Gromov's systolic inequality via smoothing technique

Lizhi Chen

School of Mathematics and Statistics,

Lanzhou University

International young seminar on bounded cohomology and simplicial volume November 23, 2020

- **1** Gromov's systolic inequality and simplicial volume
- Smoothing technique and Gromov's smoothing inequality

Main references:

- F. Balacheff and S. Karam, Macroscopic Schoen conjecture for manifolds with nonzero simplicial volume, Trans. Amer. Math. Soc. **372** (2019), no. 10, 7071–7086.
- M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. No. 56 (1982), 5–99 (1983).

Let M be a closed *n*-dimensional Riemannian manifold endowed with a Riemannian metric \mathcal{G} , denoted (M, \mathcal{G}) .

Definition

The systole of a Riemannian manifold (M, \mathcal{G}) , denoted by Sys $\pi_1(M, \mathcal{G})$, is defined to be the shortest length of a non-contractible loop.

Definition

A closed *n*-dimensional manifold M is called essential, if there exists a continuous map from M to an aspherical space K, so that $f_*([M]) \neq 0$ in $H_n(K; R)$.

Example of essential manifolds:

- Aspherical manifolds: hyperbolic *n*-manifolds, *n*-torus \mathbb{T}^n
- Real projective *n*-spaces \mathbb{RP}^n
- Connected sums: $\mathbb{T}^3 \# (S^2 \times S^1)$

Theorem (Gromov 1983, [6])

Let M be a closed n-dimensional essential manifold. Then any Riemannian metric \mathcal{G} defined on M satisfies

Sys
$$\pi_1(M,\mathcal{G})^n \leq C_n \operatorname{Vol}_{\mathcal{G}}(M),$$
 (1)

where C_n is a constant only depending on the dimension n.

Let ||M|| be simplicial volume of a closed manifold M.

Theorem (Gromov 1983, see [6])

For a closed essential n-dimensional manifold M, the optimal constant in systolic inequality (1) is related to simplicial volume as follows,

$$\operatorname{Sys} \pi_1(M, \mathcal{G})^n \leqslant D_n rac{\log^n (1 + \|M\|)}{\|M\|} \operatorname{Vol}_{\mathcal{G}}(M),$$

where D_n is a constant only depending on n.

Definition

The systolic volume of a closed *n*-dimensional manifold M, denoted SR(M), is defined to be

$$\inf_{\mathcal{G}} \frac{\operatorname{Vol}_{\mathcal{G}}(M)}{\operatorname{Sys} \pi_1(M, \mathcal{G})^n},$$

where the infimum is taken over all Riemannian metrics \mathcal{G} on M.

Theorem (Babenko 1992)

- Let M be a closed orientable n-manifold. If SR(M) > 0, then M is essential.
- **2** Systolic volume is a homotopy invariant.

Systolic volume and other topological invariants

Let M be a closed n-dimensional essential manifold.

OMENDATION Minimal volume entropy $\lambda(M)$:

$$\mathsf{SR}(M) \geqslant D_n \frac{\lambda(M)}{\log^n (1 + \lambda(M))},$$

where D_n is a constant only depending on n.

2 M. Gromov 1983, Betti numbers $b_k(M; \mathbb{F})$:

$$\operatorname{SR}(M) \geq E_n \frac{b_k(M; \mathbb{F})}{\exp\left(E'_n \sqrt{\log b_k(M; \mathbb{F})}\right)},$$

where E_n and E'_n are two constants only depending on n.

Let (M, \mathcal{G}) be a Riemannian manifold. The filling radius, injectivity radius, convex radius are denoted by FillRad (M, \mathcal{G}) , Inj (M, \mathcal{G}) , Conv (M, \mathcal{G}) .

Proposition

There holds

 $6 \operatorname{\textit{FillRad}}(M, \mathcal{G}) \geqslant \operatorname{Sys} \pi_1(M, \mathcal{G}) \geqslant 2 \operatorname{Inj}(M, \mathcal{G}) \geqslant 4 \operatorname{\textit{Conv}}(M, \mathcal{G}).$

Let $I(M, \mathcal{G})$ be one of the invariants: FillRad (M, \mathcal{G}) , Sys $\pi_1(M, \mathcal{G})$, Inj (M, \mathcal{G}) , Conv (M, \mathcal{G}) . Define

$$\mathsf{IV}(M) = \inf_{\mathcal{G}} \frac{\mathsf{Vol}_{\mathcal{G}}(M)}{I(M,\mathcal{G})^n},$$

where the infimum is taken over all Riemannian metrics \mathcal{G} on M.

Problem: What is the relation between the constant IV(M) and topology of the manifold M?

The constant IV(M) may represent topological complexity of the manifold.

Some known results:

• **M. Brunnbauer 2008** For FillRad(*M*,*G*): the constant IV(*M*) does not depend on topology of the manifold.

- For Inj(M, G),
 - Yamaguchi 1988 For any positive constant C, in the set

 $\{IV(M) \leq C | M \text{ is a compact } n \text{-dimensional manifold}\},\$

there are only finitely many homotopy types.

• **Chen 2019** For the Betti number $b_k(M; \mathbb{F})$,

$$\mathsf{IV}(M) \ge L_n \frac{b_k(M;\mathbb{F})}{\log\left(L'_n \sqrt{\log b_k(M;\mathbb{F})}\right)},$$

where M is a compact *n*-manifold, and L_n and L'_n are two constants only depending on n.

Gromov's inequality

$$\mathsf{Sys}\,\pi_1(M,\mathcal{G})^n \leqslant D_n \frac{\mathsf{log}^n(1+\|M\|)}{\|M\|}\,\mathsf{Vol}_\mathcal{G}(M)$$

for closed essential n-manifolds M with nonzeo simplicial volume is proved by using "smoothing technique".

Let (M, \mathcal{G}) be a Riemannian manifold, $(\widetilde{M}, \widetilde{\mathcal{G}})$ be the Riemannian universal covering.

Denote by \mathcal{M} the Banach space of finite measures on $\widetilde{\mathcal{M}}$, and by $\mathcal{P} \subset \mathcal{M}$ the subset of probability measures.

A smoothing operator is a smooth map $\mathscr{S}: \widetilde{M} \to \mathcal{P}$.

Theorem (Gromov's smoothing inequality)

Let (M, \mathcal{G}) be an n-dimensional Riemannian manifold. The simplicial volume satisfies

 $||M|| \leq n! ||d\mathscr{S}||_{\infty}^{n} \operatorname{Vol}_{\mathcal{G}}(M).$

Simplicial volume of manifolds

Let *M* be a closed *n*-dimensional manifold, $[M] \in H_n(M; \mathbb{R})$ be the fundamental class of real coefficient.

Definition

The simplicial volume of M, denoted ||M||, is defined to be

$$\inf\left\{\left.\sum_{i=1}^{k}|\lambda_{i}|\right|\sum_{i=1}^{k}\lambda_{i}\sigma_{i}\text{ is a cycle representing }[M]\right\},$$

where the infimum is taken over all cycles $\sum_{i=1}^{\kappa} \lambda_i \sigma_i$ representing [M].

Notation: denote by \mathcal{V}_n the maximal volume of an ideal *n*-simplex in hyperbolic space \mathbb{H}^n .

Theorem

If M is a closed hyperbolic n-manifold, then

$$\|M\| = \frac{\operatorname{Vol}_{\operatorname{hyp}}(M)}{\mathcal{V}_n}$$

Dual principle

For a cohomological class $\Omega \in H^n(M; \mathbb{R})$, set

$$\|\Omega\|_{\infty} = \inf_{\omega} \sup_{\sigma} \omega(\sigma),$$

where the supremum is taken over all *n*-simplices σ , and the infimum is taken over all cocycles ω representing Ω .

Proposition (Gromov)

 $\|M\| = \sup \left\{ \Omega([M]) | \Omega \in H^n(M; \mathbb{R}) \text{ and satisfying } \|\Omega\|_{\infty} = 1 \right\}.$

In particular, if Ω_M is the dual fundamental class of M,

$$\|M\| = rac{1}{\|\Omega_M\|_\infty}.$$

Alternative definition of simplicial volume

Let (M, hyp) be a hyperbolic manifold (hyp is the hyperbolic metric defined on M). Define a cocycle ω_{hyp} on M as follows,

$$\omega_{\rm hyp}(\sigma) = \frac{{\rm Vol}_{\widetilde{\rm hyp}}((\widetilde{\sigma})_{st})}{{\rm Vol}_{\rm hyp}(M)},$$

where $\tilde{\sigma}$ is any lift of the *n*-simple σ .

Notation: let $\pi : (\mathbb{H}^n, \widetilde{hyp}) \to (M, hyp)$ be the Riemannian universal covering.

Proposition

The cocycle $\pi^* \omega_{hyp}$ is straight,

$$\pi^*\omega_{\mathsf{hyp}}(\widetilde{\sigma}) = \pi^*\omega_{\mathsf{hyp}}(\widetilde{\sigma}_{st}).$$

Hence $\pi^*\omega(\tilde{\sigma})$ only depends on n+1 vertices of $\tilde{\sigma}$, and the induced function

$$\pi^* \omega_{\mathsf{hyp}} : \mathbb{H}^{n+1} \to \mathbb{R}$$

is continuous and Borel.

Let (M, \mathcal{G}) be an *n*-dimensional Riemannian manifold, $\pi : \widetilde{M} \to M$ be Riemannian universal covering.

Definition (Straight invariant fundamental cocycle)

The straight invariant fundamental cocycle $\tilde{\omega}$ is a cochain of $C(\tilde{M}, \mathbb{R})$, and satisfies

- Invariance: $\pi_1(M)$ -invariant;
- Fundamental cocycle: the only cochain ω satisfying $\pi^*(\omega) = \tilde{\omega}$ is the one representing dual fundamental class Ω_M .
- Straight and Borel: $\tilde{\omega}$ is straight, and the induced function on \widetilde{M}^{n+1} is Borel.

The alternative definition of simplicial volume is

$$\|M\|' = rac{1}{\inf \| ilde{\omega}\|_{\infty}},$$

where the infimum is taken over all straight invariant fundamental cocyles $\tilde{\omega}.$

Theorem

If (M, hyp) is a hyperbolic manifold, then

$$\|M\|' = \frac{\operatorname{Vol}_{\operatorname{hyp}}(M)}{\mathcal{V}_n}.$$

Let \mathcal{M} be the space of all finite measures on $\widetilde{\mathcal{M}}$, and $\mathcal{P} \subset \mathcal{M}$ be the subspace of all probability measures. A straight invariant fundamental cocycle $\widetilde{\omega}$ is uniquely extended to a function on \mathcal{M}^{n+1} ,

$$\begin{split} \widetilde{\omega}(\mu_0,\mu_1,\cdots,\mu_n) \ &= \int_{\widetilde{M}^{n+1}} \widetilde{\omega}(y_0',y_1',\cdots,y_n') d\mu_0(y_0') d\mu_1(y_1')\cdots d\mu_n(y_n'). \end{split}$$

A smoothing operator is defined to be a smooth map

$$\mathscr{S}:\widetilde{M}\to\mathcal{P}.$$

 ℓ^{∞} -norm of straight invariant fundamental cocycle

 $\|\tilde{\omega}\|_{\infty} = \sup \tilde{\omega}(y_0, y_1, \cdots, y_n) = \sup \tilde{\omega}(\mathscr{S}(y_0), \mathscr{S}(y_1), \cdots, \mathscr{S}(y_n)).$

Theorem

If $\tilde{\omega}$ is a straight invariant fundamental cocycle, then $\mathscr{S}^*\tilde{\omega}$ defined by

$$\mathscr{S}^*\tilde{\omega}(y_0, y_1, \cdots, y_n) = \tilde{\omega}(\mathscr{S}(y_0), \cdots, \mathscr{S}(y_n))$$

is also a straight invariant fundamental cocycle.

Proposition

$$\|M\|' = \frac{1}{\inf \|\mathscr{S}^* \tilde{\omega}\|_{\infty}},$$

where the infimum is taken over all straight invariant fundamental cocycles $\tilde{\omega}$.

Motivation for the definition of smoothing operator

Let δ_y be the Dirac function at $y \in \widetilde{M}$, $\widetilde{\omega}$ is any straight invariant fundamental cocycle on \widetilde{M} .

Define the operator $\mathscr{S}_{\delta}: \widetilde{M} \to \mathcal{M}$,

$$\mathscr{S}_{\delta}(y) = \delta_y, \quad y \in \widetilde{M}.$$

According to definition,

$$\mathscr{S}^*_{\delta}\tilde{\omega} = \tilde{\omega}.$$

Hence $\tilde{\omega}$ can be identified with $\mathscr{S}^*_{\delta}\tilde{\omega}$.

The smoothing operator can be viewed as a replacement of Dirac measure by probability measure.

Main Idea for the proof of Gromov's smoothing inequality

Theorem

Let (M, \mathcal{G}) be a closed n-dimensional Riemannian manifold, and $\mathscr{S}: \widetilde{M} \to \mathcal{P}$ be a smoothing operator. Then the simplicial volume satisfies

 $||M|| \leq n! ||d\mathscr{S}||_{\infty}^{n} \operatorname{Vol}_{\mathcal{G}}(M).$

Recall:

 \mathcal{M} : Banach space of finite measures on $\widetilde{\mathcal{M}}$

 $\mathcal{P} \subset \mathcal{M}:$ the subspace of probability measures

 $\|d_y \mathscr{S}\|_{\infty} = \sup |d_y \mathscr{S}(\tau)|$, where the supremum is taken over all $\tau \in S_y$, $S_y \subset T_y \widetilde{M}$ is the unit tangent sphere.

$$\|d\mathscr{S}\|_{\infty} = \sup_{y} \|d_{y}\mathscr{S}\|_{\infty}.$$

Main idea of the proof:

Let $\pi: \widetilde{M} \to M$ be the universal covering. Fix a straight invariant fundamental cocycle $\widetilde{\omega} \in C(\widetilde{M}, \mathbb{R})$.

(1). The smoothing operator $\mathscr{S} : \widetilde{M} \to \mathcal{P}$ induces a differential *n*-form $\widetilde{\alpha}$ on \widetilde{M} :

$$\tilde{\alpha}_{y}(u_{1}, \cdots, u_{n}) = \tilde{\omega}(\mathscr{S}(y), d_{y}\mathscr{S}(u_{1}), \cdots, d_{y}\mathscr{S}(u_{n})),$$

where $(u_{1}, \cdots, u_{n}) \in T_{y}\widetilde{M}.$

(2). Sup-norm of the differential form $\tilde{\alpha}$ satisfies

 $\|\tilde{\alpha}\|_{\infty} \leq n! \|\tilde{\omega}\|_{\infty} \|d\mathscr{S}\|_{\infty}^{n}.$

The sup-norm of $\tilde{\alpha}$ is

$$\|\tilde{\alpha}\|_{\infty} = \sup \tilde{\alpha}_y(u_1, \cdots, u_n),$$

where the supremum is taken over all $y \in \widetilde{M}$ and unit tangent vectors $(u_1, u_2, \cdots, u_n) \in S_y \subset T_y \widetilde{M}$.

(3). The *n*-form α̃ induces a differential *n*-form α on *M*, which is in the fundamental cohomology class Ω_M ∈ Hⁿ(M; ℝ). Hence, there holds

$$1 = \int_{M} \alpha \leqslant \|\tilde{\alpha}\|_{\infty} \operatorname{Vol}_{\mathcal{G}}(M) \leqslant n! \|\tilde{\omega}\|_{\infty} \|d\mathscr{S}\|_{\infty}^{n} \operatorname{Vol}_{\mathcal{G}}(M).$$

The smoothing inequality is obtained by taking infimum over all straight invariant fundamental cocycles $\tilde{\omega}$.

- L. Chen, Covering trick and embolic volume, arXiv 1911.00691 (2019).
- F. Balacheff and S. Karam, Macroscopic Schoen conjecture for manifolds with nonzero simplicial volume, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7071–7086.
- M. Brunnbauer, Filling inequalities do not depend on topology, J. Reine Angew. Math. **624** (2008), 217–231.
- M. Brunnbauer, Homological invariance for asymptotic invariants and systolic inequalities, Geom. Funct. Anal. **18** (2008), no. 4, 1087–1117.
- M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. No. 56 (1982), 5–99 (1983).

- M. Gromov, Filling Riemannian manifolds, J. Differential Geom. **18** (1983), no. 1, 1–147.
- T. Yamaguchi, Homotopy type finiteness theorems for certain precompact families of Riemannian manifolds, Proc. Am. Math. Soc. 102 (1988), 660–666.

Thank you!