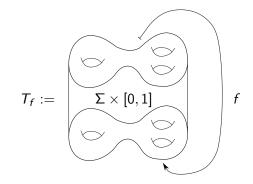
### Volumes and random walks on mapping class groups

Gabriele Viaggi, Universität Heidelberg

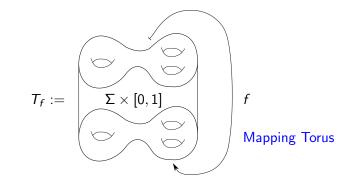
June 22, 2020

### **Construction**: Consider $f \in \text{Diff}^+(\Sigma = \Sigma_{g \ge 2})$ .

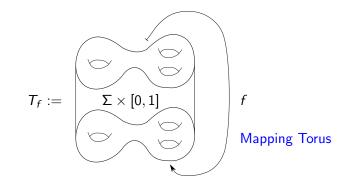
**Construction**: Consider  $f \in \text{Diff}^+(\Sigma = \Sigma_{g \ge 2})$ .



**Construction**: Consider  $f \in Mod(\Sigma)$ .



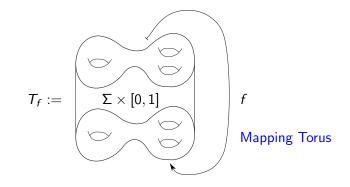
**Construction**: Consider  $f \in Mod(\Sigma)$ .



Volume: Get a topological invariant

$$\operatorname{vol}(T_f) := ||T_f||.$$

**Construction**: Consider  $f \in Mod(\Sigma)$ .

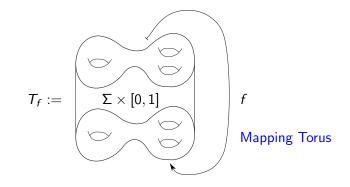


Volume: Get a topological invariant

$$\operatorname{vol}(T_f) := ||T_f||.$$

**Q**: How does  $\operatorname{vol}(T_f)$  grow in families of *random mapping tori*?

**Construction**: Consider  $f \in Mod(\Sigma)$ .



Volume: Get a topological invariant

$$\operatorname{vol}(T_f) := ||T_f||.$$

**Q**: How does  $\operatorname{vol}(T_f)$  grow in families of *random mapping tori*?

Random walks on the mapping class group Random walk on  $Cay(Mod(\Sigma), S)$ : Start at Id.

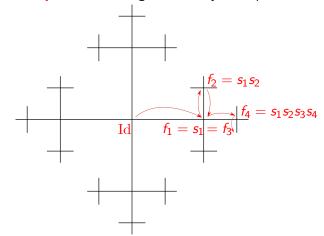
.

# **Random walk on** $\operatorname{Cay}(\operatorname{Mod}(\Sigma), S)$ : Start at Id. Choose a $s \in S$ at random uniformly.

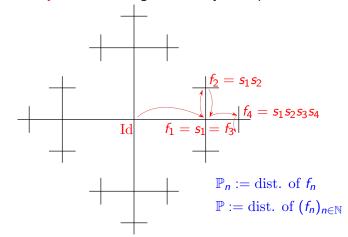
**Random walk on**  $Cay(Mod(\Sigma), S)$ : Start at Id. Choose a  $s \in S$  at random uniformly. Cross the edge labeled by s.

**Random walk on**  $Cay(Mod(\Sigma), S)$ : Start at Id. Choose a  $s \in S$  at random uniformly. Cross the edge labeled by s. Repeat.

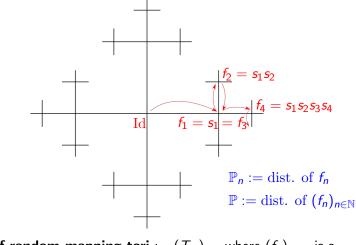
**Random walk on**  $Cay(Mod(\Sigma), S)$ : Start at Id. Choose a  $s \in S$  at random uniformly. Cross the edge labeled by s. Repeat.



**Random walk on**  $Cay(Mod(\Sigma), S)$ : Start at Id. Choose a  $s \in S$  at random uniformly. Cross the edge labeled by s. Repeat.



**Random walk on**  $Cay(Mod(\Sigma), S)$ : Start at Id. Choose a  $s \in S$  at random uniformly. Cross the edge labeled by s. Repeat.



**Family of random mapping tori** :=  $(T_{f_n})_{\in\mathbb{N}}$  where  $(f_n)_{n\in\mathbb{N}}$  is a random walk on  $Mod(\Sigma)$  driven by the uniform probability on *S*.

We have the following *law of large numbers* for the volume Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\operatorname{vol}(T_{f_n})}{n}=v.$$

・ロト・日本・モート モー うへぐ

We have the following *law of large numbers* for the volume Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(T_{f_n})}{n}=v.$$

#### Comments

We have the following *law of large numbers* for the volume Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(T_{f_n})}{n}=v.$$

#### Comments

•  $T_f$  has a triangulation with  $\sim |f|_S$  tetrahedra  $\Rightarrow \operatorname{vol}(T_{f_n}) \lesssim n$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\operatorname{vol}(T_{f_n})}{n}=v.$$

#### Comments

•  $T_f$  has a triangulation with  $\sim |f|_S$  tetrahedra  $\Rightarrow \operatorname{vol}(T_{f_n}) \lesssim n$ .

*Pf.* Fix  $\tau :=$  triang. of  $\Sigma$ . Consider  $\Sigma \times [0, 1]$ .

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\operatorname{vol}(T_{f_n})}{n}=v.$$

#### Comments

•  $T_f$  has a triangulation with  $\sim |f|_S$  tetrahedra  $\Rightarrow \operatorname{vol}(T_{f_n}) \leq n$ .

Pf. Fix  $\tau :=$  triang. of  $\Sigma$ . Consider  $\Sigma \times [0, 1]$ . There is K = K(S) such that for every  $s \in S$  we can extend  $\tau \times \{0\} \sqcup s\tau \times \{1\}$  to a triang. of  $\Sigma \times [0, 1]$  with  $\leq K$  simpl.

We have the following law of large numbers for the volume

Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\operatorname{vol}(T_{f_n})}{n}=v.$$

#### Comments

•  $T_f$  has a triangulation with  $\sim |f|_S$  tetrahedra  $\Rightarrow \operatorname{vol}(T_{f_n}) \lesssim n$ .

Pf. Fix  $\tau :=$  triang. of  $\Sigma$ . Consider  $\Sigma \times [0, 1]$ . There is K = K(S) such that for every  $s \in S$  we can extend  $\tau \times \{0\} \sqcup s\tau \times \{1\}$  to a triang. of  $\Sigma \times [0, 1]$  with  $\leq K$  simpl. Say  $f = s_1 \cdots s_n$ . Extend  $\tau \times \{0\} \sqcup (f\tau) \times \{n\}$  to a triang. of  $\Sigma \times [0, n]$  with  $\leq Kn$  simpl. by stacking triang. of  $\Sigma \times [0, 1]$ .

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

We have the following *law of large numbers* for the volume Theorem A (V. 2019)

There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(T_{f_n})}{n}=v.$$

#### Comments

•  $T_f$  has a triangulation with  $\sim |f|_S$  tetrahedra  $\Rightarrow \operatorname{vol}(T_{f_n}) \lesssim n$ .

► Coarsely linear growth  $vol(T_{f_n}) \in [n/c, cn]$  well-known [Brock+Maher-Tiozzo]

We have the following *law of large numbers* for the volume Theorem A (V. 2019)

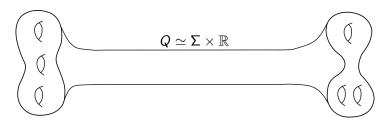
There exists v = v(S) > 0 such that for  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(T_{f_n})}{n}=v.$$

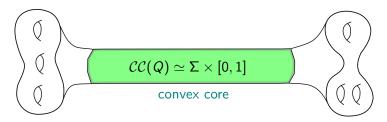
#### Comments

- $T_f$  has a triangulation with  $\sim |f|_S$  tetrahedra  $\Rightarrow \operatorname{vol}(T_{f_n}) \lesssim n$ .
- ► Coarsely linear growth  $vol(T_{f_n}) \in [n/c, cn]$  well-known [Brock+Maher-Tiozzo]
- Same holds for families M<sub>f<sub>n</sub></sub> := H<sub>g</sub> ∪<sub>f<sub>n</sub></sub> H<sub>g</sub> of random Heegaard splittings with exactly the same asymptotic value v = v(S).

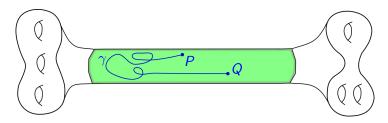
Quasi-fuchsian manifold:



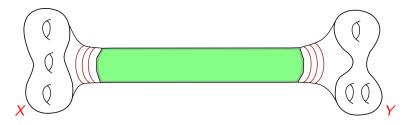
### Quasi-fuchsian manifold:



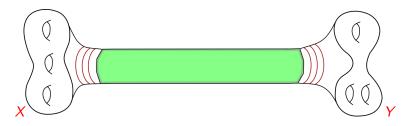
### Quasi-fuchsian manifold:



Quasi-fuchsian manifold:



### Quasi-fuchsian manifold:



**Bers**: For every  $(X, Y) \in \mathcal{T} \times \mathcal{T}$  there is a unique Q = Q(X, Y).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Another law of large numbers for the volume

Theorem B (V. 2019)

Fix  $o \in \mathcal{T}$ . For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(\mathcal{CC}(Q(o,f_n o)))}{n}=v_3\cdot v(S),$$

where v(S) = same as before and  $v_3 = vol.$  reg. ideal tetrahedron.

Another law of large numbers for the volume

Theorem B (V. 2019)

Fix  $o \in \mathcal{T}$ . For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(\mathcal{CC}(Q(o,f_n o)))}{n}=v_3\cdot v(S),$$

where v(S) = same as before and  $v_3 = vol.$  reg. ideal tetrahedron. Comments

Another law of large numbers for the volume

Theorem B (V. 2019)

Fix  $o \in \mathcal{T}$ . For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\mathrm{vol}(\mathcal{CC}(Q(o,f_n o)))}{n}=v_3\cdot v(S),$$

where v(S) = same as before and  $v_3 = vol.$  reg. ideal tetrahedron. Comments

▶  $\operatorname{vol}(\mathcal{CC}(Q(o, f_n o))) \asymp d_{\operatorname{WP}}(o, f_n o)$  [Brock].

Another law of large numbers for the volume

Theorem B (V. 2019)

Fix  $o \in \mathcal{T}$ . For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\operatorname{vol}(\mathcal{CC}(Q(o,f_n o)))}{n}=v_3\cdot v(S),$$

where v(S) = same as before and  $v_3 = vol.$  reg. ideal tetrahedron.

### Comments

- ▶  $\operatorname{vol}(\mathcal{CC}(Q(o, f_n o))) \asymp d_{\operatorname{WP}}(o, f_n o)$  [Brock].
- ► Coarsely linear behaviour well-known:  $d_{WP}(o, f_n o)/n \rightarrow d > 0$ [Maher-Tiozzo].

Another law of large numbers for the volume

Theorem B (V. 2019)

Fix  $o \in \mathcal{T}$ . For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$ 

$$\lim_{n\to\infty}\frac{\operatorname{vol}(\mathcal{CC}(Q(o,f_n o)))}{n}=v_3\cdot v(S),$$

where v(S) = same as before and  $v_3 = vol.$  reg. ideal tetrahedron.

### Comments

- ▶  $\operatorname{vol}(\mathcal{CC}(Q(o, f_n o))) \asymp d_{\operatorname{WP}}(o, f_n o)$  [Brock].
- ► Coarsely linear behaviour well-known:  $d_{WP}(o, f_n o)/n \rightarrow d > 0$ [Maher-Tiozzo].
- Estimates on dvol: T(T × T) → ℝ with respect to || ||<sub>WP</sub> and || ||<sub>T</sub> [Schlenker, Kojima-McShane]

A geometric point of view

A geometric point of view

**Thurston**: f pseudo-Anosov  $\iff T_f$  has a hyp. metric  $(T_f, \sigma)$ .

A geometric point of view

**Thurston**: f pseudo-Anosov  $\iff T_f$  has a hyp. metric  $(T_f, \sigma)$ . **Gromov-Thurston**:  $\operatorname{vol}(T_f) = \operatorname{vol}(T_f, \sigma)/v_3$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A geometric point of view

**Thurston**: f pseudo-Anosov  $\iff T_f$  has a hyp. metric  $(T_f, \sigma)$ . **Gromov-Thurston**:  $\operatorname{vol}(T_f) = \operatorname{vol}(T_f, \sigma)/v_3$ .

**Maher**:  $\mathbb{P}$ -a.s. every  $f_n$  with n large is pseudo-Anosov.

## Riemannian and simplicial volume

A geometric point of view

**Thurston**: f pseudo-Anosov  $\iff T_f$  has a hyp. metric  $(T_f, \sigma)$ . **Gromov-Thurston**:  $\operatorname{vol}(T_f) = \operatorname{vol}(T_f, \sigma)/v_3$ .

**Maher**:  $\mathbb{P}$ -a.s. every  $f_n$  with n large is pseudo-Anosov.

Proposition

For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$  we have

 $|\operatorname{vol}(T_{f_n}, \sigma_n) - \operatorname{vol}(\mathcal{CC}(Q(o, f_n o)))| = o(n).$ 

# Riemannian and simplicial volume

A geometric point of view

**Thurston**: f pseudo-Anosov  $\iff T_f$  has a hyp. metric  $(T_f, \sigma)$ . **Gromov-Thurston**:  $\operatorname{vol}(T_f) = \operatorname{vol}(T_f, \sigma)/v_3$ .

**Maher**:  $\mathbb{P}$ -a.s. every  $f_n$  with n large is pseudo-Anosov.

#### Proposition

For  $\mathbb{P}$ -almost every  $(f_n)_{n\in\mathbb{N}}$  we have

 $|\operatorname{vol}(T_{f_n}, \sigma_n) - \operatorname{vol}(\mathcal{CC}(Q(o, f_n o)))| = o(n).$ 

Thus Theorem  $B \Longrightarrow$  Theorem A.

**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$\frac{\operatorname{vol}(T_f,\rho)}{\operatorname{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$\frac{\operatorname{vol}(T_f,\rho)}{\operatorname{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

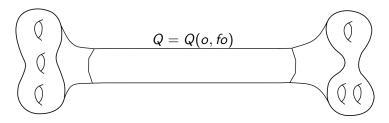
A construction of such a metric

**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$\frac{\operatorname{vol}(T_f,\rho)}{\operatorname{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

A construction of such a metric

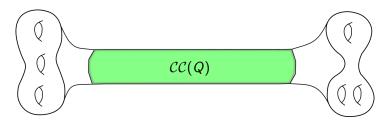


**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$\frac{\operatorname{vol}(T_f,\rho)}{\operatorname{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

#### A construction of such a metric

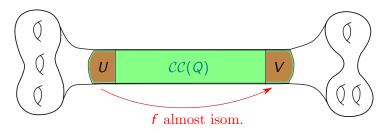


**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$\frac{\operatorname{vol}(T_f,\rho)}{\operatorname{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

#### A construction of such a metric

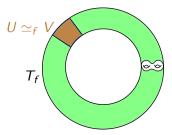


**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$rac{\mathrm{vol}(T_f,
ho)}{\mathrm{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

A construction of such a metric

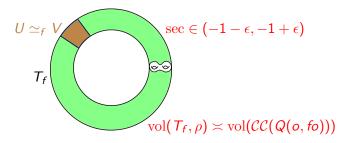


**Besson, Courtois and Gallot**: If  $(T_f, \rho)$  is a metric that satisfies  $\sec \in (-1 - \epsilon, -1 + \epsilon)$  for some  $0 < \epsilon < 1/2$ , then

$$rac{\mathrm{vol}(T_f,
ho)}{\mathrm{vol}(T_f,\sigma)} = 1 + o(\epsilon)$$

for some universal function  $o(\epsilon)$ .

A construction of such a metric



### Volume and pseudo-Anosov iterations

The same strategy gives another proof of the following Proposition (Kojima-McShane,Brock-Bromberg) For every pseudo-Anosov  $f \in Mod(\Sigma)$  we have

$$\lim_{n\to\infty}\frac{\operatorname{vol}(\mathcal{CC}(Q(o,f^n o)))}{n}=\operatorname{vol}(T_f,\sigma).$$

### Volume and pseudo-Anosov iterations

The same strategy gives another proof of the following Proposition (Kojima-McShane,Brock-Bromberg) For every pseudo-Anosov  $f \in Mod(\Sigma)$  we have

$$\lim_{n\to\infty}\frac{\operatorname{vol}(\mathcal{CC}(Q(o,f^n o)))}{n}=\operatorname{vol}(T_f,\sigma).$$

**Idea**: Get metrics  $(T_{f^n}, \rho_n)$  with  $\sec \in (-1 - \epsilon_n, -1 + \epsilon_n)$ , where  $\epsilon_n \downarrow 0$  and  $\operatorname{vol}(T_{f^n}, \rho_n) \asymp \operatorname{vol}(\mathcal{CC}(Q(o, f^n o)))$ .

## Volume and pseudo-Anosov iterations

The same strategy gives another proof of the following Proposition (Kojima-McShane,Brock-Bromberg) For every pseudo-Anosov  $f \in Mod(\Sigma)$  we have

$$\lim_{n\to\infty}\frac{\operatorname{vol}(\mathcal{CC}(Q(o,f^n o)))}{n}=\operatorname{vol}(T_f,\sigma).$$

**Idea**: Get metrics  $(T_{f^n}, \rho_n)$  with  $\sec \in (-1 - \epsilon_n, -1 + \epsilon_n)$ , where  $\epsilon_n \downarrow 0$  and  $\operatorname{vol}(T_{f^n}, \rho_n) \asymp \operatorname{vol}(\mathcal{CC}(Q(o, f^n o)))$ .

#### Remark.

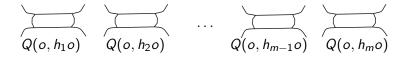
 $Inflexibility \Rightarrow |n \cdot vol(T_f, \sigma) - vol(\mathcal{CC}(Q(o, f^n o)))| = O(1)$ [Kojima-McShane, Brock-Bromberg]

Fix N > 0 large. Suppose n = Nm. We can write

$$f_n = (s_1 \cdots s_N) \dots (s_{N(m-1)+1} \cdots s_{Nm}) = h_1 \cdots h_m.$$

Fix N > 0 large. Suppose n = Nm. We can write

$$f_n = (s_1 \cdots s_N) \dots (s_{N(m-1)+1} \cdots s_{Nm}) = h_1 \cdots h_m.$$

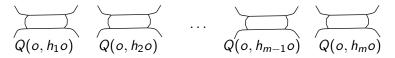


(日)、

э

Fix N > 0 large. Suppose n = Nm. We can write

$$f_n = (s_1 \cdots s_N) \dots (s_{N(m-1)+1} \cdots s_{Nm}) = h_1 \cdots h_m.$$



#### Proposition

For  $\mathbb{P}$ -almost every  $(f_n)_{n \in \mathbb{N}}$  we have

$$\operatorname{vol}(\mathcal{CC}(Q(o, f_n o))) - \sum_{j \leq m} \operatorname{vol}(\mathcal{CC}(Q(o, h_j o))) = o(n).$$

The sum converges in average by the ergodic theorem.

Fix N > 0 large. Suppose n = Nm. We can write

$$f_n = (s_1 \cdots s_N) \dots (s_{N(m-1)+1} \cdots s_{Nm}) = h_1 \cdots h_m.$$

#### Proposition

For  $\mathbb{P}$ -almost every  $(f_n)_{n\in\mathbb{N}}$  we have

$$\left|\operatorname{vol}(\mathcal{CC}(Q(o, f_n o))) - \sum_{j \leq m} \operatorname{vol}(\mathcal{CC}(Q(o, h_j o)))\right| = o(n).$$

The sum converges in average by the ergodic theorem.



э

Fix N > 0 large. Suppose n = Nm. We can write

$$f_n = (s_1 \cdots s_N) \dots (s_{N(m-1)+1} \cdots s_{Nm}) = h_1 \cdots h_m.$$

#### Proposition

For  $\mathbb{P}$ -almost every  $(f_n)_{n\in\mathbb{N}}$  we have

$$\left|\operatorname{vol}(\mathcal{CC}(\mathcal{Q}(o, f_n o))) - \sum_{j \leq m} \operatorname{vol}(\mathcal{CC}(\mathcal{Q}(o, h_j o)))\right| = o(n).$$

The sum converges in average by the ergodic theorem.

