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Cohomology of groups

Let G be a group. A normed G-module is a normed vector space
(V.| - |lv) endowed with an isometric linear action of G.

@ V =R with the usual absolute value, endowed with the trivial
action by G

e V =/(~(G,R), endowed with the action

(& f)(g)=f(g'g)
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C"(G,V)={p: G" >V}, §: C"(G,V)— C"G,V)
5(e)(g1,- -+ 8nt1) =g1 (g2 .-+, 8nt1)
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The cohomology of G is

H*(G, V) = H*(C*(G, V))
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Bounded cohomology of groups

For o € (6, V), l¢lloo = sup [lv(@)llv € [0, 0]
gea”

Bounded cochains define a subcomplex C2(G, V) C C*(G, V).

The bounded cohomology of G is
H;(G, V) = H*(C5(G, V)

The inclusion
C(G,V)—= C*(G,V)

induces the comparison map

c*: Hy(G,V)— H*(G, V)
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Bounded and weakly bounded classes

A class o € H"(G, V) is bounded if it lies in the image of the
comparison map, i.e. if it admits a bounded representative.

It is weakly bounded if it admits a weakly bounded representative,
i.e. a cocycle w € C"(G, V) such that, for every g; € G, the map

wigl, ...y ): Gt =V

is bounded.

Beware: weakly bounded chains do not define a complex, hence there
is no “weakly bounded cohomology”.
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Cohomology with bounded values

The (equivariant) inclusion R < ¢*°(G,R) into constant functions
induces

H*(G,R) —— H*(G,(*(G,R)) = H(G.R)

Proposition

A class in H*(G,R) is weakly bounded if and only if it lies in the
kernel of 1°.
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Corollary (Gersten 92, Wienhard 12, Blank 15)

The composition
Hy(G,R) —— H*(G,R) —= H;,,(G,R)

is null in every degree.

Question (Mineyev, Blank, Wienhard)

When is the sequence
H}(G,R) —» H"(G,R) — H(”oo)(G,]R)

exact?
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Proposition (F.-Sisto)

Let G be an n-dimensional non-amenable PD-group (e.g. the
fundamental group of a negatively curved closed n-manifold).
Then the sequence

Hy™(G x Z,R) — H™(G x Z,R) — H[(G X Z,R)

Is not exact.

Corollary

For every n > 3, there exists a finitely presented group G such that
the sequence

HE(G X Z,R) = H"(G x Z,R) — H{.,(G x Z,R)

is not exact.
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Question (Neumann—Reeves 97)

Let G be finitely generated. Is every weakly bounded 2-class in
H?(G,R) bounded?

This question is a reformulation of the previous one for n = 2.

If the answer to Neumann—Reeves' question is affirmative, we say
that G satisfies QITB (quasi-isometrically trivial => bounded).

Theorem (F.=Sisto)

There exists a finitely generated group G such that the sequence
H:(G,R) — H*(G,R) — H{,.)(G,R)

is not exact (i.e. G does not safisfy QITB).




Motivation(s)

Why do we care? \
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Central extensions

G finitely generated. To any central extension

1 7 E s G 1

there is associated its Euler class in H*(G,Z).

The extension is quasi-isometrically trivial if E is quasi-isometric to
G x Z.

Lemma (Gersten, Neumann—Reeves, Kleiner—Leeb)

The extension is quasi-isometrically trivial if and only if its Euler class
is weakly bounded.

Question (Neumann—Reeves)

Can quasi-isometrically trivial extensions be characterized in terms of
bounded cohomology?
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More GGT

Let G be Gromov hyperbolic. Then:

@ The comparison map ¢”: HJ(G,R) — H"(G,R) is surjective for
every n > 2 [Mineyev 01].

° H(”OO)(G,]R) = 0 for every n > 2 [Mineyev 00].
Thus hyperbolic groups satisfy QITB.

Let G be amenable. Then:
e HJ(G,R) =0 for every n > 2.
@ The map /": H"(G,R) — H(”Oo)(G,R) is injective for every
n > 2 [Gersten 92].

Thus amenable groups satisfy QITB.
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Differential forms

Let M be a Riemannian manifold, and let w € Q*X(M). For every
x € M,

lwx| = sup lwx(er A -+ Aex)|, ei,...,e orthonormal frame at x

Definition

w € QF(M) if  sup |wy| < 00, sup |(dw)x| < +o0
xeM xeM

H; (M) = H* (23 (M))

If M is compact, for every w € QK(M) we can take its lift

@ € QF(M), thus getting a map

Hpr(M) — H7 (M)
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Definition (Gromov 91)

A class [w] € H5R(M) is d-bounded if it lies in the kernel of

Hpr(M) — H; (M)

i.e. if the lift of w to M admits a (not necessarily equivariant!)
bounded primitive.

It is known [Sikora 01] that bounded classes are d-bounded.

Conjecture (Gromov 93)

Let M be compact. A class o € H*(M) is bounded if and only if the
corresponding class in H3z(M) is d-bounded.
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Gromov's conjecture holds if and only if every finitely presented group
satisfies QITB.




Theorem (F.=Sisto)

Gromov's conjecture holds if and only if every finitely presented group
satisfies QITB.

Key ingredient: If M is compact and aspherical, there is a
commutative diagram

Hy(M) ————— H*(M) ————— H}(M)

l | l

H2(m1(M), R) — H?(m1(M), R) — K2\ (m (M), R)

where the vertical arrows are isomorphisms (for the vertical arrow on
the right, this is proved in [Mineyev99]).
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The counterexample

Goal: construct a finitely generated group G and a weakly bounded
a € H?(G,R) which is not bounded.

Let X be the closed oriented surface of genus 2. For every n € N,
Go=m(X), G=s%menGn, in:G,—G
For every sequence («;)jen of real numbers, there exists a unique
class @ € H?(G) such that
ir(a) = an[Z,]" for every n € N

where [X,]* € Hy(G,) is the fundamental coclass of ¥ ,,.



The counterexample

If lof] < K, then [|i;(a)[| < K for every n € N and
|| = [{i7 (@), [Zn])| < -K|[[Z]l] < 4K

hence () is bounded.
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The counterexample

If lof] < K, then [|i;(a)[| < K for every n € N and
|an| = (i (), [2a])| < -K[[Za][| < 4K

hence () is bounded.

However, « is always weakly bounded: if g € G is fixed, then there
exists ng s.t. g contains letters from Gy, ..., G,, only.

But G is not finitely generated!
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The counterexample

We thus look for a finitely generated quotient of G.

Gi = (aj, bi, ci, d; | [ai, bi] - [ci, di])

We introduce on G * (t1, ty, t3, ty) the relations

tait; ' = a1, tobit; " = bi

-1 ~1
3Gt~ = Cit1, tadit, = dip1

to get our desired finitely generated group G.
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The counterexample

@ We still have injections

G,,—) 6—) é\*<t1,t2,t3,t3> -G

@ For every sequence (), we still have a unique class a € H?*(G)
such that i(a) = a,[X,]".

@ We still have that « is bounded if and only if («,) is bounded.

o If

[

sup — < +00
neN

then « is weakly bounded.
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is weakly bounded without being bounded.



The counterexample

Thus, if @ € H?(G) corresponds e.g. to the sequence a,, = n, then «
is weakly bounded without being bounded.

The implication

sup M <400 = « weakly bounded
neN

is pretty hard.
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The counterexample

We have G = Fg/N, where
F8:<aub7c7d7t17t2)t37t4>) N:<<r07r17"'7rn7"‘>>

= [6aty ", bt "] - [t5cty ", t7dty ]

For every word w € N we denote by |w/| the length of w, and

A(w) is a weigthed area of w.
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The counterexample

For every w € N, we have A(w) < |w]|.

Suppose now that a,, = n for every n € N. In particular,
a € H*(G,Z).

Let _
1 713 E-",¢G 1

be the associated central extension.

We look for a good section of 7.
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The counterexample

1 7 E_",G 1

Every fiber 771(g) is canonically isomorphic to Z, hence it is ordered.

Let
Fe— E, w— W

be such that 7(w) = [w] in G.
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The counterexample

To=a((i)«([X])) =an=n€Z for every n
For w € N,

|W| = H W,-r,;flwfl

i=1



The counterexample

To=a((i)«([X])) =an=n€Z for every n
For w € N,

« k
wl = |[[wrstw | <3 Il =3 = A(w)

i=1 i=1 i=1
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The counterexample

To=a((i)«([X])) =an=n€Z for every n
For w € N,

k

k
wl = |[Jwirstwt| <Y Iml=2 n=Aw) < |wl

i=1 i=1 i=1

For a fixed g, as w € Fg varies among its representatives

w - j(=[wl)

is bounded from above. We define s(g) as its maximum.
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A representative of « is given by
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The counterexample

A representative of « is given by

w(gi, &) = s(g1)s(g2)s(g1g2) "

Exploiting the geometry of the section s we show that
|s(g1)s(g2)s(g182) Y| < K - |

hence the class « is weakly bounded.



