# Gromov's Mapping Theorem via multicomplexes

Marco Moraschini (Universität Regensburg) Joint work with R. Frigerio (UNIPI)



Interactions between Arithmetic Geometry and Global Analysis SFB 1085 · Funded by the DFG

# Internation Young Seminars on Bounded Cohomology and Simplicial Volume

Marco Moraschini

Gromov's Mapping Theorem via multicomplexes

02 November 2020





 Ivanov '87: Bounded cohomology: Countable CW-complexes; Techniques: Homological algebra and resolutions; Simplicial volume: Closed manifold.



 Ivanov '17: Bounded cohomology: Topological spaces;
 Techniques: Invariance of bounded cohomology under weak homotopy equivalences; Simplicial volume: Closed manifolds.

Marco Moraschini

Gromov's Mapping Theorem via multicomplexes

02 November 2020



 FM '18: Bounded cohomology: Topological spaces; Techniques: Multicomplexes; Simplicial volume: Both compact and non-compact manifolds.

Marco Moraschini

#### Bounded cohomology of spaces

Let X be a path-connected space and let  $f \in C^{\bullet}(X; \mathbb{R})$ .

• The  $\ell^{\infty}$ -norm of f is defined as

$$\|f\|_{\infty} = \sup\{|f(\sigma)|$$
 , where  $\ \sigma \in \ \mathcal{S}_{ullet}(X)\}$  .

• f is said to be bounded if  $\|f\|_{\infty} < +\infty$ .

$$\bullet \ (C_b^{\bullet}(X;\mathbb{R}) = \{ f \in C^{\bullet}(X;\mathbb{R}) \, | \, \|f\|_{\infty} < +\infty \}, \delta^{\bullet}).$$

The **bounded cohomology** of X,  $H_b^{\bullet}(X; \mathbb{R})$ , is the cohomology of  $(C_b^{\bullet}(X; \mathbb{R}), \delta^{\bullet})$ .

Marco Moraschini

Given a discrete group  $\Gamma,$  a  $K(\Gamma,1)\text{-}\mathsf{space}$  is a path-connected CW-complex such that

• 
$$\pi_1(X) = \Gamma$$
;

• 
$$\pi_{k\geq 2}(X) = 1$$

Given a discrete group  $\Gamma,$  a  $K(\Gamma,1)\text{-}{\bf space}$  is a path-connected CW-complex such that

• 
$$\pi_1(X) = \Gamma$$
;

• 
$$\pi_{k\geq 2}(X)=1$$
.

Given a discrete group  $\Gamma$ , we define  $H_b^{\bullet}(\Gamma; \mathbb{R}) := H_b^{\bullet}(K(\Gamma, 1), \mathbb{R})$ .

Marco Moraschini

Given a discrete group  $\Gamma,$  a  $K(\Gamma,1)\text{-}\mathsf{space}$  is a path-connected CW-complex such that

•  $\pi_1(X) = \Gamma$ ;

• 
$$\pi_{k\geq 2}(X) = 1$$
.

Given a discrete group  $\Gamma$ , we define  $H_b^{\bullet}(\Gamma; \mathbb{R}) := H_b^{\bullet}(K(\Gamma, 1), \mathbb{R}).$ 

#### Johnson '72 : If $\Gamma$ is amenable, then

$$H_b^{k\geq 1}(\Gamma;\mathbb{R})=0$$
.

Marco Moraschini

Mapping Theorem (Gromov '82, Ivanov '17, FM '18): Let  $f: X \to Y$  be a continuous map such that

- $\pi_1(f) \colon \pi_1(X) \to \pi_1(Y)$  is surjective;
- $\ker(\pi_1(f))$  is amenable.

Then,  $\forall n \in \mathbb{N}$ 

 $H^n_b(f)\colon H^n_b(Y)\to H^n_b(X)$ 

is an isometric isomorphism.

Mapping Theorem (Gromov '82, Ivanov '17, FM '18): Let  $f: X \to Y$  be a continuous map such that

- $\pi_1(f) \colon \pi_1(X) \to \pi_1(Y)$  is surjective;
- $\ker(\pi_1(f))$  is amenable.

Then,  $\forall n \in \mathbb{N}$ 

 $H^n_b(f)\colon H^n_b(Y)\to H^n_b(X)$ 

is an isometric isomorphism.

Corollary : All spaces X with amenable fundamental group have

 $H_b^{k\geq 1}(\Gamma;\mathbb{R})=0.$ 

Marco Moraschini

Mapping Theorem (Simplified version): Let  $f: X \to Y$  be a continuous map between CW-complexes such that  $\pi_1(f)$  is an isomorphism. Then,  $\forall n \in \mathbb{N}$ 

$$H_b^n(f) \colon H_b^n(Y) \to H_b^n(X)$$

is an isometric isomorphism.

Mapping Theorem (Simplified version): Let  $f: X \to Y$  be a continuous map between CW-complexes such that  $\pi_1(f)$  is an isomorphism. Then,  $\forall n \in \mathbb{N}$ 

$$H_b^n(f) \colon H_b^n(Y) \to H_b^n(X)$$

is an isometric isomorphism.

**Strategy** : Given a CW-complex X, we want to construct a classifying map  $X \rightsquigarrow K(\pi_1(X), 1)$  inducing an isometric isomorphism in bounded cohomology.

Gromov 1982 - "A multicomplex K is a set divided into the union of closed affine simplices  $\Delta_i$ ,  $i \in I$ , such that the intersection of any two simplices  $\Delta_i \cap \Delta_j$  is a (simplicial) subcomplex in  $\Delta_i$  as well as  $\Delta_j$ ".

## Multicomplexes

A multicomplex K is a set of simplices satisfying the following properties:

- Hereditary: If  $\Delta \subset K$ , then all the faces of  $\Delta$  are in K;
- ▶ Intersection: If  $\Delta_1 \cap \Delta_2 \neq \emptyset$ , then  $\Delta_1 \cap \Delta_2$  is a subcomplex of both of them;
- ▶ Distinct vertices: Every *n*-simplex  $\Delta \subset K$  has exactly (n + 1) distinct vertices.

## Multicomplexes

A multicomplex K is a set of simplices satisfying the following properties:

- Hereditary: If  $\Delta \subset K$ , then all the faces of  $\Delta$  are in K;
- ▶ Intersection: If  $\Delta_1 \cap \Delta_2 \neq \emptyset$ , then  $\Delta_1 \cap \Delta_2$  is a subcomplex of both of them;
- ▶ Distinct vertices: Every *n*-simplex  $\Delta \subset K$  has exactly (n + 1) distinct vertices.



The geometric realization of K, |K|, is a CW-complex with an n-cell for each n-simplex  $\Delta$  in K and the glueings prescribed by K.

The geometric realization of K, |K|, is a CW-complex with an n-cell for each n-simplex  $\Delta$  in K and the glueings prescribed by K.



Figure: A cone as the geometric realization of a simplicial complex, a multicomplex and a  $\Delta\text{-complex},$  respectively.

# **Question** : Given a CW-complex X, how do we construct a multicomplex $K \simeq X$ ?

**Question** : Given a CW-complex X, how do we construct a multicomplex  $K \simeq X$ ?

 $X \rightsquigarrow \mathcal{K}(X)$  multicomplex whose simplices are given by all singular simplices in X which are **injective** on the set of vertices.

The resulting multicomplex  $\mathcal{K}(X)$  is called singular multicomplex.

**Question** : Given a CW-complex X, how do we construct a multicomplex  $K \simeq X$ ?

 $X \rightsquigarrow \mathcal{K}(X)$  multicomplex whose simplices are given by all singular simplices in X which are **injective** on the set of vertices.

The resulting multicomplex  $\mathcal{K}(X)$  is called singular multicomplex.



**Example** :  $\mathcal{K}(X)$  contains (for instance):

- A 1-simplex corresponding to the singular 1-simplex τ<sup>(1)</sup>;
- ► Two 2-simplices σ<sub>1</sub><sup>(2)</sup> and σ<sub>2</sub><sup>(2)</sup> such that

$$\sigma_1^{(2)} \cap \sigma_2^{(2)} = \tau^{(1)}$$

There exists a natural projection  $S\colon |\mathcal{K}(X)|\to X$  , defined as

$$S\left(\left[\sigma^{(n)}\right],\lambda_1x_1+\cdots+\lambda_{n+1}x_{n+1}\right)=\sigma^{(n)}(\lambda_1e_1+\cdots+\lambda_{n+1}e_{n+1}).$$

There exists a natural projection  $S\colon |\mathcal{K}(X)|\to X$  , defined as

$$S\left(\left[\sigma^{(n)}\right],\lambda_1x_1+\cdots+\lambda_{n+1}x_{n+1}\right)=\sigma^{(n)}(\lambda_1e_1+\cdots+\lambda_{n+1}e_{n+1}).$$

Theorem (Gromov '82, FM '18) : S is a homotopy equivalence. In particular,

$$H_b^{\bullet}(S) \colon H_b^{\bullet}(X) \to H_b^{\bullet}(|\mathcal{K}(X)|)$$

is an isometric isomorphism in all degrees.

Marco Moraschini

for all continuous maps  $\,f\colon \Delta^n\to |K|$  such that

 $f|_{\partial\Delta^n} \colon \partial\Delta^n \hookrightarrow |K|$  is a simplicial embedding,

there exists a simplicial embedding  $\iota\colon\Delta^n \hookrightarrow |K|$  s. t.  $f\simeq_{\partial\Delta^n}\iota$  .

for all continuous maps  $f: \Delta^n \to |K|$  such that

 $f|_{\partial\Delta^n}\colon\partial\Delta^n\hookrightarrow |K|$  is a simplicial embedding,

there exists a simplicial embedding  $\iota \colon \Delta^n \hookrightarrow |K|$  s. t.  $f \simeq_{\partial \Delta^n} \iota$  .



for all continuous maps  $f: \Delta^n \to |K|$  such that

 $f|_{\partial\Delta^n} \colon \partial\Delta^n \hookrightarrow |K|$  is a simplicial embedding,

there exists a simplicial embedding  $\iota \colon \Delta^n \hookrightarrow |K|$  s. t.  $f \simeq_{\partial \Delta^n} \iota$  .



A multicomplex K is said to be complete if for all continuous maps  $f: \Delta^n \to |K|$  such that  $f|_{\partial\Delta^n}: \partial\Delta^n \hookrightarrow |K|$  is a simplicial embedding, there exists a simplicial embedding  $\iota: \Delta^n \hookrightarrow |K|$  s. t.  $f \simeq_{\partial\Delta^n} \iota$ .



A multicomplex K is said to be **complete** if for all continuous maps  $f: \Delta^n \to |K|$  such that  $f|_{\partial \Delta^n}: \partial \Delta^n \hookrightarrow |K|$  is a simplicial embedding,

there exists a simplicial embedding  $\iota\colon\Delta^n\hookrightarrow |K|$  s. t.  $f\simeq_{\partial\Delta^n}\iota$  .



for all continuous maps  $f: \Delta^n \to |K|$  such that

 $f|_{\partial\Delta^n}\colon\partial\Delta^n\hookrightarrow |K|$  is a simplicial embedding,

there exists a simplicial embedding  $\iota\colon\Delta^n \hookrightarrow |K|$  s. t.  $f\simeq_{\partial\Delta^n}\iota$  .

Examples :



Theorem (Gromov '82, FM '18) :  $\mathcal{K}(X)$  is complete.

Marco Moraschini

 $\Delta_1 \neq \Delta_2 \subset K$  are said to be compatible if  $\partial \Delta_1 = \partial \Delta_2$ .

#### Special spheres

 $\Delta_1 \neq \Delta_2 \subset K$  are said to be compatible if  $\partial \Delta_1 = \partial \Delta_2$ . Let  $\Delta_1^k, \Delta_2^k \subset K$  be two compatible simplices. A special sphere

$$\dot{S}(\Delta_1^k, \Delta_2^k) \colon \mathsf{S}^k \to |K|$$

is a continuous function defined as follows



#### Homotopy of multicomplexes

Two simplices  $\Delta_1^k, \Delta_2^k \subset K$  are said to be **homotopic** if they are compatible and we have

$$\dot{S}(\Delta_1, \Delta_2) \simeq_{x_0} c_{x_0} \in \pi_k(|K|, x_0)$$
.

#### Homotopy of multicomplexes

Two simplices  $\Delta_1^k, \Delta_2^k \subset K$  are said to be **homotopic** if they are compatible and we have

$$\dot{S}(\Delta_1, \Delta_2) \simeq_{x_0} c_{x_0} \in \pi_k(|K|, x_0)$$

Let  $\pi(\Delta) \subset K$  be the set of all simplices compatible with  $\Delta$ .

**Theorem (FM '18)** : Let K be a complete multicomplex and let  $\Delta$  be a k-simplex in K. Then,

$$\Theta \colon \pi(\Delta) \to \pi_k(|K|, x_0)$$
$$\Delta_1 \mapsto \dot{S}(\Delta, \Delta_1)$$

is surjective and

$$\Theta(\Delta_1) = \Theta(\Delta_2)$$

if and only if  $\Delta_1$  and  $\Delta_2$  are homotopic.

Marco Moraschini

A multicomplex K is said to be **minimal** if it does not contain homotopic simplices.

#### Minimal multicomplexes

A multicomplex K is said to be **minimal** if it does not contain homotopic simplices.

Examples :





#### Minimal multicomplexes

A multicomplex K is said to be **minimal** if it does not contain homotopic simplices.

Examples :





#### Minimal multicomplexes

A multicomplex K is said to be **minimal** if it does not contain homotopic simplices.

Examples :





Corollary (FM '18) : Let K be a complete and minimal multicomplex and let  $\Delta \subset K$  be a k-simplesso. Then,

$$\Theta \colon \pi(\Delta) \to \pi_k(|K|, x_0)$$

is a bijection.

Marco Moraschini

#### Existence of minimal multicomplexes

**Theorem (Gromov 82, FM '18)** : Let K be a complete multicomplex. Then  $\exists L \subset K$  such that

- L is minimal and complete;
- $i \colon |L| \to |K|$  is a homotopy equivalence;
- *L* is unique up to simplicial isomorphisms.

#### Existence of minimal multicomplexes

**Theorem (Gromov 82, FM '18)** : Let K be a complete multicomplex. Then  $\exists L \subset K$  such that

- L is minimal and complete;
- $i: |L| \rightarrow |K|$  is a homotopy equivalence;
- ► L is unique up to simplicial isomorphisms.

Corollary : Given  $X \rightsquigarrow \mathcal{L}(X) \subset \mathcal{K}(X)$  complete and minimal multicomplex such that

$$H_b^{\bullet}(X) \cong H_b^{\bullet}(|\mathcal{L}(X)|)$$

isometrically.

Marco Moraschini

For every  $i \geq 1$  we define  $\Gamma_i$  to be the group of simplicial automorphisms  $\gamma$  of  $\mathcal{L}(X)$  such that

- $\blacktriangleright \gamma|_{|\mathcal{L}(X)|^i} = \mathsf{Id}_{\mathcal{L}(X)};$
- $\blacktriangleright \ \gamma \simeq_{|\mathcal{L}(X)|^0} \mathsf{Id}_{\mathcal{L}(X)}.$

For every  $i \geq 1$  we define  $\Gamma_i$  to be the group of simplicial automorphisms  $\gamma$  of  $\mathcal{L}(X)$  such that

- $\blacktriangleright \gamma|_{|\mathcal{L}(X)|^i} = \mathsf{Id}_{\mathcal{L}(X)};$
- $\blacktriangleright \ \gamma \simeq_{|\mathcal{L}(X)|^0} \mathsf{Id}_{\mathcal{L}(X)}.$

Lemma : Let  $\Delta^{i+1} \subset \mathcal{L}(X)$ . Then,  $\Gamma_i$  acts on  $\pi(\Delta)$  transitively.

For every  $i \geq 1$  we define  $\Gamma_i$  to be the group of simplicial automorphisms  $\gamma$  of  $\mathcal{L}(X)$  such that

- $\blacktriangleright \gamma|_{|\mathcal{L}(X)|^i} = \mathsf{Id}_{\mathcal{L}(X)};$
- $\blacktriangleright \ \gamma \simeq_{|\mathcal{L}(X)|^0} \mathsf{Id}_{\mathcal{L}(X)}.$

**Lemma** : Let  $\Delta^{i+1} \subset \mathcal{L}(X)$ . Then,  $\Gamma_i$  acts on  $\pi(\Delta)$  transitively.

**Corollary** : The quotient  $\mathcal{A}(X) = \mathcal{L}(X)/\Gamma_1$  is a multicomplex without compatible simplices in dimension  $i \ge 2$ .

Marco Moraschini

**Proof** : The steps are the followings:

•  $\mathcal{A}(X) = \mathcal{L}(X)/\Gamma_1$  is minimal and complete;

**Proof** : The steps are the followings:

•  $\mathcal{A}(X) = \mathcal{L}(X)/\Gamma_1$  is minimal and complete;

• 
$$|\mathcal{A}(X)| = K(\pi_1(X), 1);$$

**Proof** : The steps are the followings:

•  $\mathcal{A}(X) = \mathcal{L}(X)/\Gamma_1$  is minimal and complete;

• 
$$|\mathcal{A}(X)| = K(\pi_1(X), 1);$$

► For all 
$$i \ge 1$$
,  $\Gamma_1/\Gamma_i$  is amenable  
 $\Rightarrow H_b^{\bullet}(|\mathcal{A}(X)|) \rightarrow H_b^{\bullet}(|\mathcal{L}(X)|)$  is an isometric isomorphism;

**Proof** : The steps are the followings:

•  $\mathcal{A}(X) = \mathcal{L}(X)/\Gamma_1$  is minimal and complete;

$$\bullet |\mathcal{A}(X)| = K(\pi_1(X), 1);$$

► For all  $i \ge 1$ ,  $\Gamma_1 / \Gamma_i$  is amenable  $\Rightarrow H_b^{\bullet}(|\mathcal{A}(X)|) \rightarrow H_b^{\bullet}(|\mathcal{L}(X)|)$  is an isometric isomorphism;

►  $H_b^{\bullet}(X) \cong H_b^{\bullet}(|\mathcal{A}(X)|)$  is an isometric isomorphism.

Marco Moraschini



**Remark** : Given  $\Gamma_1/\Gamma_i$ , we have the following normal sequence:

$$\Gamma_1/\Gamma_i \supseteq \Gamma_2/\Gamma_i \supseteq \cdots \supseteq \Gamma_i/\Gamma_i = \{1\}$$
.

If we prove that for every  $1 \leq k \leq i-1$  the group

 $\Gamma_k/\Gamma_{k+1}$ 

is Abelian, then  $\Gamma_1/\Gamma_i$  is solvable.

**Remark** : Given  $\Gamma_1/\Gamma_i$ , we have the following normal sequence:

$$\Gamma_1/\Gamma_i \supseteq \Gamma_2/\Gamma_i \supseteq \cdots \supseteq \Gamma_i/\Gamma_i = \{1\}$$
.

If we prove that for every  $1 \leq k \leq i-1$  the group

 $\Gamma_k/\Gamma_{k+1}$ 

is Abelian, then  $\Gamma_1/\Gamma_i$  is solvable.

**Strategy** : We prove that  $\Gamma_{k+1}/\Gamma_k$  embeds into an Abelian group.

Marco Moraschini

Gromov's Mapping Theorem via multicomplexes

02 November 2020

Lemma 1 : Let J be the orbit set of  $\Gamma_k \curvearrowright \mathcal{L}(X)$  and let  $\Delta_{\alpha} \subset \mathcal{L}(X)$  be a representative for the orbit  $\alpha \in J$ . Then, the map

$$\varphi_{\alpha} \colon \Gamma_{k} \to \pi_{k+1}(|\mathcal{L}(X)|, x_{\alpha})$$
$$\gamma \mapsto [\varphi_{\alpha}(\gamma)] = \left[\dot{S}(\Delta_{\alpha}, \gamma \Delta_{\alpha})\right]$$

is a homomorphism.

Lemma 1 : Let J be the orbit set of  $\Gamma_k \curvearrowright \mathcal{L}(X)$  and let  $\Delta_{\alpha} \subset \mathcal{L}(X)$  be a representative for the orbit  $\alpha \in J$ . Then, the map

$$\varphi_{\alpha} \colon \Gamma_{k} \to \pi_{k+1}(|\mathcal{L}(X)|, x_{\alpha})$$
$$\gamma \mapsto [\varphi_{\alpha}(\gamma)] = \left[\dot{S}(\Delta_{\alpha}, \gamma \Delta_{\alpha})\right]$$

is a homomorphism.

**Proof** : We have the following computation for every  $\gamma_1, \gamma_2 \in \Gamma_k$ :

$$\begin{aligned} \varphi(\gamma_2 \gamma_1) &= \left[ \dot{S}(\Delta_{\alpha}, \gamma_2 \gamma_1 \Delta_{\alpha}) \right] \\ &= \left[ \dot{S}(\Delta_{\alpha}, \gamma_2 \Delta_{\alpha}) + \dot{S}(\gamma_2 \Delta_{\alpha}, \gamma_2 \gamma_1 \Delta_{\alpha}) \right] \\ &= \varphi(\gamma_2) + \left[ \gamma_2 \circ \dot{S}(\Delta_{\alpha}, \gamma_1 \Delta_{\alpha}) \right] \\ &= \varphi(\gamma_2) + \varphi(\gamma_1) \; . \end{aligned}$$

Marco Moraschini

Lemma 2 : For every  $k \ge 1$ , the homomorphism into the direct product

$$\Phi \colon \Gamma_k \to \prod_{\alpha \in J} \pi_{k+1}(|\mathcal{L}(X)|, x_\alpha)$$

has kernel equal to  $\Gamma_{k+1}$ . In particular,  $\Gamma_k/\Gamma_{k+1}$  is Abelian.

Lemma 2 : For every  $k \ge 1$ , the homomorphism into the direct product

$$\Phi \colon \Gamma_k \to \prod_{\alpha \in J} \pi_{k+1}(|\mathcal{L}(X)|, x_\alpha)$$

has kernel equal to  $\Gamma_{k+1}$ . In particular,  $\Gamma_k/\Gamma_{k+1}$  is Abelian.

#### **Proof** : Notice that:

•  $\gamma \in \ker(\Phi)$  if and only if  $\forall \alpha \in J$ ,  $\varphi_{\alpha}(\gamma)$  is null-homotopic.

Lemma 2 : For every  $k \ge 1$ , the homomorphism into the direct product

$$\Phi \colon \Gamma_k \to \prod_{\alpha \in J} \pi_{k+1}(|\mathcal{L}(X)|, x_\alpha)$$

has kernel equal to  $\Gamma_{k+1}$ . In particular,  $\Gamma_k/\Gamma_{k+1}$  is Abelian.

#### Proof : Notice that:

- $\gamma \in \ker(\Phi)$  if and only if  $\forall \alpha \in J$ ,  $\varphi_{\alpha}(\gamma)$  is null-homotopic.
- Hence,  $\forall \alpha \in J$ , we have  $\gamma \Delta_{\alpha} \simeq \Delta_{\alpha}$ .

Lemma 2 : For every  $k \ge 1$ , the homomorphism into the direct product

$$\Phi \colon \Gamma_k \to \prod_{\alpha \in J} \pi_{k+1}(|\mathcal{L}(X)|, x_\alpha)$$

has kernel equal to  $\Gamma_{k+1}$ . In particular,  $\Gamma_k/\Gamma_{k+1}$  is Abelian.

#### Proof : Notice that:

- $\gamma \in \ker(\Phi)$  if and only if  $\forall \alpha \in J$ ,  $\varphi_{\alpha}(\gamma)$  is null-homotopic.
- Hence,  $\forall \alpha \in J$ , we have  $\gamma \Delta_{\alpha} \simeq \Delta_{\alpha}$ .
- ▶ By the minimality of  $\mathcal{L}(X)$ ,  $\forall \alpha \in J$  we have  $\gamma \Delta_{\alpha} = \Delta_{\alpha}$ .

Lemma 2 : For every  $k \ge 1$ , the homomorphism into the direct product

$$\Phi \colon \Gamma_k \to \prod_{\alpha \in J} \pi_{k+1}(|\mathcal{L}(X)|, x_\alpha)$$

has kernel equal to  $\Gamma_{k+1}$ . In particular,  $\Gamma_k/\Gamma_{k+1}$  is Abelian.

#### Proof : Notice that:

- $\gamma \in \ker(\Phi)$  if and only if  $\forall \alpha \in J$ ,  $\varphi_{\alpha}(\gamma)$  is null-homotopic.
- Hence,  $\forall \alpha \in J$ , we have  $\gamma \Delta_{\alpha} \simeq \Delta_{\alpha}$ .
- ▶ By the minimality of  $\mathcal{L}(X)$ ,  $\forall \alpha \in J$  we have  $\gamma \Delta_{\alpha} = \Delta_{\alpha}$ .
- Since  $ker(\Phi)$  is normal, this implies that it coincides with the stabilizers of each simplex in the orbit  $\alpha$  and so:

$$\ker(\Phi) = \bigcap_{\alpha \in J} \ker(\varphi_{\alpha}) = \Gamma_{k+1} \; .$$

Marco Moraschini