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Element ∈ Group; 
Then 𝑠𝑐𝑙(Element) ∈ 𝑅!"



What is stable commutator length?

Three ways to stumble upon scl:

1. Algebraic: Via Commutator length
2. Topologic: Via Surfaces
3. Analytic: Via Quasimorphisms

Element ∈ Group; 
Then 𝑠𝑐𝑙(Element) ∈ 𝑅!"
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Invariants

𝑐𝑙 𝑔 := min{𝑛 ∣ 𝑔 = 𝑥!, 𝑦! ⋯[𝑥", 𝑦"] }

𝑠𝑐𝑙 𝑔 ≔ lim
"→$

𝑐𝑙(𝑔")/𝑛

Example

𝐺 = 𝐹%, 𝑔 = 𝑎, 𝑏

𝑐𝑙 𝑎, 𝑏 = 1
𝑐𝑙 𝑎, 𝑏 & = 2

𝑐𝑙 𝑎, 𝑏 " = ⌈
𝑛 + 1
2

⌉

𝑠𝑐𝑙 𝑎, 𝑏 =
1
2
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Set Topological space 𝑋
Element 𝛾: 𝑆1 → 𝑋

𝛾 ∈ [𝜋1 𝑋 , 𝜋1(𝑋)]

Invariants

Φ: Σ → 𝑋, were Φ on 𝜕Σ restricts to  𝛾 with degree n(Φ)

s𝑐𝑙′ 𝛾 : = inf
−𝜒(Σ)
2 𝑛(Φ)

Example

𝑋 = Σ1,1 = 𝛾 = 𝜕Σ1,1

Φ = 𝑖𝑑 ∶ Σ1,1 → X

s𝑐𝑙′ 𝛾 : = inf '((*)
% "(,)

≤ − '!
%
= !

%

SCL: Geometric
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𝐺 = 𝐹%, 𝑔 = 𝑎, 𝑏

𝜙 = 𝜙! − 𝜙%
𝜙!:	count	subword ab;	𝜙%:	count	subword ba.

𝐷 𝜙 = 2
𝜙 𝑎, 𝑏 = 2

s𝑐𝑙--(𝑔):= sup
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≥
2
4
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1
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SCL: Analytic

Relationship to:
• Bounded

Cohomology
• Circle Actions
• Combinatorics of 

words
• …
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… of course

If G is the fundamental group associated to X and g corresponds 
to 𝛾, then

𝑠𝑐𝑙 𝑔 = 𝑠𝑐𝑙p 𝛾 = 𝑠𝑐𝑙′′(𝑔)

[Calegari + Bavard]



Basic Properties
• Linear: ∀𝑔 ∈ 𝐺: 𝑠𝑐𝑙 𝑔q = 𝑛 ⋅ 𝑠𝑐𝑙 𝑔
• Quasi-Length: ∀𝑔, ℎ ∈ 𝐺: 𝑠𝑐𝑙 𝑔 ⋅ ℎ ≤ 𝑠𝑐𝑙 𝑔 + 𝑠𝑐𝑙 ℎ + r

s
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• Monotonicity:

If Φ:𝐺 → 𝐻 is a homomorphism and 𝑔 ∈ 𝐺,
𝑠𝑐𝑙 𝑔 ≥ 𝑠𝑐𝑙 Φ 𝑔

Thus scl is invariant under automorphisms / retracts.



Basic Properties
• Linear: ∀𝑔 ∈ 𝐺: 𝑠𝑐𝑙 𝑔q = 𝑛 ⋅ 𝑠𝑐𝑙 𝑔
• Quasi-Length: ∀𝑔, ℎ ∈ 𝐺: 𝑠𝑐𝑙 𝑔 ⋅ ℎ ≤ 𝑠𝑐𝑙 𝑔 + 𝑠𝑐𝑙 ℎ + r

s
• Monotonicity:

If Φ:𝐺 → 𝐻 is a homomorphism and 𝑔 ∈ 𝐺,
𝑠𝑐𝑙 𝑔 ≥ 𝑠𝑐𝑙 Φ 𝑔

Thus scl is invariant under automorphisms / retracts.
• Finite index Subgroups:

If H < G is a finite index subgroup, then

𝑠𝑐𝑙t 𝑔 =
1

[𝐺:𝐻]
𝑠𝑐𝑙u <

v

𝑎 𝑔 𝑎wr

for a ranging over coclass representatives. 



SCL on FP Groups
Curvature and complexity for finitely presented groups 3

not another, and one starts to wonder how such problems might be transported
to a more hospitable region of the universe where one has stricter definitions and
better theorems to mount an attack.
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Figure 1. The universe of finitely presented groups.

When approaching group theory from the viewpoint of large-scale geometry,
it is natural to blur the distinction between commensurable groups. Thus our
universe begins with a single (large and interesting) point labelled 1 representing
the finite groups. The simplest infinite group is surely Z, so we have a second point
representing the virtually cyclic groups. Here the universe divides. If one wants to
retain the safety of commutativity and amenability, one can proceed from Z to the
virtually abelian groups. As one slowly relinquishes commutativity and control over
growth and constructability, one passes through the progressively larger classes of
(virtually-) nilpotent, polycyclic, solvable and elementary amenable groups, which
are marked in the region bounded by a thick line enclosing the amenable groups.

Thinking more freely, instead of taking direct products one might proceed from
Z by taking free products, moving into the class F of virtually free2 groups, with

2F contains only one commensurability class besides Z, but is drawn larger for effect

Bridon’s Universe of FP Groups ([1])
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Z by taking free products, moving into the class F of virtually free2 groups, with

2F contains only one commensurability class besides Z, but is drawn larger for effect
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Vanishing

Strict non-vanishing / Gaps

Undecidability

Groups with an 
interesting spectrum



Vanishing

𝐺 satifies that  𝑠𝑐𝑙 𝑔 = 0 ∀𝑔 ∈ 𝐺 for:
• G amenable
• Piecewise linear Transformations of Interval (Calegari)
• Thompson’s Group T



Non-Vanishing: Gaps
𝐺 has a gap in 𝑠𝑐𝑙 if there is a 𝐶 > 0 such that for all but 
‘controlled’ elements g, we have that 𝑠𝑐𝑙 𝑔 ≥ 𝐶.
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Why useful?

Suppose that 𝐻 arises as a finite index subgroup in 𝐺 but the 
index is unknow. 



Non-Vanishing: Gaps
𝐺 has a gap in 𝑠𝑐𝑙 if there is a 𝐶 > 0 such that for all but 
‘controlled’ elements g, we have that 𝑠𝑐𝑙 𝑔 ≥ 𝐶.

Why useful?

Suppose that 𝐻 arises as a finite index subgroup in 𝐺 but the 
index is unknow. Then, using

𝑠𝑐𝑙u 𝑔 = r
[u:t]

𝑠𝑐𝑙t ∑v 𝑎 𝑔 𝑎wr

we can bound the index 𝐺:𝐻 from below.



Non-Vanishing: Gaps

For a big class of groups:
• Free groups (Duncan-Howie)
• Hyperbolic groups (Fujiwara Kapovich)
• Mapping Class Groups (Bestvina-Bromberg-Fujiwara)
• 3-manifold groups (Chen-H.)
• Certain Amalgamated Free Products (Chen-H., Clay-Forester-

Louwsma)
• RAAGS (H., Forester-Tao-Soroko)

𝐺 has a gap in 𝑠𝑐𝑙 if there is a 𝐶 > 0 such that for all but 
‘controlled’ elements g, we have that 𝑠𝑐𝑙 𝑔 ≥ 𝐶.



Decidability

Proposition: It is undecidable if an element 𝑔 ∈ 𝐺 has vanishing 
𝑠𝑐𝑙 or not.



Spectrum

• Free Groups: Have rational scl
+there is a fast algorithm to compute it (Calegari, Calegari-
Walker) Figure: 50.000 random elements of length 24 in 𝐹s.



Spectrum

• Free Groups: Have rational scl (Calegari)
• BS groups have rational scl (Chen)
• One of the few groups, where full scl-spectrum is known: 

Universal Central Extension of Thompson’s Group T:  Has scl all 
non-negative rationals

• There are groups with non-rational scl (Zhuang)

• For recursively finite groups: all right-computable numbers (H.)



Links to other fields: Simplicial Volume

Theorem (H. – Löh):
Let 𝐺 be a fp group with 𝐻s 𝐺; 𝑅 = 0 and let 𝑔 ∈ [𝐺, 𝐺] be 
an element. Then there a 4-manifold M such that

|| 𝑀 || = 48 ⋅ 𝑠𝑐𝑙 𝑔 .



Links to other fields: Simplicial Volume

Theorem (H. – Löh):
Let 𝐺 be a fp group with 𝐻s 𝐺; 𝑅 = 0 and let 𝑔 ∈ [𝐺, 𝐺] be 
an element. Then there a 4-manifold M such that

|| 𝑀 || = 48 ⋅ 𝑠𝑐𝑙 𝑔 .

Corollaries:
• There are 4-manifolds with arbitrary rational simplicial volume
• The set of simplicial volumes in higher dimensions is dense.



Open Questions

• What are extremal quasimorphisms for arbitrary elements of 
the free group? 

• Is there a second gap of scl in non-abelian free groups F 
between r

s
and x

rs
• Is there a finitely presented group which has algebraic but not 

rational values scl? Is the set of scls on finitely presented 
groups the set of right-computable numbers? 

• Is scl rational on surface groups? If yes, is this rationality 
achieved using extremal surfaces? What about scl on Gromov
hyperbolic groups? 



Thank you for listening!


