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Introduction

Construction: Consider f ∈ Diff+(Σ = Σg≥2).

Tf := fΣ× [0, 1]

Mapping Torus

Volume: Get a topological invariant

vol(Tf ) := ||Tf ||.

Q: How does vol(Tf ) grow in families of ?
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Random walks on the mapping class group

Random walk on Cay(Mod(Σ),S): Start at Id.

Choose a s ∈ S
at random uniformly. Cross the edge labeled by s

.

Repeat.

Id

f1 = s1

f2 = s1s2

= f3

f4 = s1s2s3s4

Pn := dist. of fn

P := dist. of (fn)n∈N

Family of random mapping tori := (Tfn)∈N where (fn)n∈N is a
random walk on Mod(Σ) driven by the uniform probability on S .
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A law of large numbers

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers
We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

Pf. Fix τ := triang. of Σ. Consider Σ× [0, 1].

There is K = K (S) such that for every s ∈ S we can extend
τ × {0} t sτ × {1} to a triang. of Σ× [0, 1] with ≤ K simpl.

Say f = s1 · · · sn. Extend τ × {0} t (f τ)× {n} to a triang. of
Σ× [0, n] with ≤ Kn simpl. by stacking triang. of Σ× [0, 1].

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers
We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

Pf. Fix τ := triang. of Σ. Consider Σ× [0, 1].

There is K = K (S) such that for every s ∈ S we can extend
τ × {0} t sτ × {1} to a triang. of Σ× [0, 1] with ≤ K simpl.

Say f = s1 · · · sn. Extend τ × {0} t (f τ)× {n} to a triang. of
Σ× [0, n] with ≤ Kn simpl. by stacking triang. of Σ× [0, 1].

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers
We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

Pf. Fix τ := triang. of Σ. Consider Σ× [0, 1].

There is K = K (S) such that for every s ∈ S we can extend
τ × {0} t sτ × {1} to a triang. of Σ× [0, 1] with ≤ K simpl.

Say f = s1 · · · sn. Extend τ × {0} t (f τ)× {n} to a triang. of
Σ× [0, n] with ≤ Kn simpl. by stacking triang. of Σ× [0, 1].

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



A law of large numbers

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (fn)n∈N

lim
n→∞

vol(Tfn)

n
= v .

Comments

I Tf has a triangulation with ∼ |f |S tetrahedra ⇒ vol(Tfn) . n.

I Coarsely linear growth vol(Tfn) ∈ [n/c , cn] well-known
[Brock+Maher-Tiozzo]

I Same holds for families Mfn := Hg ∪fn Hg of random Heegaard
splittings with exactly the same asymptotic value v = v(S).



Quasi-fuchsian manifolds

Quasi-fuchsian manifold:

Q ' Σ× R

Bers: For every (X ,Y ) ∈ T × T there is a unique Q = Q(X ,Y ).



Quasi-fuchsian manifolds

Quasi-fuchsian manifold:

CC(Q) ' Σ× [0, 1]

convex core

Bers: For every (X ,Y ) ∈ T × T there is a unique Q = Q(X ,Y ).



Quasi-fuchsian manifolds

Quasi-fuchsian manifold:

P Q
γ

Bers: For every (X ,Y ) ∈ T × T there is a unique Q = Q(X ,Y ).



Quasi-fuchsian manifolds

Quasi-fuchsian manifold:

X Y

Bers: For every (X ,Y ) ∈ T × T there is a unique Q = Q(X ,Y ).



Quasi-fuchsian manifolds

Quasi-fuchsian manifold:

X Y

Bers: For every (X ,Y ) ∈ T × T there is a unique Q = Q(X ,Y ).



A law of large numbers for quasi-fuchsian manifolds

Another law of large numbers for the volume

Theorem B (V. 2019)

Fix o ∈ T . For P-almost every (fn)n∈N

lim
n→∞

vol(CC(Q(o, fno)))

n
= v3 · v(S),

where v(S) = same as before and v3 = vol. reg. ideal tetrahedron.

Comments

I vol(CC(Q(o, fno))) � dWP(o, fno) [Brock].

I Coarsely linear behaviour well-known: dWP(o, fno)/n→ d > 0
[Maher-Tiozzo].

I Estimates on dvol : T (T × T )→ R with respect to || • ||WP

and || • ||T [Schlenker, Kojima-McShane]
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Riemannian and simplicial volume

A geometric point of view

Thurston: f pseudo-Anosov ⇐⇒ Tf has a hyp. metric (Tf , σ).

Gromov-Thurston: vol(Tf ) = vol(Tf , σ)/v3.

Maher: P-a.s. every fn with n large is pseudo-Anosov.

Proposition

For P-almost every (fn)n∈N we have

|vol(Tfn , σn)− vol(CC(Q(o, fno)))| = o(n).

Thus Theorem B =⇒ Theorem A.
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The proof of the Proposition

Besson, Courtois and Gallot: If (Tf , ρ) is a metric that satisfies
sec ∈ (−1− ε,−1 + ε) for some 0 < ε < 1/2, then

vol(Tf , ρ)

vol(Tf , σ)
= 1 + o(ε)

for some universal function o(ε).

A construction of such a metric
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Volume and pseudo-Anosov iterations

The same strategy gives another proof of the following

Proposition (Kojima-McShane,Brock-Bromberg)

For every pseudo-Anosov f ∈ Mod(Σ) we have

lim
n→∞

vol(CC(Q(o, f no)))

n
= vol(Tf , σ).

Idea: Get metrics (Tf n , ρn) with sec ∈ (−1− εn,−1 + εn), where
εn ↓ 0 and vol(Tf n , ρn) � vol(CC(Q(o, f no))).

Remark.

Inflexibility ⇒ |n · vol(Tf , σ)− vol(CC(Q(o, f no)))| = O(1)
[Kojima-McShane, Brock-Bromberg]
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The proof of Theorem B

Fix N > 0 large. Suppose n = Nm. We can write

fn = (s1 · · · sN) . . . (sN(m−1)+1 · · · sNm) = h1 · · · hm.

Proposition

For P-almost every (fn)n∈N we have∣∣∣∣∣∣vol(CC(Q(o, fno)))−
∑
j≤m

vol(CC(Q(o, hjo)))

∣∣∣∣∣∣ = o(n).

The sum converges in average by the ergodic theorem.
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