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Cohomology of groups

Let G be a group. A normed G -module is a normed vector space
(V , ‖ · ‖V ) endowed with an isometric linear action of G .

V = R with the usual absolute value, endowed with the trivial
action by G

V = `∞(G ,R), endowed with the action

(g0 · f )(g) = f (g−10 g)
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Cohomology of groups

C n(G ,V ) = {ϕ : G n → V } , δ : C n(G ,V )→ C n+1(G ,V )
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Bounded cohomology of groups

For ϕ ∈ C n(G ,V ) , ‖ϕ‖∞ = sup
g∈Gn

‖ϕ(g)‖V ∈ [0,∞]

Bounded cochains define a subcomplex C •b (G ,V ) ⊆ C •(G ,V ).

The bounded cohomology of G is

H•b (G ,V ) = H•(C •b (G ,V ))

The inclusion
C •b (G ,V ) ↪→ C •(G ,V )

induces the comparison map

c• : H•b (G ,V )→ H•(G ,V )
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Bounded and weakly bounded classes

A class α ∈ Hn(G ,V ) is bounded if it lies in the image of the
comparison map, i.e. if it admits a bounded representative.

It is weakly bounded if it admits a weakly bounded representative,
i.e. a cocycle ω ∈ C n(G ,V ) such that, for every g1 ∈ G , the map

ω(g1, ·, ·, . . . , ·) : G n−1 → V

is bounded.

Beware: weakly bounded chains do not define a complex, hence there
is no “weakly bounded cohomology”.
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Cohomology with bounded values

The (equivariant) inclusion R ↪→ `∞(G ,R) into constant functions
induces

H•(G ,R) ι• // H•(G , `∞(G ,R)) := H•(∞)(G ,R)

Proposition

A class in H•(G ,R) is weakly bounded if and only if it lies in the
kernel of ι•.
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The composition
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Proposition (F.–Sisto)

Let G be an n-dimensional non-amenable PD-group (e.g. the
fundamental group of a negatively curved closed n-manifold).
Then the sequence

Hn+1
b (G × Z,R)→ Hn+1(G × Z,R)→ Hn+1

(∞) (G × Z,R)

is not exact.

Corollary
For every n ≥ 3, there exists a finitely presented group G such that
the sequence

Hn
b (G × Z,R)→ Hn(G × Z,R)→ Hn

(∞)(G × Z,R)

is not exact.
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Let G be finitely generated. Is every weakly bounded 2-class in
H2(G ,R) bounded?

This question is a reformulation of the previous one for n = 2.

If the answer to Neumann–Reeves’ question is affirmative, we say
that G satisfies QITB (quasi-isometrically trivial =⇒ bounded).
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Motivation(s)

Question
Why do we care?



Central extensions

G finitely generated. To any central extension

1 // Z // E //// G // 1

there is associated its Euler class in H2(G ,Z).

The extension is quasi-isometrically trivial if E is quasi-isometric to
G × Z.

Lemma (Gersten, Neumann–Reeves, Kleiner–Leeb)

The extension is quasi-isometrically trivial if and only if its Euler class
is weakly bounded.

Question (Neumann–Reeves)

Can quasi-isometrically trivial extensions be characterized in terms of
bounded cohomology?
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More GGT

Let G be Gromov hyperbolic. Then:

The comparison map cn : Hn
b (G ,R)→ Hn(G ,R) is surjective for

every n ≥ 2 [Mineyev 01].

Hn
(∞)(G ,R) = 0 for every n ≥ 2 [Mineyev 00].

Thus hyperbolic groups satisfy QITB.

Let G be amenable. Then:

Hn
b (G ,R) = 0 for every n ≥ 2.

The map ιn : Hn(G ,R)→ Hn
(∞)(G ,R) is injective for every

n ≥ 2 [Gersten 92].

Thus amenable groups satisfy QITB.
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Differential forms

Let M be a Riemannian manifold, and let ω ∈ Ωk(M). For every
x ∈ M ,

|ωx | = sup |ωx(e1 ∧ · · · ∧ ek)| , e1, . . . , ek orthonormal frame at x

Definition

ω ∈ Ωk
[ (M) if sup

x∈M
|ωx | < +∞ , sup

x∈M
|(dω)x | < +∞

H•[ (M) = H•(Ω•[ (M))

If M is compact, for every ω ∈ Ωk(M) we can take its lift

ω̃ ∈ Ωk
[ (M̃), thus getting a map

H•DR(M)→ H•[ (M̃)
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Definition (Gromov 91)

A class [ω] ∈ Hk
DR(M) is d̃ -bounded if it lies in the kernel of

H•DR(M)→ H•[ (M̃)

i.e. if the lift of ω to M̃ admits a (not necessarily equivariant!)
bounded primitive.

It is known [Sikora 01] that bounded classes are d̃-bounded.

Conjecture (Gromov 93)

Let M be compact. A class α ∈ H2(M) is bounded if and only if the

corresponding class in H2
DR(M) is d̃ -bounded.
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Theorem (F.–Sisto)

Gromov’s conjecture holds if and only if every finitely presented group
satisfies QITB.

Key ingredient: If M is compact and aspherical, there is a
commutative diagram

H2
b (M) //

��

H2(M) //

��

H2
[ (M̃)

��

H2
b (π1(M),R) // H2(π1(M),R) // H2

(∞)(π1(M),R)

where the vertical arrows are isomorphisms (for the vertical arrow on
the right, this is proved in [Mineyev99]).
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The counterexample

Goal: construct a finitely generated group G and a weakly bounded
α ∈ H2(G ,R) which is not bounded.

Let Σ be the closed oriented surface of genus 2. For every n ∈ N,

Gn = π1(Σ) , Ĝ = ∗n∈NGn , in : Gn → Ĝ

For every sequence (αi)i∈N of real numbers, there exists a unique

class α ∈ H2(Ĝ ) such that

i∗n (α) = αn[Σn]∗ for every n ∈ N

where [Σn]∗ ∈ H2(Gn) is the fundamental coclass of Σn.
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class α ∈ H2(Ĝ ) such that

i∗n (α) = αn[Σn]∗ for every n ∈ N

where [Σn]∗ ∈ H2(Gn) is the fundamental coclass of Σn.
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If ‖α‖ ≤ K , then ‖i∗n (α)‖ ≤ K for every n ∈ N and

|αn| = |〈i∗n (α), [Σn]〉| ≤ ·K‖[Σn]‖ ≤ 4K

hence (αn) is bounded.

However, α is always weakly bounded: if g ∈ Ĝ is fixed, then there
exists n0 s.t. g contains letters from G0, . . . ,Gn0 only.

But Ĝ is not finitely generated!
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The counterexample

We thus look for a finitely generated quotient of Ĝ .

Gi = 〈ai , bi , ci , di | [ai , bi ] · [ci , di ]〉

We introduce on Ĝ ∗ 〈t1, t2, t3, t4〉 the relations

t1ai t
−1
1 = ai+1 , t2bi t

−1
2 = bi+1

t3ci t
−1
3 = ci+1 , t4di t

−1
4 = di+1

to get our desired finitely generated group G .
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We still have injections

Gn → Ĝ → Ĝ ∗ 〈t1, t2, t3, t3〉 → G

For every sequence (αn), we still have a unique class α ∈ H2(G )
such that i∗n (α) = αn[Σn]∗.

We still have that α is bounded if and only if (αn) is bounded.

If

sup
n∈N

|αn|
n

< +∞

then α is weakly bounded.



The counterexample

We still have injections
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The counterexample

Thus, if α ∈ H2(G ) corresponds e.g. to the sequence αn = n, then α
is weakly bounded without being bounded.

The implication

sup
n∈N

|αn|
n

< +∞ =⇒ α weakly bounded

is pretty hard.
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1 , tn2bt

−n
2 ] · [tn3 ct−n3 , tn4dt
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4 ]

For every word w ∈ N we denote by |w | the length of w , and

A(w) = min

{
k∑

i=1

ni
∣∣ w =

k∏
i=1

wi r
±1
ni

w−1i

}

A(w) is a weigthed area of w .
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ni
∣∣ w =

k∏
i=1

wi r
±1
ni

w−1i

}

A(w) is a weigthed area of w .



The counterexample

Theorem
For every w ∈ N, we have A(w) ≤ |w |.

Suppose now that αn = n for every n ∈ N. In particular,
α ∈ H2(G ,Z).

Let

1 // Z j
// E π // G // 1

be the associated central extension.

We look for a good section of π.
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1 // Z j
// E π // G // 1

Every fiber π−1(g) is canonically isomorphic to Z, hence it is ordered.

Let
F8 → E , w 7→ w

be such that π(w) = [w ] in G .
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αn = n ∈ Z for every n
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wi r±1ni
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k∑

i=1

|rni | =
k∑

i=1

ni = A(w) ≤ |w |

For a fixed g , as w ∈ F8 varies among its representatives

w · j(−|w |)

is bounded from above. We define s(g) as its maximum.
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The counterexample

A representative of α is given by

ω(g1, g2) = s(g1)s(g2)s(g1g2)−1

Exploiting the geometry of the section s we show that

|s(g1)s(g2)s(g1g2)−1| ≤ K · |g1|

hence the class α is weakly bounded.
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