EXERCISE SHEET NO. 10

Deadline: 13/01/2020.

You should hand only exercises 0.2 and 0.4.

In the last lecture, we discussed the following proposition:

Proposition 0.1. Let \mathcal{R} be either \mathbb{R} or \mathbb{Z} . Let X be a topological space admitting the universal covering and let $\Gamma = \pi_1(X)$. Let us consider the Γ -complex

$$0 \longrightarrow \mathcal{R} \xrightarrow{k^0} C^0_b(\tilde{X}; \mathcal{R}) \xrightarrow{k^1} C^1_b(\tilde{X}; \mathcal{R}) \xrightarrow{k^2} \cdots,$$

where $\varepsilon(a)(\sum_{i=1}^{s} b_i \sigma_i^0) = a \sum_{i=1}^{k} b_i$. Then, if $\pi_i(X) = 0$ for every $i = 2, \dots, n$, there exists a partial contracting homotopy

$$\mathcal{R} \stackrel{k^0}{\leftarrow} C^0_b(\tilde{X};\mathcal{R}) \stackrel{k^1}{\leftarrow} C^1_b(\tilde{X};\mathcal{R}) \stackrel{k^2}{\leftarrow} \cdots C^n_b(\tilde{X};\mathcal{R}) \stackrel{k^{n+1}}{\leftarrow} C^{n+1}_b(\tilde{X};\mathcal{R}) .$$

In particular, if X is aspherical (i.e. $\pi_i(X) = 0$ for all $i \ge 2$), we have that the resolution above is relatively injective and strong.

Exercise 0.2 (5 points). Provide a complete proof of Proposition 0.1.

Definition 0.3. Let Γ be a discrete group and let \mathcal{R} be either \mathbb{R} or \mathbb{Z} .

A Γ -module V over \mathcal{R} is *injective* if the following holds: whenever A, B are Γ -modules, $\iota: A \to B$ is an injective Γ -map and $\alpha: A \to V$ is a Γ -map, there exists a Γ -map $\beta: B \to V$ such that $\beta \circ \iota = \alpha$.

A Γ -map $\iota: A \to B$ between Γ -modules over \mathcal{R} is strongly injective if there exists an \mathcal{R} -linear map $\sigma: B \to A$ such that $\sigma \circ \iota = Id_A$.

A Γ -module V over \mathcal{R} is *injective* if the following holds: whenever A, B are Γ modules, $\iota: A \to B$ strongly injective Γ -map and $\alpha: A \to V$ is a Γ -map, there exists
a Γ -map $\beta: B \to V$ such that $\beta \circ \iota = \alpha$

Exercise 0.4 (5 points). Let Γ be a discrete group and let \mathcal{R} be either \mathbb{R} or \mathbb{Z} . Show that

- (i) The Γ -module $C^k(\Gamma, \mathcal{R})$ over \mathcal{R} may be not injective;
- (ii) Conclude that relative injectivity is weaker than injectivity in general;
- (iii) What about $\mathcal{R} = \mathbb{R}$?
- (iv) Bonus: Discuss the (possible) relations between relatively injectivity of Γ modules and relatively injectivity of normed Γ -modules (according to the definition given in the last lecture).

Exercise 0.5. Show that a group Γ is amenable if and only if the trivial normed Γ -module \mathbb{R} over \mathbb{R} is relatively injective (according to the definition we discussed in the last lecture).

Hints:(\Rightarrow): It may be easier to prove that every dual normed Γ -modules over \mathbb{R} is relatively injective. (\Leftarrow): It may be useful to use the characterization of amenability in terms of the existence of an invariant continuous non-trivial functional on $\ell^{\infty}(\Gamma)$.