EXERCISE SHEET NO. 11

Deadline: 20/01/2020. You should hand only exercises 0.1 and 0.2.

Here \mathcal{R} is either \mathbb{Z} or \mathbb{R} .

Exercise 0.1 (5 points). Show that $H^3_b(\mathbb{S}^2; \mathbb{Z}) \cong \mathbb{R}/\mathbb{Z}$. Hence, the bounded cohomology of simply connected spaces with with integral coefficients in not trivial (in general) in positive degree.

Exercise 0.2 (5 points). Let V be a normed Γ -module over \mathcal{R} and let $(V, V^{\bullet}, \delta^{\bullet})$ be any strong resolution of V. Then, the identity over V can be extended to a chain map α^{\bullet} between V^{\bullet} and the standard resolution of V in such a way that $\|\alpha^n\| \leq 1$ for every $n \geq 0$.

As we mentioned in the lecture the extension can be constructed as follows: for every $v \in V^n$ and $g_0, \dots, g_n \in \Gamma$ we set

$$\alpha^{n}(v)(g_{0},\cdots,g_{n}) = \alpha^{n-1}(g_{0}(k^{n}(g_{0}^{-1}(v))))(g_{1},\cdots,g_{n}) .$$

(i) Prove that it is a chain Γ -map (recall that we have already proved during the lecture that it is norm non-increasing).

Exercise 0.3. Let V be a relatively injective normed Γ -module over \mathcal{R} , let $j: A \to B$ be a Γ -map (i.e. bounded and Γ -equivariant) and suppose that there exists an \mathcal{R} -linear map $\sigma: B \to A$ such that $\|\sigma\| \leq 1$ and $j \circ \sigma \circ j = j$. Let also $\alpha: A \to V$ be a Γ -map and suppose that $\ker(j) \subset \ker(\alpha)$.

(i) Prove that there exists a Γ -map $\beta \colon B \to V$ such that $\beta \circ j = \alpha$ and $\|\beta\| \le \|\alpha\|$.

Exercise 0.4. Let $\alpha: E \to F$ be a Γ -map between normed Γ -modules over \mathcal{R} . Let $(E, E^{\bullet}, \delta_E^{\bullet})$ be a strong resolution of E and suppose that $(F, F^{\bullet}, \delta_F^{\bullet})$ is relatively injective resolution of F. Then, α extends to a chain Γ -map α^{\bullet} (as we proved in the lecture).

(i) Prove that any two such extensions of α to chain maps are Γ -homotopic.