Deadline: 25/11/2019.

You should hand only exercises 0.5 and 0.6.

We recall here some theorems about homotopy groups that are needed in the sequel.

Theorem 0.1 (Freudenthal suspession theorem). The suspension map $\pi_i(\mathbb{S}^n) \to \pi_{i+1}(\mathbb{S}^{n+1})$ is an isomorphism for i < 2n-1 and a surjection for i = 2n-1.

Definition 0.2. A map between CW-complex $f: X \to Y$ is said to be *cellular* if $f(X^n) \subset Y^n$, where X^n and Y^n denote the *n*-skeletons of X and Y, respectively.

Theorem 0.3 (Cellular approximation theorem). Every map between CW-complexes is homotopic to a cellular map.

Theorem 0.4. If we have a fibration $F \hookrightarrow E \xrightarrow{p} B$, then it induces a long exact sequences in homotopy:

 $\cdots \to \pi_n(F, x_0) \to \pi_n(E, x_0) \xrightarrow{p_*} \pi_n(B, b_0) \to \cdots$

where b_0 is a base point of B and $x_0 \in p^{-1}(b_0)$.

Exercise 0.5 (5 points). Show that

- (i) The Klein bottle is a K(G, 1)-space, where $G = \langle a, b | aba = b \rangle$.
- (ii) Are there other surfaces which are K(G, n) for some G and $n \ge 1$?
- (iii) Are there K(G, 1)-spaces which are closed *n*-manifolds with $n \ge 3$?

Exercise 0.6 (5 points). Show that

(i) $\pi_n(\mathbb{S}^k) = 0$ if n < k.

Deduce that

- (ii) $\pi_n(\mathbb{S}^n) \cong \mathbb{Z}$;
- (iii) $\pi_3(\mathbb{S}^2) \cong \mathbb{Z}$.

Exercise 0.7. Show that the inhomogeneous chain complex (i.e. the one associated to the bar resolution) is chain isomorphic to the homogeneous one.

Exercise 0.8. Let X be a CW-complex and let X' be a CW-complex obtained from X by attaching a cell $f: \mathbb{D}^n \to X$ along the map $f|_{\mathbb{S}^{n-1}}: \mathbb{S}^{n-1} \to X$. Let $\alpha = [f|_{\mathbb{S}^{n-1}}] \in \pi_{n-1}(X)$. Show that

(i) $\pi_{n-1}(i)(\alpha) = 0 \in \pi_{n-1}(X')$, where $i: X \to X'$ is the inclusion. Describe

(ii) how to construct for all $n \ge 1$ a CW-complex $K(\mathbb{Z}, n)$ starting from the sphere \mathbb{S}^n .

Show that if X is an n-dimensional CW-complex, then

(iii) The set of homotopy classes $[X, \mathbb{S}^n]$ is in bijection with the one $[X, K(\mathbb{Z}, n)]$. Let $G\langle X|R\rangle$ be a presentation of the group G, where X denotes the set of generators and R the set of relations. Show that

- (iv) If G is finitely generated, then there exists a CW-complex K(G, 1) whose 1-skeleton is finite;
- (v) If G is finitely presented, then there exists a CW-complex K(G, 1) whose 2-skeleton is finite.