Higher-degree bounded cohomology
of transformation groups

Martin Nitsche
Karlsruhe Institute of Technology

22.11.2021



Motivation and results

We consider the following (discrete) transformation groups:
@ Homeoyol,0(M), the volume-preserving, isotopic-to-identity homeomorphisms on a
compact Riemannian manifold M of dimension > 3
o Diff,,1(D?, dD?), the volume-preserving (smooth) diffeomorphisms on the standard
2—disk that restrict to the identity in a neighborhood of the boundary

Theorem (Brandenbursky—Marcinkowski, '19)

If the fundamental group m1(M) surjects onto the free group F», then the exact reduced
bounded cohomology EH{ (Homeoyo1,0(M)) is infinite-dimensional in degrees d € {2, 3}.

Theorem (Kimura, '20)
dim EH{ (Diffy01(D?, 8D?)) = oo in degrees d € {2,3}.

Main results
o If w1 (M) surjects onto Fa, then dim EHY (Homeo,o1,0(M)) = oo for d > 2 even.
o dim EHY(Diff,c;(D?, dD?)) = oo for d > 2 even.

@ Assume that dim M > 5 and that there exists a split surjection 71 (M) — Z? that is
trivial on the center Z(w1(M)). Then HY(Homeoyo1,0(M)) # {0} for all d > 0.
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Theorem (Brandenbursky—Marcinkowski, '19)

If the fundamental group m1(M) surjects onto the free group F», then the exact reduced
bounded cohomology EH{ (Homeoyo1,0(M)) is infinite-dimensional in degrees d € {2, 3}.

Theorem (Kimura, '20)
dim EH{ (Diffve1 (D?, OD?)) = oo in degrees d € {2,3}.

Main results

o If w1 (M) surjects onto Fa, then dim EHZ (Homeoyo1,0(M)) = oo for d > 2 even.
o dim EHY(Diff,0; (D?, dD?)) = oo for d > 2 even.

@ Assume that dim M > 5 and that there exists a split surjection 71 (M) — Z? that is
trivial on the center Z(m1(M)). Then HY(Homeoyo1,0(M)) # {0} for all d > 0.

Other groups with infinite bounded-cohomological dimension:
o P, F2 and similar infinite direct sums (L&h, '15)

@ certain finitely generated groups (Fournier-Facio—Léh—Moraschini, '21)
o Homeop(S*) and Homeog(ID?) (Monod—Nariman, '21)
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Argument outline

Theorem (Brandenbursky—Marcinkowski, '19)

If the fundamental group m1(M) surjects onto the free group F», then the exact reduced
bounded cohomology EH{ (Homeoyo1,0(M)) is infinite-dimensional in degrees d € {2, 3}.

Idea: We construct
EHy(F2) " EH,(Homeoyo,o(M)) «+—Y EHy(I) ,

where ' has non-trivial bounded cohomology, the ;™ are induced by homomorphisms
a;: Fo — Homeoyol,0(M), and tr o oy converges to something that can be computed.

For higher degrees do the same with

(g, Xan )"

Efy(F2") EH, (Homeoyo o(M)) +——*— EH,(I") .
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The induction map

Definition (coupling between groups)

A coupling between discrete groups I, A is a measure space X with measure-preserving
commuting actions o: ' ~ X and p: X ~ A.

The coupling is left-cofinite if T is countable o is free and there exists a finite
I-fundamental domain.

Main example

X = M the universal covering of a compact Riemannian manifold. I := 71(M) acts by
deck transformation and A by measure-preserving '—equivariant homeomorphisms.

A choice of a fundamental domain F gives rise to an isomorphism X 2T x F.
Let x :== prr: X 2T x F — I'. We define the chain map (as in Monod—Shalom, '06)

X eoo(rn-%—l;R)r NS (/\:14—1;£z><>(x7 R)r)/\
X c(Aoy -, An)(x) = C(X(X.)\o), ce X(X-)\n))-
M £2(M N R): (1:6) (Y0, -y ¥n) = -7 0+, 7 m)
A (AL E): (M) Doy -5 An) = Ac(A oy, A7)
(

I~ L2(X,R): (7.F)(x) = 7.f (7 %)
A~ LZ(XR): (MF)(x) = f(x.\)
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The induction map

Definition (coupling between groups)

A coupling between discrete groups I, A is a measure space X with measure-preserving
commuting actions o: ' ~ X and p: X ~ A.

The coupling is left-cofinite if T is countable o is free and there exists a finite
I-fundamental domain.

Main example

X = M the universal covering of a compact Riemannian manifold. I := 71(M) acts by
deck transformation and A by measure-preserving '—equivariant homeomorphisms.

A choice of a fundamental domain F gives rise to an isomorphism X 2T x F.
Let x :== prr: X 2T x F — I'. We define the chain map (as in Monod—Shalom, '06)

X eoo(rn-%—l;R)r NS (An+1;£oo(X7 R)r)/\
X c(Aoy -, An)(x) = C(X(x.)\o), ce X(X-)\n))-
This gives rise to a homomorphism
ind? X : Hi (M R) — Hi(A; £2(X,R)).
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The transfer map

For a choice of a fundamental domain F let x ‘= prr: X =T x F =T,
indf X: Hj (I R) — Hi(A; £2(X,R)")
X (ML R) = 0 (A £2(X,R)")"
X c(Aoy .., An)(x) = C(X(x.)\o), ceey X(X.)\,,))
The induction homomorphism does not depend on the choice of the fundamental domain.

Idea: if F’ # F is a different fundamental domain, then
indf (X, F) = (right-multiplication,)* o indf (X, F')

Finally, set  t}X: Hi(DR) —™ Hi(A; £2(X,R)") —— H(A;R)

[e] — [(/\o, cey An) /F C(X(X.)\o)7 e ,X(x.)\,,))
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Properties of the transfer

X Hp(DR) —™ s Hi(A £2(X,R)") —— Hi(A;R)

[e] — |:()\o,...,)\,,) — /Fc(x(x.ko),...,x(x.)\,,)):|

It is easy to check that the transfer satisfies the following properties:

1. If X =T with the counting measure, then A acts by x.A = x - ¢()) for some ¢ and

trtX = o*. (group morphisms)
2. M (XUX') =tePX + X and (linearity)
tr/r\(X X Xir) = vol(Xer) - tr/r\X if Xir has trivial T— and A—actions
3. trP(X1 XA X2) = tr,r\'X2 o trf—\Xl and (concatenation)
trp”f,’WX =¢p*o tr/r\:(ﬁX
4t (X x X)(& x &) = trit X (&) Xt X (&) (products)
5 If ((F,a,X,p,,A))/eN is a sequence of left-cofinite couplings and p; — ps in the
sense that vol(F NUserloN)(x) # poo()\)(x)}) — 0, then (limits)
sup. [[er0 X (€) — b= X ()| — 0.
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Special case of Brandenbursky—Marcinkowski's theorem

If 71(M) = F,, then EH (Homeoyo1,0(M)) is infinite-dimensional for d € {2, 3}.

Sketch: e Use the coupling (m(M),U, M, p, Homeovol,o(M)). p: M A Homeoyor,0(M)
is given by x.\ 1= ﬁl(x), with H: [0,1] x M — M the lift of any isotopy from idy to A.

e Define a: Fo — Homeoyo1,0(M): send the generators of F, to the end result of the
“finger-push” homotopy around the red/blue tube, with increasing tightness as | — oo.

o EHy(F2) ¢« EHy(Homeoyoro(M)) r EHy (m1(M))
Decompose the limit coupling (7r1(M),a7 M, lim(p o a,),Fg) into pieces: red, blue,
intersection, the rest. Only the transfer of the intersection piece is non-trivial.

o The limit transfer map is a multiple of the identity on EHy(F2).

Hence tr M: EHy,(m1(M)) — EHy(Homeoyor,0(M)) is injective.
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Kimura's theorem
EHY (Diffy01(D?, D?)) is infinite-dimensional for d € {2, 3}.

Sketch: e Let C; be the configuration space {(Xl,xz,X3) € (D?)? | xi # x; Vi ;éj} and

M the universal covering of its Fulton—MacPherson compactification M

e Use the coupling (7r1(M), o, I\7I, 0, Diffvol(]D>27 8]1))2)).
The right action p: M .~ Diff o1 (D?, OD?) is given by x.\ := Fll(x), where
H:[0,1] x M — M is the lift of the induced path of any isotopy from idp> to A.

e 11(M) = the pure braid group on 3 strands 2 Z x F» = (z) x (11, 7),
where z rotates all 3 points around each other and 71, 7> rotates x3 around xi, x2.

o Define ay: Fy — Diffy1(ID?, OD?): send the generators of F, to the end result of
twisting the red/blue disk once, with increasing tightness as | — co.

o As before compute the limit transfer map by decomposing the limit coupling.
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Adjustments for results in higher degrees

Ingredients:
1) Recall:

4, tl'|/—\11>><<|/—\22 (Xl X Xz)({l X 52) = tr/r\lle(gl) X trll-\ng(fg) (products)
2) We can take multiple (sequences of ) group homomorphisms «;;: Fo — A
for A = Homeoyo1,0(M) or A = Diffvol(]D)Z, 8]]])2), with disjoint support:

AANA
A

e Consider the the sequence of homomorphisms a; = Hau: " — A
and the coupling (7r1(M)", o, (M)", p" o Ag, /\):

=T oy (a1 Xeexan ) —=— trZZOA(ﬁ)” _ )
By (") <) B, (Homeoworo(M)) ' B (m1(M)")

o Detect non-trivial elements on the left by pairing 2*~homology. Note that the elements
have the form U7:1 Z;Zl q;*(z) for z; € EHyp(F2) and q;: F»" — F» the j-th projection.
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