Bounded cohomology, cohomology with bounded values and *d*-bounded cohomology

(joint work with A. Sisto)

29th June 2020

Let G be a group. A normed G-module is a normed vector space $(V, \|\cdot\|_V)$ endowed with an isometric linear action of G.

Let G be a group. A normed G-module is a normed vector space $(V, \|\cdot\|_V)$ endowed with an isometric linear action of G.

• $V = \mathbb{R}$ with the usual absolute value, endowed with the trivial action by G

Let G be a group. A normed G-module is a normed vector space $(V, \|\cdot\|_V)$ endowed with an isometric linear action of G.

• $V = \mathbb{R}$ with the usual absolute value, endowed with the trivial action by G

•
$$V = \ell^{\infty}(G, \mathbb{R})$$
, endowed with the action

$$(g_0\cdot f)(g)=f(g_0^{-1}g)$$

Cohomology of groups

$$C^n(G, V) = \{ \varphi \colon G^n \to V \}, \quad \delta \colon C^n(G, V) \to C^{n+1}(G, V)$$

 $\delta(\varphi)(g_1, \dots, g_{n+1}) = g_1 \cdot \varphi(g_2, \dots, g_{n+1})$
 $+ \sum_{i=1}^n (-1)^n \varphi(g_1, \dots, g_i g_{i+1}, \dots, g_{n+1})$
 $+ (-1)^{n+1} \varphi(g_1, \dots, g_n)$

Cohomology of groups

$$C^{n}(G, V) = \{\varphi \colon G^{n} \to V\}, \quad \delta \colon C^{n}(G, V) \to C^{n+1}(G, V)$$
$$\delta(\varphi)(g_{1}, \dots, g_{n+1}) = g_{1} \cdot \varphi(g_{2}, \dots, g_{n+1})$$
$$+ \sum_{i=1}^{n} (-1)^{n} \varphi(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n+1})$$
$$+ (-1)^{n+1} \varphi(g_{1}, \dots, g_{n})$$

The cohomology of G is

$$H^{\bullet}(G,V)=H^{\bullet}(C^{\bullet}(G,V))$$

For $\varphi \in C^n(G, V)$, $\|\varphi\|_{\infty} = \sup_{\overline{g} \in G^n} \|\varphi(\overline{g})\|_V \in [0, \infty]$

For
$$\varphi \in C^n(G, V)$$
, $\|\varphi\|_{\infty} = \sup_{\overline{g} \in G^n} \|\varphi(\overline{g})\|_V \in [0, \infty]$

Bounded cochains define a subcomplex $C_b^{\bullet}(G, V) \subseteq C^{\bullet}(G, V)$.

For
$$\varphi \in C^n(G, V)$$
, $\|\varphi\|_{\infty} = \sup_{\overline{g} \in G^n} \|\varphi(\overline{g})\|_V \in [0, \infty]$
Bounded cochains define a subcomplex $C_b^{\bullet}(G, V) \subseteq C^{\bullet}(G, V)$.

The bounded cohomology of G is

$$H^{\bullet}_b(G,V) = H^{\bullet}(C^{\bullet}_b(G,V))$$

For
$$\varphi \in C^n(G, V)$$
, $\|\varphi\|_{\infty} = \sup_{\overline{g} \in G^n} \|\varphi(\overline{g})\|_V \in [0, \infty]$
Bounded cochains define a subcomplex $C_b^{\bullet}(G, V) \subseteq C^{\bullet}(G, V)$.

The bounded cohomology of G is

$$H^{\bullet}_b(G,V) = H^{\bullet}(C^{\bullet}_b(G,V))$$

The inclusion

$$C^{\bullet}_b(G,V) \hookrightarrow C^{\bullet}(G,V)$$

induces the comparison map

$$c^{\bullet} \colon H^{\bullet}_b(G, V) \to H^{\bullet}(G, V)$$

A class $\alpha \in H^n(G, V)$ is bounded if it lies in the image of the comparison map, i.e. if it admits a bounded representative.

A class $\alpha \in H^n(G, V)$ is bounded if it lies in the image of the comparison map, i.e. if it admits a bounded representative.

It is weakly bounded if it admits a weakly bounded representative, i.e. a cocycle $\omega \in C^n(G, V)$ such that, for every $g_1 \in G$, the map

$$\omega(g_1,\cdot,\cdot,\ldots,\cdot)\colon G^{n-1}\to V$$

is bounded.

Beware: weakly bounded chains do not define a complex, hence there is no "weakly bounded cohomology".

The (equivariant) inclusion $\mathbb{R} \hookrightarrow \ell^{\infty}(G, \mathbb{R})$ into constant functions induces

$$H^{ullet}(G,\mathbb{R}) \stackrel{\iota^{ullet}}{\longrightarrow} H^{ullet}(G,\ell^{\infty}(G,\mathbb{R})) \quad := \ H^{ullet}_{(\infty)}(G,\mathbb{R})$$

The (equivariant) inclusion $\mathbb{R} \hookrightarrow \ell^{\infty}(G, \mathbb{R})$ into constant functions induces

$$H^ullet(G,\mathbb{R}) \stackrel{\iota^ullet}{\longrightarrow} H^ullet(G,\ell^\infty(G,\mathbb{R})) \quad := \ H^ullet_{(\infty)}(G,\mathbb{R})$$

Proposition

A class in $H^{\bullet}(G, \mathbb{R})$ is weakly bounded if and only if it lies in the kernel of ι^{\bullet} .

Corollary (Gersten 92, Wienhard 12, Blank 15)

The composition

$$H^{ullet}_b(G,\mathbb{R}) \xrightarrow{c^{ullet}} H^{ullet}(G,\mathbb{R}) \xrightarrow{\iota^{ullet}} H^{ullet}_{(\infty)}(G,\mathbb{R})$$

is null in every degree.

Corollary (Gersten 92, Wienhard 12, Blank 15)

The composition

$$H^{ullet}_b(G,\mathbb{R}) \xrightarrow{c^{ullet}} H^{ullet}(G,\mathbb{R}) \xrightarrow{\iota^{ullet}} H^{ullet}_{(\infty)}(G,\mathbb{R})$$

is null in every degree.

Question (Mineyev, Blank, Wienhard)

When is the sequence

$$H^n_b(G,\mathbb{R}) o H^n(G,\mathbb{R}) o H^n_{(\infty)}(G,\mathbb{R})$$

exact?

Proposition (F.–Sisto)

Let G be an n-dimensional non-amenable PD-group (e.g. the fundamental group of a negatively curved closed n-manifold). Then the sequence

$$H^{n+1}_b(G imes \mathbb{Z},\mathbb{R}) o H^{n+1}(G imes \mathbb{Z},\mathbb{R}) o H^{n+1}_{(\infty)}(G imes \mathbb{Z},\mathbb{R})$$

is not exact.

Proposition (F.–Sisto)

Let G be an n-dimensional non-amenable PD-group (e.g. the fundamental group of a negatively curved closed n-manifold). Then the sequence

$$H^{n+1}_b(G imes \mathbb{Z},\mathbb{R}) o H^{n+1}(G imes \mathbb{Z},\mathbb{R}) o H^{n+1}_{(\infty)}(G imes \mathbb{Z},\mathbb{R})$$

is not exact.

Corollary

For every $n \ge 3$, there exists a finitely presented group G such that the sequence

$$H^n_b(G \times \mathbb{Z}, \mathbb{R}) \to H^n(G \times \mathbb{Z}, \mathbb{R}) \to H^n_{(\infty)}(G \times \mathbb{Z}, \mathbb{R})$$

is not exact.

Let G be finitely generated. Is every weakly bounded 2-class in $H^2(G, \mathbb{R})$ bounded?

Let G be finitely generated. Is every weakly bounded 2-class in $H^2(G, \mathbb{R})$ bounded?

This question is a reformulation of the previous one for n = 2.

Let G be finitely generated. Is every weakly bounded 2-class in $H^2(G, \mathbb{R})$ bounded?

This question is a reformulation of the previous one for n = 2.

If the answer to Neumann–Reeves' question is affirmative, we say that G satisfies QITB (quasi-isometrically trivial \implies bounded).

Let G be finitely generated. Is every weakly bounded 2-class in $H^2(G, \mathbb{R})$ bounded?

This question is a reformulation of the previous one for n = 2.

If the answer to Neumann–Reeves' question is affirmative, we say that G satisfies QITB (quasi-isometrically trivial \implies bounded).

Theorem (F.–Sisto)

There exists a finitely generated group G such that the sequence

$$H^2_b(G,\mathbb{R}) \to H^2(G,\mathbb{R}) \to H^2_{(\infty)}(G,\mathbb{R})$$

is not exact (i.e. G does not safisfy QITB).

Question

Why do we care?

G finitely generated. To any central extension

$$1 \longrightarrow \mathbb{Z} \longrightarrow E \longrightarrow G \longrightarrow 1$$

there is associated its Euler class in $H^2(G, \mathbb{Z})$.

G finitely generated. To any central extension

$$1 \longrightarrow \mathbb{Z} \longrightarrow E \longrightarrow G \longrightarrow 1$$

there is associated its Euler class in $H^2(G, \mathbb{Z})$.

The extension is quasi-isometrically trivial if *E* is quasi-isometric to $G \times \mathbb{Z}$.

G finitely generated. To any central extension

$$1 \longrightarrow \mathbb{Z} \longrightarrow E \longrightarrow G \longrightarrow 1$$

there is associated its Euler class in $H^2(G, \mathbb{Z})$.

The extension is quasi-isometrically trivial if *E* is quasi-isometric to $G \times \mathbb{Z}$.

Lemma (Gersten, Neumann-Reeves, Kleiner-Leeb)

The extension is quasi-isometrically trivial if and only if its Euler class is weakly bounded.

G finitely generated. To any central extension

$$1 \longrightarrow \mathbb{Z} \longrightarrow E \longrightarrow G \longrightarrow 1$$

there is associated its Euler class in $H^2(G, \mathbb{Z})$.

The extension is quasi-isometrically trivial if *E* is quasi-isometric to $G \times \mathbb{Z}$.

Lemma (Gersten, Neumann-Reeves, Kleiner-Leeb)

The extension is quasi-isometrically trivial if and only if its Euler class is weakly bounded.

Question (Neumann-Reeves)

Can quasi-isometrically trivial extensions be characterized in terms of bounded cohomology?

Let *G* be Gromov hyperbolic. Then:

- The comparison map cⁿ: Hⁿ_b(G, ℝ) → Hⁿ(G, ℝ) is surjective for every n ≥ 2 [Mineyev 01].
- $H^n_{(\infty)}(G,\mathbb{R}) = 0$ for every $n \ge 2$ [Mineyev 00].

Let *G* be Gromov hyperbolic. Then:

- The comparison map cⁿ: Hⁿ_b(G, ℝ) → Hⁿ(G, ℝ) is surjective for every n ≥ 2 [Mineyev 01].
- $H^n_{(\infty)}(G,\mathbb{R}) = 0$ for every $n \ge 2$ [Mineyev 00].

Thus hyperbolic groups satisfy QITB.

Let *G* be Gromov hyperbolic. Then:

- The comparison map cⁿ: Hⁿ_b(G, ℝ) → Hⁿ(G, ℝ) is surjective for every n ≥ 2 [Mineyev 01].
- $H^n_{(\infty)}(G,\mathbb{R}) = 0$ for every $n \ge 2$ [Mineyev 00].

Thus hyperbolic groups satisfy QITB.

Let G be amenable. Then:

- $H^n_b(G,\mathbb{R}) = 0$ for every $n \ge 2$.
- The map $\iota^n \colon H^n(G, \mathbb{R}) \to H^n_{(\infty)}(G, \mathbb{R})$ is injective for every $n \ge 2$ [Gersten 92].

Let *G* be Gromov hyperbolic. Then:

- The comparison map cⁿ: Hⁿ_b(G, ℝ) → Hⁿ(G, ℝ) is surjective for every n ≥ 2 [Mineyev 01].
- $H^n_{(\infty)}(G,\mathbb{R}) = 0$ for every $n \ge 2$ [Mineyev 00].

Thus hyperbolic groups satisfy QITB.

Let G be amenable. Then:

- $H^n_b(G,\mathbb{R}) = 0$ for every $n \ge 2$.
- The map $\iota^n \colon H^n(G, \mathbb{R}) \to H^n_{(\infty)}(G, \mathbb{R})$ is injective for every $n \ge 2$ [Gersten 92].

Thus amenable groups satisfy QITB.

Differential forms

Let M be a Riemannian manifold, and let $\omega \in \Omega^k(M)$. For every $x \in M$,

 $|\omega_x| = \sup |\omega_x(e_1 \wedge \cdots \wedge e_k)|, \quad e_1, \dots, e_k \text{ orthonormal frame at } x$

Differential forms

Let M be a Riemannian manifold, and let $\omega \in \Omega^k(M)$. For every $x \in M$,

 $|\omega_x| = \sup |\omega_x(e_1 \wedge \cdots \wedge e_k)|, \quad e_1, \dots, e_k \text{ orthonormal frame at } x$

Definition		
$\omega\in\Omega^k_\flat(\textit{M})$	if $\sup_{x\in M} \omega_x < +\infty$,	$\sup_{x\in M} (d\omega)_x < +\infty$
$H^ullet_ullet(M) = H^ullet(\Omega^ullet_ullet(M))$		

Differential forms

Let M be a Riemannian manifold, and let $\omega \in \Omega^k(M)$. For every $x \in M$,

 $|\omega_x| = \sup |\omega_x(e_1 \wedge \cdots \wedge e_k)|, \quad e_1, \dots, e_k \text{ orthonormal frame at } x$

Definition
$$\omega \in \Omega_{\flat}^{k}(M)$$
if $\sup_{x \in M} |\omega_{x}| < +\infty$, $\sup_{x \in M} |(d\omega)_{x}| < +\infty$ $H_{\flat}^{\bullet}(M) = H^{\bullet}(\Omega_{\flat}^{\bullet}(M))$

If M is compact, for every $\omega \in \Omega^k(M)$ we can take its lift $\widetilde{\omega} \in \Omega^k_\flat(\widetilde{M})$, thus getting a map

$$H^ullet_{DR}(M) o H^ullet_{\flat}(\widetilde{M})$$

Definition (Gromov 91)

A class $[\omega] \in H^k_{DR}(M)$ is \widetilde{d} -bounded if it lies in the kernel of $H^{\bullet}_{DR}(M) \to H^{\bullet}_{\flat}(\widetilde{M})$ i.e. if the lift of ω to \widetilde{M} admits a (not necessarily equivariant!) bounded primitive.

Definition (Gromov 91)

A class $[\omega] \in H^k_{DR}(M)$ is \widetilde{d} -bounded if it lies in the kernel of $H^{\bullet}_{DR}(M) \to H^{\bullet}_{\flat}(\widetilde{M})$ i.e. if the lift of ω to \widetilde{M} admits a (not necessarily equivariant!) bounded primitive.

It is known [Sikora 01] that bounded classes are \tilde{d} -bounded.

Definition (Gromov 91)

A class $[\omega] \in H^k_{DR}(M)$ is \widetilde{d} -bounded if it lies in the kernel of $H^{\bullet}_{DR}(M) \to H^{\bullet}_{\flat}(\widetilde{M})$ i.e. if the lift of ω to \widetilde{M} admits a (not necessarily equivariant!)

bounded primitive.

It is known [Sikora 01] that bounded classes are \tilde{d} -bounded.

Conjecture (Gromov 93)

Let M be compact. A class $\alpha \in H^2(M)$ is bounded if and only if the corresponding class in $H^2_{DR}(M)$ is \widetilde{d} -bounded.

Theorem (F.–Sisto)

Gromov's conjecture holds if and only if every finitely presented group satisfies QITB.

Theorem (F.–Sisto)

Gromov's conjecture holds if and only if every finitely presented group satisfies QITB.

Key ingredient: If M is compact and aspherical, there is a commutative diagram

where the vertical arrows are isomorphisms (for the vertical arrow on the right, this is proved in [Mineyev99]).

Goal: construct a finitely generated group G and a weakly bounded $\alpha \in H^2(G, \mathbb{R})$ which is not bounded.

Goal: construct a finitely generated group G and a weakly bounded $\alpha \in H^2(G, \mathbb{R})$ which is not bounded.

Let Σ be the closed oriented surface of genus 2. For every $n \in \mathbb{N}$,

$$G_n = \pi_1(\Sigma), \qquad \widehat{G} = *_{n \in \mathbb{N}} G_n, \qquad i_n \colon G_n o \widehat{G}$$

Goal: construct a finitely generated group G and a weakly bounded $\alpha \in H^2(G, \mathbb{R})$ which is not bounded.

Let Σ be the closed oriented surface of genus 2. For every $n \in \mathbb{N}$,

$$G_n = \pi_1(\Sigma), \qquad \widehat{G} = *_{n \in \mathbb{N}} G_n, \qquad i_n \colon G_n o \widehat{G}$$

For every sequence $(\alpha_i)_{i \in \mathbb{N}}$ of real numbers, there exists a unique class $\alpha \in H^2(\widehat{G})$ such that

$$j_n^*(\alpha) = \alpha_n[\Sigma_n]^*$$
 for every $n \in \mathbb{N}$

where $[\Sigma_n]^* \in H_2(G_n)$ is the fundamental coclass of Σ_n .

If $\|\alpha\| \leq K$, then $\|i_n^*(\alpha)\| \leq K$ for every $n \in \mathbb{N}$ and $|\alpha_n| = |\langle i_n^*(\alpha), [\Sigma_n] \rangle| \leq \cdot K \|[\Sigma_n]\| \leq 4K$

hence (α_n) is bounded.

If
$$\|\alpha\| \leq K$$
, then $\|i_n^*(\alpha)\| \leq K$ for every $n \in \mathbb{N}$ and

$$|\alpha_n| = |\langle i_n^*(\alpha), [\Sigma_n] \rangle| \le K ||[\Sigma_n]|| \le 4K$$

hence (α_n) is bounded.

However, α is always weakly bounded: if $\overline{g} \in \widehat{G}$ is fixed, then there exists n_0 s.t. \overline{g} contains letters from G_0, \ldots, G_{n_0} only.

If
$$\|\alpha\| \leq K$$
, then $\|i_n^*(\alpha)\| \leq K$ for every $n \in \mathbb{N}$ and

$$|\alpha_n| = |\langle i_n^*(\alpha), [\Sigma_n] \rangle| \le K ||[\Sigma_n]|| \le 4K$$

hence (α_n) is bounded.

However, α is always weakly bounded: if $\overline{g} \in \widehat{G}$ is fixed, then there exists n_0 s.t. \overline{g} contains letters from G_0, \ldots, G_{n_0} only.

```
But \widehat{G} is not finitely generated!
```

We thus look for a finitely generated quotient of $\widehat{G}.$

$$G_i = \langle a_i, b_i, c_i, d_i | [a_i, b_i] \cdot [c_i, d_i] \rangle$$

We thus look for a finitely generated quotient of \widehat{G} .

$$G_i = \langle a_i, b_i, c_i, d_i | [a_i, b_i] \cdot [c_i, d_i] \rangle$$

We introduce on $\widehat{G} st \langle t_1, t_2, t_3, t_4
angle$ the relations

$$\begin{aligned} t_1 a_i t_1^{-1} &= a_{i+1} \,, \qquad t_2 b_i t_2^{-1} &= b_{i+1} \\ t_3 c_i t_3^{-1} &= c_{i+1} \,, \qquad t_4 d_i t_4^{-1} &= d_{i+1} \end{aligned}$$

to get our desired finitely generated group G.

• We still have injections

$$G_n \to \widehat{G} \to \widehat{G} * \langle t_1, t_2, t_3, t_3 \rangle \to G$$

• We still have injections

$$G_n \to \widehat{G} \to \widehat{G} * \langle t_1, t_2, t_3, t_3 \rangle \to G$$

For every sequence (α_n), we still have a unique class α ∈ H²(G) such that i^{*}_n(α) = α_n[Σ_n]^{*}.

• We still have injections

$$G_n \to \widehat{G} \to \widehat{G} * \langle t_1, t_2, t_3, t_3 \rangle \to G$$

- For every sequence (α_n), we still have a unique class α ∈ H²(G) such that i^{*}_n(α) = α_n[Σ_n]^{*}.
- We still have that α is bounded if and only if (α_n) is bounded.

• We still have injections

$$G_n \to \widehat{G} \to \widehat{G} * \langle t_1, t_2, t_3, t_3 \rangle \to G$$

- For every sequence (α_n), we still have a unique class α ∈ H²(G) such that i^{*}_n(α) = α_n[Σ_n]^{*}.
- We still have that α is bounded if and only if (α_n) is bounded.

$$\sup_{n\in\mathbb{N}}\frac{|\alpha_n|}{n}<+\infty$$

then α is weakly bounded.

Thus, if $\alpha \in H^2(G)$ corresponds e.g. to the sequence $\alpha_n = n$, then α is weakly bounded without being bounded.

Thus, if $\alpha \in H^2(G)$ corresponds e.g. to the sequence $\alpha_n = n$, then α is weakly bounded without being bounded.

The implication

$$\sup_{n \in \mathbb{N}} \frac{|\alpha_n|}{n} < +\infty \implies \alpha \text{ weakly bounded}$$

is pretty hard.

We have $G = F_8/N$, where

$$F_{8} = \langle a, b, c, d, t_{1}, t_{2}, t_{3}, t_{4} \rangle, \quad N = \langle \langle r_{0}, r_{1}, \dots, r_{n}, \dots \rangle \rangle$$
$$r_{n} = [t_{1}^{n} a t_{1}^{-n}, t_{2}^{n} b t_{2}^{-n}] \cdot [t_{3}^{n} c t_{3}^{-n}, t_{4}^{n} d t_{4}^{-n}]$$

We have $G = F_8/N$, where

$$F_{8} = \langle a, b, c, d, t_{1}, t_{2}, t_{3}, t_{4} \rangle, \quad N = \langle \langle r_{0}, r_{1}, \dots, r_{n}, \dots \rangle \rangle$$
$$r_{n} = [t_{1}^{n} a t_{1}^{-n}, t_{2}^{n} b t_{2}^{-n}] \cdot [t_{3}^{n} c t_{3}^{-n}, t_{4}^{n} d t_{4}^{-n}]$$

For every word $w \in N$ we denote by |w| the length of w, and

$$A(w) = \min\left\{\sum_{i=1}^{k} n_i \mid w = \prod_{i=1}^{k} w_i r_{n_i}^{\pm 1} w_i^{-1}\right\}$$

A(w) is a weighted area of w.

For every
$$w \in N$$
, we have $A(w) \leq |w|$.

For every $w \in N$, we have $A(w) \leq |w|$.

Suppose now that $\alpha_n = n$ for every $n \in \mathbb{N}$. In particular, $\alpha \in H^2(G, \mathbb{Z})$.

For every
$$w \in N$$
, we have $A(w) \leq |w|$.

Suppose now that $\alpha_n = n$ for every $n \in \mathbb{N}$. In particular, $\alpha \in H^2(G, \mathbb{Z})$.

Let

$$1 \longrightarrow \mathbb{Z} \xrightarrow{j} E \xrightarrow{\pi} G \longrightarrow 1$$

be the associated central extension.

For every
$$w \in N$$
, we have $A(w) \leq |w|$.

Suppose now that $\alpha_n = n$ for every $n \in \mathbb{N}$. In particular, $\alpha \in H^2(G, \mathbb{Z})$.

Let

$$1 \longrightarrow \mathbb{Z} \xrightarrow{j} E \xrightarrow{\pi} G \longrightarrow 1$$

be the associated central extension.

We look for a good section of π .

$1 \longrightarrow \mathbb{Z} \xrightarrow{j} E \xrightarrow{\pi} G \longrightarrow 1$

Every fiber $\pi^{-1}(g)$ is canonically isomorphic to \mathbb{Z} , hence it is ordered.

$$1 \longrightarrow \mathbb{Z} \xrightarrow{j} E \xrightarrow{\pi} G \longrightarrow 1$$

Every fiber $\pi^{-1}(g)$ is canonically isomorphic to \mathbb{Z} , hence it is ordered.

Let

$$F_8 \to E$$
, $w \mapsto \overline{w}$

be such that $\pi(\overline{w}) = [w]$ in G.

$$\overline{r}_n = \alpha((i_n)_*([\Sigma]) =$$

$$\overline{r}_n = \alpha((i_n)_*([\Sigma]) = \alpha_n = n \in \mathbb{Z}$$
 for every n

$$\overline{r}_n = \alpha((i_n)_*([\Sigma]) = \alpha_n = n \in \mathbb{Z}$$
 for every n

For $w \in N$,

$$\left|\overline{w}\right| = \left| \overline{\prod_{i=1}^{k} w_i r_{n_i}^{\pm 1} w_i^{-1}} \right|$$

$$\overline{r}_n = lpha((i_n)_*([\Sigma]) = lpha_n = n \in \mathbb{Z}$$
 for every n
For $w \in N$,

$$\left|\overline{w}\right| = \left|\overline{\prod_{i=1}^{k} w_i r_{n_i}^{\pm 1} w_i^{-1}}\right| \leq \sum_{i=1}^{k} \left|\overline{r_{n_i}}\right| = \sum_{i=1}^{k} n_i = A(w)$$

For w

$$\overline{r}_n = \alpha((i_n)_*([\Sigma]) = \alpha_n = n \in \mathbb{Z}$$
 for every $n \in N$,

$$\left|\overline{w}\right| = \left|\overline{\prod_{i=1}^{k} w_i r_{n_i}^{\pm 1} w_i^{-1}}\right| \leq \sum_{i=1}^{k} \left|\overline{r_{n_i}}\right| = \sum_{i=1}^{k} n_i = A(w) \leq |w|$$

For w

$$\overline{r}_n = lpha((i_n)_*([\Sigma]) = lpha_n = n \in \mathbb{Z}$$
 for every $n \in N$,

$$\left|\overline{w}\right| = \left|\overline{\prod_{i=1}^{k} w_i r_{n_i}^{\pm 1} w_i^{-1}}\right| \leq \sum_{i=1}^{k} \left|\overline{r_{n_i}}\right| = \sum_{i=1}^{k} n_i = A(w) \leq |w|$$

For a fixed g, as $w \in F_8$ varies among its representatives

$$\overline{w} \cdot j(-|w|)$$

is bounded from above. We define s(g) as its maximum.

A representative of $\boldsymbol{\alpha}$ is given by

$$\omega(g_1,g_2) = s(g_1)s(g_2)s(g_1g_2)^{-1}$$

A representative of $\boldsymbol{\alpha}$ is given by

$$\omega(g_1,g_2) = s(g_1)s(g_2)s(g_1g_2)^{-1}$$

Exploiting the geometry of the section s we show that

$$|s(g_1)s(g_2)s(g_1g_2)^{-1}| \leq K \cdot |g_1|$$

hence the class α is weakly bounded.