EXERCISE SHEET NO. 2

Deadline: 28/10/2019.

You should hand only exercises 0.2 and 0.3. Let as assume that \mathcal{R} is either \mathbb{Z} or \mathbb{R} .

Definition 0.1. Let X be a topological space. We define the *Kronecker product* to be the following bilinear form:

$$\langle \cdot, \cdot \rangle \colon H^n(X; \mathcal{R}) \times H_n(X; \mathcal{R}) \to \mathcal{R}$$

 $(\psi, \alpha) \mapsto \langle \psi, \alpha \rangle = \varphi(c) ,$

where $\psi = [\varphi]$ and $\alpha = [c]$.

Exercise 0.2 (5 points). Show that

(i) The Kronecker product is a well-defined bilinear form.

Moreover,

(ii) if X is path-connected, discuss the relation between Kronecker product and cap product.

Recall that singular cohomology satisfies exactness axiom. This means that given a pair of spaces (X, A) we have that the short exact sequence

$$0 \to C^{\bullet}(X, A; \mathcal{R}) \to C^{\bullet}(X; \mathcal{R}) \to C^{\bullet}(A; \mathcal{R}) \to 0$$

induces a long exact sequence in cohomology

 $0 \to H^0(X, A; \mathcal{R}) \to H^0(X; \mathcal{R}) \to H^0(A; \mathcal{R}) \to H^1(X, A; \mathcal{R}) \to \cdots$

Exercise 0.3 (5 points). Let X be a topological space with k path-connected components. Using the definition of cohomology prove that

(i) $H^0(X; \mathcal{R}) \cong \mathcal{R}^k$.

Let us denote by \mathbb{D}^n , $n \ge 1$ be the *n*-dimensional disk. Let $X \subseteq \mathbb{D}^n$ be a subspace. Using only the Eilenberg-Steenrod axioms and the previous result, compute the following relative cohomology groups

(ii) $H^i(\mathbb{D}^n, X; \mathcal{R}), i \ge 0$ in terms of the ones of X.

Exercise 0.4. Let A be a retract of X. Then, show that

$$H^{k}(X; \mathcal{R}) \cong H^{k}(X, A; \mathcal{R}) \oplus H^{k}(A; \mathcal{R})$$
.

Exercise 0.5. Let X be a path-connected topological space. The aim of this exercise is to show that there exists a well-defined isomorphism

$$H^1(X; \mathcal{R}) \to \operatorname{Hom}(\pi_1(X), \mathcal{R})$$

Here, we interpret a cocycle $\varphi \in C^1(X; \mathcal{R})$ as a function from paths in X to \mathcal{R} . To this end it is convenient to prove the followings:

- (i) $\varphi(\gamma * \eta) = \varphi(\gamma) + \varphi(\eta)$, where γ and η are to consecutive paths in X and * denotes the concatenation of paths;
- (ii) $\varphi(c) = 0$ for all constant paths c in X;
- (iii) $\varphi(\gamma) = \varphi(\eta)$ if γ and η are homotopic relative to their endpoints;

- (iv) φ is a coboundary if and only if $\varphi(\gamma)$ only depends on the endpoints of γ ; (v) $\operatorname{Hom}(\pi_1(X), \mathcal{R}) \cong \operatorname{Hom}(H_1(X; \mathbb{Z}), \mathcal{R}).$