Vanishing results of topological volumes via open covers

Marco Moraschini (Universität Regensburg)

Interactions between Arithmetic Geometry and Global Analysis SFB 1085 \cdot Funded by the DFG

Real and Complex Manifolds – The mathematical heritage of Edoardo Vesentini

Gauss-Bonnet's Theorem : If Σ_g is a genus g surface, we have

$$\int_{\Sigma_g} K dA = 2\pi \chi(\Sigma_g) \; .$$

If Σ_g is hyperbolic, i.e. K = -1, we have $\operatorname{Vol}(\Sigma_g) = 2\pi |\chi(\Sigma)|$.

Gauss-Bonnet's Theorem : If Σ_g is a genus g surface, we have

$$\int_{\Sigma_g} K dA = 2\pi \chi(\Sigma_g) \; .$$

If Σ_g is hyperbolic, i.e. K = -1, we have $\operatorname{Vol}(\Sigma_g) = 2\pi |\chi(\Sigma)|$.

Warning : We cannot extend it to all higher dimensions, because $\chi(M^{2k+1})=0.$

Gauss-Bonnet's Theorem : If Σ_g is a genus g surface, we have

$$\int_{\Sigma_g} K dA = 2\pi \chi(\Sigma_g) \; .$$

If Σ_g is hyperbolic, i.e. K = -1, we have $\operatorname{Vol}(\Sigma_g) = 2\pi |\chi(\Sigma)|$.

Warning : We cannot extend it to all higher dimensions, because $\chi(M^{2k+1}) = 0.$

Theorem (Gromov, Thurston \sim '80) : If M is an oriented closed and connected hyperbolic *n*-manifold, then

$$\|M\| = \frac{\operatorname{Vol}(M)}{v_n}$$

Marco Moraschini

Assumption : Our manifold M is assumed to be o.c.c., i.e. oriented, closed and connected.

Assumption : Our manifold M is assumed to be o.c.c., i.e. oriented, closed and connected.

Given a singular chain $c = \sum_{j=0}^{k} a_j \cdot \sigma_j \in C_n(M; \mathbb{R})$, we define the ℓ^1 -norm of c as

$$||c||_1 := \sum_{j=0}^n |a_j| \in \mathbb{R}_{\ge 0}.$$

Assumption : Our manifold M is assumed to be o.c.c., i.e. oriented, closed and connected.

Given a singular chain $c = \sum_{j=0}^{k} a_j \cdot \sigma_j \in C_n(M; \mathbb{R})$, we define the ℓ^1 -norm of c as

$$||c||_1 := \sum_{j=0}^n |a_j| \in \mathbb{R}_{\ge 0}.$$

The simplicial volume of an n-manifold M is

 $||M|| := \inf\{||c||_1 | [c] = [M] \in H_n(M; \mathbb{R}) \cong \mathbb{R}\} \in \mathbb{R}_{\geq 0}$.

Remark : Simplicial volume is a homotopy invariant.

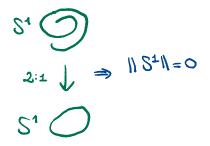
Marco Moraschini

Topological volumes and open covers

Simplicial volume: Main properties

Multiplicativity w.r.t. finite coverings : If $f: N \to M$ is a finite covering of degree d between o.c.c. manifolds of the same dimension, then

$$\|N\| = d \cdot \|M\| .$$



Multiplicativity w.r.t. finite coverings : If $f: N \to M$ is a finite covering of degree d between o.c.c. manifolds of the same dimension, then

$$||N|| = d \cdot ||M|| .$$

Vanishing results :

- $||S^1|| = 0$ and $||T^n|| = 0$;
- ► Gromov '82 : If π₁(M) is amenable (e.g. finite, Abelian, solvable groups, ...), then ||M|| = 0;
- ► All flat manifolds have zero simplicial volume.

Multiplicativity w.r.t. finite coverings : If $f: N \to M$ is a finite covering of degree d between o.c.c. manifolds of the same dimension, then

$$||N|| = d \cdot ||M|| .$$

Vanishing results :

• $||S^1|| = 0$ and $||T^n|| = 0$;

- ► Gromov '82 : If π₁(M) is amenable (e.g. finite, Abelian, solvable groups, ...), then ||M|| = 0;
- ► All flat manifolds have zero simplicial volume.

Inoue-Yano '82 : Manifolds with strictly negative sectional curvature have positive simplicial volume.

Gromov's question \sim **'90** : If M is an o.c.c. *aspherical* n-manifold, then do we have

$$\|M\| = 0 \implies \chi(M) = 0 ?$$

ASPHERICITY IS NECESSARY! e.g. 115211=0, but X(S2)=2.

Gromov's question \sim **'90** : If M is an o.c.c. *aspherical* n-manifold, then do we have

$$||M|| = 0 \implies \chi(M) = 0 ?$$

Some known examples :

- S^1 and T^n ;
- Gromov \sim '90 : If $\pi_1(M)$ is amenable, then $||M|| = \chi(M) = 0;$

► Using multiplicativity w.r.t. finite coverings : Every flat manifold M has both ||M|| = χ(M) = 0. An open subset $U \subset M$ is called amenable if for every $x \in U$, AMENABLE

$$\mathsf{im}\big(\pi_1(U,x) \hookrightarrow \pi_1(M,x)\big)$$

is amenable.

The amenable category of M is

$$\operatorname{cat}_{\operatorname{Am}}(M) := \min\left\{ n \in \mathbb{N} \mid M = \bigcup_{i=1}^{n} U_i \text{ s. t. each } U_i \text{ is amenable} \right\}.$$

Gromov '82, Ivanov '87, Frigerio-M. '19 : If M is an o.c.c. manifold with $cat_{Am}(M) \leq dim(M)$, then ||M|| = 0.

Gromov '82, Ivanov '87, Frigerio-M. '19 : If M is an o.c.c. manifold with $cat_{Am}(M) \leq dim(M)$, then ||M|| = 0.

Sauer '09 : If M is an o.c.c. aspherical manifold with $\operatorname{cat}_{\operatorname{Am}}(M) \leq \dim(M)$, then $\chi(M) = 0$.

Gromov '82, Ivanov '87, Frigerio-M. '19 : If M is an o.c.c. manifold with $\operatorname{cat}_{\operatorname{Am}}(M) \leq \dim(M)$, then ||M|| = 0.

Sauer '09 : If M is an o.c.c. aspherical manifold with $\operatorname{cat}_{\operatorname{Am}}(M) \leq \dim(M)$, then $\chi(M) = 0$.

Question : If M is an o.c.c. aspherical n-manifold, then do we have

 $||M|| = 0 \Rightarrow \operatorname{cat}_{\operatorname{Am}}(M) \le \dim(M)$?

Gromov '82, Ivanov '87, Frigerio-M. '19 : If M is an o.c.c. manifold with $\operatorname{cat}_{\operatorname{Am}}(M) \leq \dim(M)$, then ||M|| = 0.

Sauer '09 : If M is an o.c.c. aspherical manifold with $\operatorname{cat}_{\operatorname{Am}}(M) \leq \dim(M)$, then $\chi(M) = 0$.

Question : If M is an o.c.c. aspherical n-manifold, then do we have

$$||M|| = 0 \Rightarrow \operatorname{cat}_{\operatorname{Am}}(M) \le \dim(M)$$
?

Gómez-González-Heil '14 : The question is affirmative for all o.c.c. 3-manifolds.

Marco Moraschini

Understanding $\operatorname{cat}_{\operatorname{Am}}(M)$: The monotinicity problem

Gromov '82 : If $f: M \to N$ is a degree-one map between o.c.c. n-manifolds, then we have

 $\|M\| \ge \|N\| \ .$

Gromov '82 : If $f: M \to N$ is a degree-one map between o.c.c. n-manifolds, then we have

$$\|M\| \ge \|N\| \ .$$

Question 2 (Capovilla-Löh-M.) '21 : If $f: M \to N$ is a degree-one map between o.c.c. *n*-manifolds, then do we have

$$\operatorname{cat}_{\operatorname{Am}}(M) \geq \operatorname{cat}_{\operatorname{Am}}(N)?$$

$$\operatorname{Ex:} \mathcal{H} \exists M \geq_{1} N \text{ s.t.} \circ \operatorname{cat}_{\operatorname{Am}}(M) = \operatorname{dim}(M)$$

$$\circ \operatorname{cat}_{\operatorname{Am}}(M) < \operatorname{cat}_{\operatorname{Am}}(N)$$

$$\operatorname{HM}_{1} = 0 \geq \operatorname{HNH} \Rightarrow \operatorname{HNH}_{2} 0$$

$$\operatorname{HM}_{1} = 0 \geq \operatorname{HNH} \Rightarrow \operatorname{HNH}_{2} 0$$

Topological volumes and open covers

Marco Moraschini

Gromov '82 : If $f: M \to N$ is a degree-one map between o.c.c. n-manifolds, then we have

$$\|M\| \ge \|N\| \ .$$

Question 2 (Capovilla-Löh-M.) '21 : If $f: M \rightarrow N$ is a degree-one map between o.c.c. *n*-manifolds, then do we have

 $\operatorname{cat}_{\operatorname{Am}}(M) \ge \operatorname{cat}_{\operatorname{Am}}(N)$?

Capovilla-Löh-M. '21 : Question 2 is affirmative for all o.c.c. 3-manifolds.

Marco Moraschini

Topological volumes and open covers

A 3-manifold M is prime if

$$M = N_1 \# N_2 \Longrightarrow$$
 either $N_1 \cong S^3$ or $N_2 \cong S^3$.

A 3-manifold \boldsymbol{M} is prime if

$$M = N_1 \# N_2 \Longrightarrow$$
 either $N_1 \cong S^3$ or $N_2 \cong S^3$.

Sketch of the proof for prime 3-manifolds : Given a degree-1 map $f: M \to N$ we have the following cases:

►
$$cat_{Am}(M) = 1 \Rightarrow \pi_1 M = onenoble.$$

• $deg(f)=1 \Rightarrow \pi_1(f)$ is epi.
• $\pi_1 N = onenoble (Am is closed nucleu quotients)$
• $\Rightarrow cot(N)=1.$

N 3

A 3-manifold \boldsymbol{M} is prime if

$$M = N_1 \# N_2 \Longrightarrow$$
 either $N_1 \cong S^3$ or $N_2 \cong S^3$.

A 3-manifold \boldsymbol{M} is prime if

$$M=N_1\#N_2\Longrightarrow$$
 either $N_1\cong S^3$ or $N_2\cong S^3$.

•
$$\operatorname{cat}_{\operatorname{Am}}(M) = 1$$

►
$$cat_{Am}(M) = 2$$

[Groups] (monotonicity) [GGH]
► $cat_{Am}(M) = 3 \implies ||M|| = 0 \implies (|N|| = 0 \implies cot_{Am}(M) \leq 3.$

A 3-manifold \boldsymbol{M} is prime if

$$M = N_1 \# N_2 \Longrightarrow$$
 either $N_1 \cong S^3$ or $N_2 \cong S^3$.

- $\operatorname{cat}_{\operatorname{Am}}(M) = 1$
- ► $cat_{Am}(M) = 2$
- $\operatorname{cat}_{\operatorname{Am}}(M) = 3$

►
$$cat_{Am}(M) = 4 \ge cot_{Am}(M)$$
.

Let M be an o.c.c. fiber bundle $p: M \to B$ with fiber F.

Gromov '82, Lück '02 : If $\pi_1(F)$ is amenable, then ||M|| = 0.

Let M be an o.c.c. fiber bundle $p \colon M \to B$ with fiber F.

Gromov '82, Lück '02 : If $\pi_1(F)$ is amenable, then ||M|| = 0.

Löh-M '21 : If
$$\operatorname{cat}_{\operatorname{Am}}(F) \leq \frac{\dim(M)}{\dim(B)+1}$$
, then

 $\|M\|=0.$

In particular, when ${\cal M}$ is aspherical, then ${\cal M}$ satisfies Gromov's question.

Let M be an o.c.c. fiber bundle $p \colon M \to B$ with fiber F.

Gromov '82, Lück '02 : If $\pi_1(F)$ is amenable, then ||M|| = 0.

Löh-M '21 : If
$$\operatorname{cat}_{\operatorname{Am}}(F) \leq \frac{\dim(M)}{\dim(B)+1}$$
, then

 $\|M\|=0.$

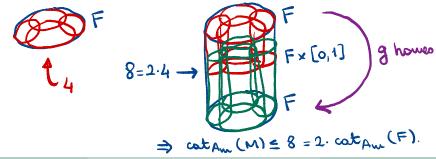
In particular, when ${\cal M}$ is aspherical, then ${\cal M}$ satisfies Gromov's question.

Example : If M is a hyperbolic n-manifold which fibers over S^1 , then $2 \cdot \operatorname{cat}_{\operatorname{Am}}(F) > \dim(F) + 1$.

If M fibers over S^1 with fiber F, then

$$M = \frac{F \times [0, 1]}{(x, 0) \sim (g(x), 1)}$$

for every $x \in F$ and some given homeomorphism $g \colon F \to F$.



Marco Moraschini

Topological volumes and open covers

If M fibers over S^1 with fiber F, then

$$M = \frac{F \times [0, 1]}{(x, 0) \sim (g(x), 1)}$$

for every $x \in F$ and some given homeomorphism $g \colon F \to F$.

Then, if $2 \cdot \operatorname{cat}_{\operatorname{Am}}(F) \leq \dim(F) + 1$, we have

 $\operatorname{cat}_{\operatorname{Am}}(M) \le 2 \cdot \operatorname{cat}_{\operatorname{Am}}(F) \le \dim(F) + 1 = \dim(M)$.

This shows that ||M|| = 0.

Marco Moraschini

Topological volumes and open covers

Which are the advantages of $\operatorname{cat}_{\operatorname{Am}}$?

Which are the advantages of $\operatorname{cat}_{\operatorname{Am}}$?

It is a numerical invariant;

Which are the advantages of $\operatorname{cat}_{\operatorname{Am}}$?

- It is a numerical invariant;
- Related to the following classical invariants: Lusternik-Schnirelmann category, topological complexity, ···;

Which are the advantages of $\operatorname{cat}_{\operatorname{Am}}$?

- It is a numerical invariant;
- Related to the following classical invariants: Lusternik-Schnirelmann category, topological complexity, ···;
- Usually the results on cat_{Am} also work for other class of groups, leading to the vanishing of other topological volumes:
- ▶ Example (Löh-M '21) : If Ab is the family of Abelian groups, then: If $cat_{Ab}(F) \leq \frac{\dim(M)}{\dim(B)+1}$, then

 $\mathsf{minvolent}(M) = 0.$