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Random walks on the mapping class group

Random walk on Cay(Mod(X), S): Start at Id. Choose as € S
at random uniformly. Cross the edge labeled by s. Repeat.

IR

S152

= 51525354

|
I F/Im
I

P, := dist. of f,
P := dist. of (f4)nen

Family of random mapping tori := (T, )cn where (f;)pen is a
random walk on Mod(X) driven by the uniform probability on S.
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There is K = K(S) such that for every s € S we can extend

7 x {0} UsT x {1} to a triang. of ¥ x [0,1] with < K simpl.
Say f =s1---s,. Extend 7 x {0} U (f7) x {n} to a triang. of

Y x [0, n] with < Kn simpl. by stacking triang. of X x [0, 1].
L
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A law of large numbers

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for P-almost every (f,)nen

1( T,
lim vol(Tr,) =v
n—o00 n

Comments

» Ty has a triangulation with ~ |f|s tetrahedra = vol(T¢,) < n.

» Coarsely linear growth vol(T,) € [n/c, cn] well-known
[Brock+Maher-Tiozzo]

» Same holds for families M¢, := Hg Ur, Hgy of random Heegaard
splittings with exactly the same asymptotic value v = v(S).
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—

Bers: For every (X, Y) €T x T thereis a unique @ = Q(X,Y).
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Another law of large numbers for the volume

Theorem B (V. 2019)
Fix o € T. For P-almost every (fn)neN

im vol(CC(Q(o, f,0)))

n—o00 n

=wv3-v(S),

where v(S) = same as before and v3 = vol. reg. ideal tetrahedron.
Comments

» vol(CC(Q(o, ,0))) < dwp(o, f0) [Brock].

» Coarsely linear behaviour well-known: dwp(o, f,0)/n — d >0
[Maher-Tiozzo].

» Estimates on dvol : T(7 x 7) — R with respect to || e ||wp
and || e ||7 [Schlenker, Kojima-McShane]
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A geometric point of view

Thurston: f pseudo-Anosov <= T¢ has a hyp. metric (T¢,0).
Gromov-Thurston: vol(T¢) = vol(T¢,0)/v3.

Mabher: P-a.s. every f, with n large is pseudo-Anosov.

Proposition

For P-almost every (fp)nen we have

|vol( T¢,, on) — vol(CC(Q(o, f,0)))| = o(n).

Thus Theorem B = Theorem A.
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The proof of the Proposition

Besson, Courtois and Gallot: If (T¢, p) is a metric that satisfies
sec € (—1 —€,—1 +¢€) for some 0 < € < 1/2, then

vol(T¢, p)

vol( Ty, o) =1+0(¢)

for some universal function o(e).

A construction of such a metric

vol( Ty, p) < vol(CC(Q(o, fo)))
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Volume and pseudo-Anosov iterations

The same strategy gives another proof of the following
Proposition (Kojima-McShane,Brock-Bromberg)
For every pseudo-Anosov f € Mod(X) we have

im vol(CC(Q(o, f"0)))

n—o00 n

= vol(T¢,0).

Idea: Get metrics (T¢n, pn) with sec € (=1 — €5, —1 + €,), where
€n 4 0 and vol(T¢n, pp) =< vol(CC(Q(o, f"0))).

Remark.

Inflexibility = |n - vol( T¢, o) — vol(CC(Q(o, f"0)))| = O(1)
[Kojima-McShane, Brock-Bromberg]
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Fix N > 0 large. Suppose n = Nm. We can write
fn: (51'"SN)'"(SN(mfl)qu"'st) — hl"'hm-
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The proof of Theorem B

Fix N > 0 large. Suppose n = Nm. We can write
fo=1(s1--Sn) .. (SN(m—1)+1" " SNm) = h1- - hp.

Proposition

For P-almost every (fp)neny we have

Jj<m

vol(CC(Q(o, f,0))) — Z vol(CC(Q(o, hjo)))| = o(n).

The sum converges in average by the ergodic theorem.

Q(o, f0) /\ /\
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