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I Gromov ’82: Bounded cohomology: Topological spaces;
Techniques: Multicomplexes; Simplicial volume: Both
compact and non-compact manifolds.

I Ivanov ’87: Bounded cohomology: Countable
CW-complexes; Techniques: Homological algebra and
resolutions; Simplicial volume: Closed manifold.

I Ivanov ’17: Bounded cohomology: Topological spaces;
Techniques: Invariance of bounded cohomology under weak
homotopy equivalences; Simplicial volume: Closed manifolds.

I FM ’18: Bounded cohomology: Topological spaces;
Techniques: Multicomplexes; Simplicial volume: Both
compact and non-compact manifolds.
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Bounded cohomology of spaces

Let X be a path-connected space and let f ∈ C•(X;R).

I The `∞-norm of f is defined as

‖f‖∞ = sup{|f(σ)| , where σ ∈ S•(X)} .

I f is said to be bounded if ‖f‖∞ < +∞ .

I (C•b (X;R) = {f ∈ C•(X;R) | ‖f‖∞ < +∞}, δ•).

The bounded cohomology of X, H•b (X;R), is the cohomology of
(C•b (X;R), δ•).
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Bounded cohomology of groups

Given a discrete group Γ, a K(Γ, 1)-space is a path-connected
CW-complex such that
I π1(X) = Γ ;
I πk≥2(X) = 1 .

Given a discrete group Γ, we define H•b (Γ;R) := H•b (K(Γ, 1),R).

Johnson ’72 : If Γ is amenable, then

Hk≥1
b (Γ;R) = 0 .
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Gromov’s Mapping Theorem

Mapping Theorem (Gromov ’82, Ivanov ’17, FM ’18): Let
f : X → Y be a continuous map such that

I π1(f) : π1(X)→ π1(Y ) is surjective;
I ker(π1(f)) is amenable.

Then, ∀n ∈ N
Hn
b (f) : Hn

b (Y )→ Hn
b (X)

is an isometric isomorphism.

Corollary : All spaces X with amenable fundamental group have

Hk≥1
b (Γ;R) = 0 .
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Gromov’s Mapping Theorem - Simplified version

Mapping Theorem (Simplified version): Let f : X → Y be a
continuous map between CW-complexes such that π1(f) is an
isomorphism. Then, ∀n ∈ N

Hn
b (f) : Hn

b (Y )→ Hn
b (X)

is an isometric isomorphism.

Strategy : Given a CW-complex X, we want to construct a
classifying map X  K(π1(X), 1) inducing an isometric
isomorphism in bounded cohomology.
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Multicomplexes

Gromov 1982 - “A multicomplex K is a set divided into the union
of closed affine simplices ∆i, i ∈ I, such that the intersection of
any two simplices ∆i ∩∆j is a (simplicial) subcomplex in ∆i as
well as ∆j”.

A multicomplex K is a set of simplices satisfying the following
properties:
I Hereditary: If ∆ ⊂ K, then all the faces of ∆ are in K;
I Intersection: If ∆1 ∩∆2 6= ∅, then ∆1 ∩∆2 is a subcomplex of

both of them;
I Distinct vertices: Every n-simplex ∆ ⊂ K has exactly (n+ 1)

distinct vertices.
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Geometric realization

The geometric realization of K, |K|, is a CW-complex with an
n-cell for each n-simplex ∆ in K and the glueings prescribed by K.

bb

b
b b b

b b

b b

b 0 0 0

1

2

3 1 2 1 = 2

Figure: A cone as the geometric realization of a simplicial complex, a
multicomplex and a ∆-complex, respectively.
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Question : Given a CW-complex X, how do we construct a
multicomplex K ' X?

X  K(X) multicomplex whose simplices are given by all singular
simplices in X which are injective on the set of vertices.

The resulting multicomplex K(X) is called singular multicomplex.

X
Example : K(X) contains (for
instance):
I A 1-simplex corresponding to

the singular 1-simplex τ (1);
I Two 2-simplices σ(2)

1 and σ(2)
2

such that

σ
(2)
1 ∩ σ

(2)
2 = τ (1) .
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The natural projection

There exists a natural projection S : |K(X)| → X , defined as

S
( [
σ(n)

]
, λ1x1 + · · ·+λn+1xn+1

)
= σ(n)(λ1e1 + · · ·+λn+1en+1) .

Theorem (Gromov ’82, FM ’18) : S is a homotopy equivalence.
In particular,

H•b (S) : H•b (X)→ H•b (|K(X)|)

is an isometric isomorphism in all degrees.
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Complete multicomplexes

A multicomplex K is said to be complete if

for all continuous maps f : ∆n → |K| such that

f |∂∆n : ∂∆n ↪→ |K| is a simplicial embedding,

there exists a simplicial embedding ι : ∆n ↪→ |K| s. t. f '∂∆n ι .

Examples :

Theorem (Gromov ’82, FM ’18) : K(X) is complete.
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Special spheres

∆1 6= ∆2 ⊂ K are said to be compatible if ∂∆1 = ∂∆2.

Let ∆k
1,∆

k
2 ⊂ K be two compatible simplices. A special sphere

Ṡ(∆k
1,∆

k
2) : Sk → |K|

is a continuous function defined as follows
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Homotopy of multicomplexes

Two simplices ∆k
1,∆

k
2 ⊂ K are said to be homotopic if they are

compatible and we have

Ṡ(∆1,∆2) 'x0 cx0 ∈ πk(|K|, x0) .

Let π(∆) ⊂ K be the set of all simplices compatible with ∆.

Theorem (FM ’18) : Let K be a complete multicomplex and let
∆ be a k-simplex in K. Then,

Θ: π(∆)→ πk(|K|, x0)

∆1 7→ Ṡ(∆,∆1)

is surjective and
Θ(∆1) = Θ(∆2)

if and only if ∆1 and ∆2 are homotopic.
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Minimal multicomplexes

A multicomplex K is said to be minimal if it does not contain
homotopic simplices.

Examples :

Corollary (FM ’18) : Let K be a complete and minimal
multicomplex and let ∆ ⊂ K be a k-simplesso. Then,

Θ: π(∆)→ πk(|K|, x0)

is a bijection.
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Existence of minimal multicomplexes

Theorem (Gromov 82, FM ’18) : Let K be a complete
multicomplex. Then ∃L ⊂ K such that

I L is minimal and complete;

I i : |L| → |K| is a homotopy equivalence;

I L is unique up to simplicial isomorphisms.

Corollary : Given X  L(X) ⊂ K(X) complete and minimal
multicomplex such that

H•b (X) ∼= H•b (|L(X)|)

isometrically.
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A useful simplicial action

Recap : X  K(X) complete  L(X) complete, minimal and
homotopically equivalent to X.

For every i ≥ 1 we define Γi to be the group of simplicial
automorphisms γ of L(X) such that
I γ||L(X)|i = IdL(X);
I γ '|L(X)|0 IdL(X).

Lemma : Let ∆i+1 ⊂ L(X). Then, Γi acts on π(∆) transitively.

Corollary : The quotient A(X) = L(X)/Γ1 is a multicomplex
without compatible simplices in dimension i ≥ 2.
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Proof of the (Simplified) Mapping Theorem

(Simplified) Mapping Theorem: Let f : X → Y be a continuous
map between CW-complexes such that π1(f) is an isomorphism.
Then ∀n ∈ N, Hn

b (f) is an isometric isomorphism.

Proof : The steps are the followings:
I A(X) = L(X)/Γ1 is minimal and complete;

I |A(X)| = K(π1(X), 1);

I For all i ≥ 1, Γ1/Γi is amenable
⇒ H•b (|A(X)|)→ H•b (|L(X)|) is an isometric isomorphism;

I H•b (X) ∼= H•b (|A(X)|) is an isometric isomorphism.
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I H•b (X) ∼= H•b (|A(X)|) is an isometric isomorphism.
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How to show the amenability of Γ1/Γi with i ≥ 1

Remark : Given Γ1/Γi, we have the following normal sequence:

Γ1/Γi D Γ2/Γi D · · · D Γi/Γi = {1} .

If we prove that for every 1 ≤ k ≤ i− 1 the group

Γk/Γk+1

is Abelian, then Γ1/Γi is solvable.

Strategy : We prove that Γk+1/Γk embeds into an Abelian group.
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How to show that Γk/Γk+1 is Abelian for all k ≥ 1 (part 1)

Lemma 1 : Let J be the orbit set of Γk y L(X) and let
∆α ⊂ L(X) be a representative for the orbit α ∈ J . Then, the map

ϕα : Γk → πk+1(|L(X)|, xα)

γ 7→ [ϕα(γ)] =
[
Ṡ(∆α, γ∆α)

]
is a homomorphism.

Proof : We have the following computation for every γ1, γ2 ∈ Γk:

ϕ(γ2γ1) =
[
Ṡ(∆α, γ2γ1∆α)

]
=
[
Ṡ(∆α, γ2∆α) + Ṡ(γ2∆α, γ2γ1∆α)

]
= ϕ(γ2) +

[
γ2 ◦ Ṡ(∆α, γ1∆α)

]
= ϕ(γ2) + ϕ(γ1) .
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How to show that Γk/Γk+1 is Abelian for all k ≥ 1 (part 2)

Lemma 2 : For every k ≥ 1, the homomorphism into the direct
product

Φ: Γk →
∏
α∈ J

πk+1(|L(X)|, xα)

has kernel equal to Γk+1. In particular, Γk/Γk+1 is Abelian.

Proof : Notice that:
I γ ∈ ker(Φ) if and only if ∀α ∈ J , ϕα(γ) is null-homotopic.
I Hence, ∀α ∈ J , we have γ∆α ' ∆α.
I By the minimality of L(X), ∀α ∈ J we have γ∆α = ∆α.
I Since ker(Φ) is normal, this implies that it coincides with the

stabilizers of each simplex in the orbit α and so:

ker(Φ) =
⋂
α∈ J

ker(ϕα) = Γk+1 .
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