

DËMUSHKIN GROUPS AND L² INVARIANTS

pro-*p* analogues of surface groups

Henrique Souza Universidade de Brasília, Brazil <u>en.henriquesouza.mat.br</u>

PRO-P SURFACE GROUPS?

- *G* is pro-*p* if it is the inverse limit of finite *p*-groups.
 - Compact, Hausdorff and totally disconnected.
- Examples: finite *p*-groups,

$$\mathbb{Z}_p = \lim_{\leftarrow} \mathbb{Z}/p^k \mathbb{Z}.$$

- Pro-*p* completions: take an *abstract* group Γ and set $\widehat{\Gamma}_p = \lim_{\leftarrow} \Gamma/N$, where $(\Gamma: N) = p^k$.
- Fin. gen. free groups $\stackrel{\widehat{\Gamma}_p}{\rightarrow}$ fin. gen. free *pro-p* groups.
- Orientable surface groups $\stackrel{\widehat{\Gamma}_p}{\rightarrow}$ examples of...

DËMUSHKIN GROUPS!

- Pro-*p* analogues of "abstract" surface groups.
- *Def.:* satisfy the pro-*p* Poincaré duality in dim. 2:

$$\cup: H^i_c(G, \mathbb{F}_p) \times H^{2-i}_c(G, \mathbb{F}_p) \to H^2_c(G, \mathbb{F}_p) \simeq \mathbb{F}_p$$

is nondegenerate.

• [Dëmushkin, 1961] For odd *p*, we have even *d* and:

$$G \simeq \langle x_1, x_2, \cdots, x_{d-1}, x_d | x_1^q [x_1, x_2] \cdots [x_{d-1}, x_d] = 1 \rangle_p$$

Сергей Петрович Дёмушкин

HOMOLOGY OF PRO-P GROUPS

• Completed group algebra:

 $\llbracket \mathbb{F}_p G \rrbracket = \lim_{\leftarrow} \llbracket \mathbb{F}_p(G/U) \rrbracket.$

• Homology as
$$\operatorname{Tor}_{i}^{\left[\mathbb{F}_{p}G\right]}(\mathbb{F}_{p}, M) = H_{i}(G, M).$$

- $H_i(G, \mathbb{F}_p)$ is the dual \mathbb{F}_p -vector space of $H_c^i(G, \mathbb{F}_p)$.
- $\dim_{\mathbb{F}_p} H_1(G, \mathbb{F}_p) = \min \# \text{ top. generators, } \dim_{\mathbb{F}_p} H_2(G, \mathbb{F}_p) = \min \# \text{ of relators.}$

L^2 INVARIANTS

- Classical L^2 -Betti numbers: passing to a Γ -invariant setting using the universal cover.
- For nice fields *K*, abstract groups Γ and residual chains { Λ_i }, they satisfy Lück approximation:

$$b_n^{(2)}(\Gamma; K) = \lim_{i \to \infty} \frac{b_n(\Lambda_i; K)}{(\Gamma:\Lambda_i)}.$$

• For pro-*p* groups *G* and $[\mathbb{F}_p G]$ -modules *M*, we *define* them through Lück approximation:

$$b_n^{(2)}(G;M) = \inf_{U \trianglelefteq_o G} \frac{\dim_{\mathbb{F}_p} H_n(U,M)}{(G:U)}.$$

• $b_1^{(2)}(G, \mathbb{F}_p)$ is the rank gradient of G.

WHAT DO WE GET FOR DËMUSHKIN GROUPS*?

[Jaikin-Zapirain, Shusterman 2019]:

- The Atiyah Conjecture: when defined, $b_n^{(2)}(G, M)$ is an integer!
- *Kaplansky's Conjecture*: $\llbracket \mathbb{F}_p G \rrbracket$ has no zero divisors.
- The *Strenghtened Hanna Neumann Inequality* for large G and $H, K \leq_c G$ fin. gen.:

$$\sum_{x \in H \setminus G/K} \overline{rk}(H \cap xKx^{-1}) \le \overline{rk}(H) \cdot \overline{rk}(K),$$

where $\overline{rk}(H) = \max(rk(H) - 1, 0)$ is the reduced rank.

- + [Antolín, Jaikin-Zapirain 2020] + [S.]:
- Retracts of Dëmushkin groups are inert, that is, if $G \simeq N \rtimes H$, then, for every $K \leq_c G$, we have: rk($H \cap K$) \leq rk(K)