

Example

Let G = Ax B where A=17/5, B # 7Z freely indecomposable. Let
a € A, b € B be non-trivial. Let z = (1,2, 3).

h = a’bababa*ba*ba*b
~ A-code(h) = (1, 2,3)
~ 02(h)=1 and 62(h)=0
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Definition (Code quasimorphisms)
G=AxB. Let z=(ny,...,ny) be a tuple of positive integers.
Define for w € G reduced and zZ = (ny, ..., n):

02(w) = maximal number of disjoint occurences of z in A-code(w)

sz(W) = HZA(W) _ (9/2—4(W),

Example

Let G = Ax B where A=17/5, B # 7Z freely indecomposable. Let
a€ A, b€ B be non-trivial. Let z =(1,2,3).

h = a’bababa*ba*ba*b
~ A-code(h) = (1,2,3)
~ 02(h)=1 and 62(h)=0
~ fA(h) =1



Definition (Code quasimorphisms)
G=AxB. Let z=(ny,...,ny) be a tuple of positive integers.
Define for w € G reduced and zZ = (ny, ..., n):

02(w) = maximal number of disjoint occurences of z in A-code(w)

sz(W) = HZA(W) _ (9/2—4(W),

Example

Let G = Ax B where A=17/5, B # 7Z freely indecomposable. Let
a€ A, b€ B be non-trivial. Let z =(1,2,3).

a
~ A-code(h) = (1,2,3)
~ 02(h)=1 and 62(h)=0
~ fA(h) =1
In fact: £A(h") = n for all n € N.



Proposition

Let G = Ax B where A and B are freely indecomposable and both
not infinite cyclic. Let z be a tuple of positive integers which is not
a cyclic permutation of Z. Then



Proposition
Let G = Ax B where A and B are freely indecomposable and both

not infinite cyclic. Let z be a tuple of positive integers which is not
a cyclic permutation of Z. Then

® if A2 B and C € {A, B} is such that C 22 Z/2, then the
homogenisation £ of the quasimorphism £ is an unbounded
Aut-invariant quasimorphism on G;



Proposition
Let G = Ax B where A and B are freely indecomposable and both
not infinite cyclic. Let z be a tuple of positive integers which is not
a cyclic permutation of Z. Then
® if A2 B and C € {A, B} is such that C 22 Z/2, then the
homogenisation £ of the quasimorphism £ is an unbounded
Aut-invariant quasimorphism on G;
® if A~ B 7/2, then the sum f2 + £2 is an unbounded
Aut-invariant quasimorphism on G.



Theorem (K.)

Let G = Ax B be the free product of two non-trivial freely
indecomposable groups A and B. Assume G is not the infinite
dihedral group. Then G admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms, all of
which vanish on single letters.



e PSL(2,Z) = Z/2 x« 7Z/3 admits infinitely many linearly

independent homogeneous Aut-invariant quasimorphisms.
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e PSL(2,Z) = Z/2 x« 7Z/3 admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms.

* H C G characteristic subgroup. If G/H admits an unbounded
Aut-invariant quasimorphism, then so does G.
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Examples
e PSL(2,Z) = Z/2 % Z/3 admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms.
* H C G characteristic subgroup. If G/H admits an unbounded
Aut-invariant quasimorphism, then so does G.

* SL(2,Z) as central extension of PSL(2,7Z) by Z/2.



Examples
e PSL(2,Z) = Z/2 % Z/3 admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms.
* H C G characteristic subgroup. If G/H admits an unbounded
Aut-invariant quasimorphism, then so does G.
* SL(2,Z) as central extension of PSL(2,7Z) by Z/2.

» Bs braid group on 3 strands as central extension of PSL(2,7Z)
by Z.



Examples

PSL(2,7Z) = Z/2 % Z/3 admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms.

H C G characteristic subgroup. If G/H admits an unbounded
Aut-invariant quasimorphism, then so does G.

SL(2,Z) as central extension of PSL(2,7Z) by Z/2.

B3 braid group on 3 strands as central extension of PSL(2,Z)
by Z.

Z %7, Z for p,q > 3. Knot groups of torus knots if

ged(p, q) = 1.



Application: RAAGs and RACGs

Let I = (V, E) be a graph. Define Wi = (x,evGy)/N, where N is
the normal subgroup generated by all [G,, G,,] where (v,w) € E
and G, € {Z/2,Z}.
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Application: RAAGs and RACGs

Let I = (V, E) be a graph. Define Wi = (x,evGy)/N, where N is
the normal subgroup generated by all [G,, G,,] where (v,w) € E
and G, € {Z/2,Z}.

Ga Gb Gc Gd Ge
. . . . Wr

| l
. . e (Gsx Gp) % (Ge x Gg)

G, Gp 1 Gy Ge

~~ unbounded Aut-invariant quasimorphisms on Wr.
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« Often can project to the two factor case.
« Can symmetrise if not only Z/2's or too many Z's.
» Does Z/2 x 7/2 x 7./2 admit an unbounded Aut-invariant
quasimorphism?
« Original counting quasimorphisms are unbounded but not
Aut-invariant.
« Cannot forget about partial conjugations anymore.
* Does F,, admit an unbounded Aut-invariant quasimorphism?

« Have to deal with transvections of both factors now which
seems hard to do explicitly.
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Lemma (Kawasaki-Kimura)

Assume G = Inn(G), ¢ homogeneous Aut-invariant quasimorphism
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1]¢(x)]
sclaut(x) > 2D(0)




Theorem (K.)

Let G = Ax B be a free product of freely indecomposable groups
and assume that G is not the infinite dihedral group. Then there
always exist elements g € G with positive Aut-invariant stable
commutator length sclau:(g) > 0.



Thank you for your attention!



