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Gromov’s systolic inequaltiy and simplicial volume

Let M be a closed n-dimensional Riemannian manifold endowed
with a Riemannian metric G, denoted (M,G).

Definition

The systole of a Riemannian manifold (M,G), denoted by
Sys π1(M,G), is defined to be the shortest length of a
non-contractible loop.

Definition

A closed n-dimensional manifold M is called essential, if there
exists a continuous map from M to an aspherical space K , so that
f∗([M]) 6= 0 in Hn(K ;R).



Example of essential manifolds:

Aspherical manifolds: hyperbolic n-manifolds, n-torus Tn

Real projective n-spaces RPn

Connected sums: T3#(S2 × S1)

Theorem (Gromov 1983, [6])

Let M be a closed n-dimensional essential manifold. Then any
Riemannian metric G defined on M satisfies

Sys π1(M,G)n 6 Cn VolG(M), (1)

where Cn is a constant only depending on the dimension n.



Let ‖M‖ be simplicial volume of a closed manifold M.

Theorem (Gromov 1983, see [6])

For a closed essential n-dimensional manifold M, the optimal
constant in systolic inequality (1) is related to simplicial volume as
follows,

Sys π1(M,G)n 6 Dn
logn(1 + ‖M‖)

‖M‖
VolG(M),

where Dn is a constant only depending on n.



Definition

The systolic volume of a closed n-dimensional manifold M,
denoted SR(M), is defined to be

inf
G

VolG(M)

Sys π1(M,G)n
,

where the infimum is taken over all Riemannian metrics G on M.

Theorem (Babenko 1992)

1 Let M be a closed orientable n-manifold. If SR(M) > 0, then
M is essential.

2 Systolic volume is a homotopy invariant.



Systolic volume and other topological invariants

Let M be a closed n-dimensional essential manifold.

1 M. Brunnbauer 2008, Minimal volume entropy λ(M):

SR(M) > Dn
λ(M)

logn (1 + λ(M))
,

where Dn is a constant only depending on n.

2 M. Gromov 1983, Betti numbers bk(M;F):

SR(M) > En
bk(M;F)

exp
(
E ′n
√

log bk(M;F)
) ,

where En and E ′n are two constants only depending on n.



Let (M,G) be a Riemannian manifold. The filling radius, injectivity
radius, convex radius are denoted by FillRad(M,G), Inj(M,G),
Conv(M,G).

Proposition

There holds

6FillRad(M,G) > Sys π1(M,G) > 2 Inj(M,G) > 4Conv(M,G).

Let I (M,G) be one of the invariants: FillRad(M,G), Sys π1(M,G),
Inj(M,G), Conv(M,G). Define

IV(M) = inf
G

VolG(M)

I (M,G)n
,

where the infimum is taken over all Riemannian metrics G on M.



Problem: What is the relation between the constant IV (M) and
topology of the manifold M?

The constant IV(M) may represent topological complexity of
the manifold.

Some known results:

M. Brunnbauer 2008 For FillRad(M,G):
the constant IV(M) does not depend on topology of the
manifold.



For Inj(M,G),

Yamaguchi 1988 For any positive constant C , in the set

{IV(M) 6 C |M is a compact n-dimensional manifold},

there are only finitely many homotopy types.

Chen 2019 For the Betti number bk(M;F),

IV(M) > Ln
bk(M;F)

log
(
L′n
√

log bk(M;F)
) ,

where M is a compact n-manifold, and Ln and L′n are two
constants only depending on n.



Smoothing technique and Gromov’s smoothing inequality

Gromov’s inequality

Sys π1(M,G)n 6 Dn
logn(1 + ‖M‖)

‖M‖
VolG(M)

for closed essential n-manifolds M with nonzeo simplicial volume is
proved by using “smoothing technique”.

Let (M,G) be a Riemannian manifold, (M̃, G̃) be the Riemannian
universal covering.

Denote by M the Banach space of finite measures on M̃, and by
P ⊂M the subset of probability measures.

A smoothing operator is a smooth map S : M̃ → P.



Theorem (Gromov’s smoothing inequality)

Let (M,G) be an n-dimensional Riemannian manifold. The
simplicial volume satisfies

‖M‖ 6 n!‖dS ‖n∞ VolG(M).



Simplicial volume of manifolds

Let M be a closed n-dimensional manifold, [M] ∈ Hn(M;R) be the
fundamental class of real coefficient.

Definition

The simplicial volume of M, denoted ‖M‖, is defined to be

inf

{
k∑

i=1

|λi |

∣∣∣∣∣
k∑

i=1

λiσi is a cycle representing [M]

}
,

where the infimum is taken over all cycles
k∑

i=1

λiσi representing

[M].



Notation: denote by Vn the maximal volume of an ideal n-simplex
in hyperbolic space Hn.

Theorem

If M is a closed hyperbolic n-manifold, then

‖M‖ =
Volhyp(M)

Vn
.



Dual principle

For a cohomological class Ω ∈ Hn(M;R), set

‖Ω‖∞ = inf
ω

sup
σ
ω(σ),

where the supremum is taken over all n-simplices σ, and the
infimum is taken over all cocycles ω representing Ω.

Proposition (Gromov)

‖M‖ = sup {Ω([M])|Ω ∈ Hn(M;R) and satisfying ‖Ω‖∞ = 1} .

In particular, if ΩM is the dual fundamental class of M,

‖M‖ =
1

‖ΩM‖∞
.



Alternative definition of simplicial volume

Let (M, hyp) be a hyperbolic manifold (hyp is the hyperbolic
metric defined on M). Define a cocycle ωhyp on M as follows,

ωhyp(σ) =
Vol

h̃yp
((σ̃)st)

Volhyp(M)
,

where σ̃ is any lift of the n-simple σ.



Notation: let π : (Hn, h̃yp)→ (M, hyp) be the Riemannian
universal covering.

Proposition

The cocycle π∗ωhyp is straight,

π∗ωhyp(σ̃) = π∗ωhyp(σ̃st).

Hence π∗ω(σ̃) only depends on n + 1 vertices of σ̃, and the
induced function

π∗ωhyp : Hn+1 → R

is continuous and Borel.



Let (M,G) be an n-dimensional Riemannian manifold, π : M̃ → M
be Riemannian universal covering.

Definition (Straight invariant fundamental cocycle)

The straight invariant fundamental cocycle ω̃ is a cochain of
C (M̃,R), and satisfies

Invariance: π1(M)-invariant;

Fundamental cocycle: the only cochain ω satisfying
π∗(ω) = ω̃ is the one representing dual fundamental class ΩM .

Straight and Borel: ω̃ is straight, and the induced function on
M̃n+1 is Borel.



The alternative definition of simplicial volume is

‖M‖′ =
1

inf ‖ω̃‖∞
,

where the infimum is taken over all straight invariant fundamental
cocyles ω̃.

Theorem

If (M, hyp) is a hyperbolic manifold, then

‖M‖′ =
Volhyp(M)

Vn
.



Let M be the space of all finite measures on M̃, and P ⊂M be
the subspace of all probability measures. A straight invariant
fundamental cocycle ω̃ is uniquely extended to a function on
Mn+1,

ω̃(µ0, µ1, · · · , µn)

=

∫
M̃n+1

ω̃(y ′0, y
′
1, · · · , y ′n)dµ0(y ′0)dµ1(y ′1) · · · dµn(y ′n).

A smoothing operator is defined to be a smooth map

S : M̃ → P.

`∞-norm of straight invariant fundamental cocycle

‖ω̃‖∞ = sup ω̃(y0, y1, · · · , yn) = sup ω̃(S (y0),S (y1), · · · ,S (yn)).



Theorem

If ω̃ is a straight invariant fundamental cocycle, then S ∗ω̃ defined
by

S ∗ω̃(y0, y1, · · · , yn) = ω̃(S (y0), · · · ,S (yn))

is also a straight invariant fundamental cocycle.



Proposition

‖M‖′ =
1

inf ‖S ∗ω̃‖∞
,

where the infimum is taken over all straight invariant fundamental
cocycles ω̃.



Motivation for the definition of smoothing operator

Let δy be the Dirac function at y ∈ M̃, ω̃ is any straight invariant

fundamental cocycle on M̃.

Define the operator Sδ : M̃ →M,

Sδ(y) = δy , y ∈ M̃.

According to definition,
S ∗
δ ω̃ = ω̃.

Hence ω̃ can be identified with S ∗
δ ω̃.

The smoothing operator can be viewed as a replacement of Dirac
measure by probability measure.



Main Idea for the proof of Gromov’s smoothing inequality

Theorem

Let (M,G) be a closed n-dimensional Riemannian manifold, and
S : M̃ → P be a smoothing operator. Then the simplicial volume
satisfies

‖M‖ 6 n!‖dS ‖n∞ VolG(M).

Recall:
M : Banach space of finite measures on M̃
P ⊂M: the subspace of probability measures



‖dyS ‖∞ = sup |dyS (τ)|, where the supremum is taken over all

τ ∈ Sy , Sy ⊂ TyM̃ is the unit tangent sphere.

‖dS ‖∞ = supy ‖dyS ‖∞.

Main idea of the proof:

Let π : M̃ → M be the universal covering. Fix a straight invariant
fundamental cocycle ω̃ ∈ C (M̃,R).



(1). The smoothing operator S : M̃ → P induces a differential
n-form α̃ on M̃:

α̃y (u1, · · · , un) = ω̃(S (y), dyS (u1), · · · , dyS (un)),

where (u1, · · · , un) ∈ TyM̃.

(2). Sup-norm of the differential form α̃ satisfies

‖α̃‖∞ 6 n!‖ω̃‖∞‖dS ‖n∞.

The sup-norm of α̃ is

‖α̃‖∞ = sup α̃y (u1, · · · , un),

where the supremum is taken over all y ∈ M̃ and unit tangent
vectors (u1, u2, · · · , un) ∈ Sy ⊂ TyM̃.



(3). The n-form α̃ induces a differential n-form α on M, which is
in the fundamental cohomology class ΩM ∈ Hn(M;R).
Hence, there holds

1 =

∫
M
α 6 ‖α̃‖∞ VolG(M) 6 n!‖ω̃‖∞‖dS ‖n∞ VolG(M).

The smoothing inequality is obtained by taking infimum over
all straight invariant fundamental cocycles ω̃.
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