EXERCISE SHEET NO. 4

Deadline: 11/11/2019.

You should hand only exercises 0.1 and 0.2. Let \mathcal{R} be either \mathbb{R} or \mathbb{Z} .

Exercise 0.1 (5 points). Let M and N be two orientable closed connected nonempty manifold of dimension n. Let us consider their fundamental classes $[M] \in$ $H_n(M;\mathbb{Z})$ and $[N] \in H_n(M;\mathbb{Z})$. Let $f: M \to N$ be a continuous map such that $H_n(f)([M]) = [N]$. Prove that $H_j(f)$ is surjective for all $j = 0, \dots, n$ and that $H^{j}(f)$ is injective for all $j = 0, \cdots, n$.

Exercise 0.2 (5 points). Let \mathcal{R} be a normed ring with respect with the absolutevalue norm. Let V be an R-module. We define a norm on V to be a map

$$\|\cdot\|\colon V\to\mathbb{R}$$

such that

- (i) $||v + w|| \le ||v|| + ||w||$, for every $v, w \in V$;
- (ii) ||v|| = 0 if and only if v = 0, for every $v \in V$;
- (*iii*) $\|\lambda v\| \leq |\lambda| \|v\|$, for every $\lambda \in \mathcal{R}$ and $v \in V$.

Show that

- (a) If \mathcal{R} is a field, then item *(iii)* is an equality;
- (b) Assume that item (*iii*) is an equality and that $\mathcal{R} = \mathbb{Z}$. Is it always possible to endow a Z-module with a norm satisfying the previous assumptions?

Exercise 0.3. The aim of this exercise is to compute the 0-th and the 1-st bounded cohomology groups of \mathbb{S}^1 with \mathbb{R} -coefficients.

- (i) Compute $H_h^0(\mathbb{S}^1; \mathbb{R});$
- (ii) Prove that the comparison map $c_{\mathbb{S}^1}^1 \colon H^1_b(\mathbb{S}^1; \mathbb{R}) \to H^1(\mathbb{S}^1; \mathbb{R})$ is the zero map; (ii) Let $\varphi \in C^1_b(\mathbb{S}^1; \mathbb{R})$ be such that $\varphi = \partial f$ with $f \in C^0(\mathbb{S}^1; \mathbb{R})$. Prove that, there exists an $\overline{f} \in C^0_b(\mathbb{S}^1; \mathbb{R})$ such that $\varphi = \partial \overline{f}$.

Exercise 0.4. Compute the 0-th and the 1-st bounded cohomology groups of any path-connected topological space. (Hint: Use Hurewicz Theorem and Exercise 0.5 of Exercise sheet No.2.)