

SR geodesics

12/1/26

- * First idea: controllability and (linearized) control systems
- * Differential Geometry preliminaries

Controllability

Consider an ODE

$$\dot{q} = f(q, u)$$

$$q: \mathbb{R} \rightarrow \mathbb{R}^n$$

$$u: \mathbb{R} \rightarrow \mathbb{R}^m$$

$$f: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$$

q state

u control

Definition: the system is **controllable** if $\forall q_0, q_1 \in \mathbb{R}^n$

$\exists u(t)$ st the solution of $\begin{cases} \dot{q}(t) = f(q(t), u(t)) \\ q(0) = q_0 \end{cases}$

passes through q_1 , $\exists T$ st $q(T) = q_1$

How do we know if a system is controllable?

First idea: look at the linearization

$$\dot{b} = \frac{\partial f}{\partial x}(\bar{q}, \bar{u}) \cdot b + \frac{\partial f}{\partial u}(\bar{q}, \bar{u}) \cdot v$$

$$b = \delta q \quad \text{lin. of } q$$

$$v = \delta u \quad \text{lin. of } u$$

GENERAL \Rightarrow CONTROLLABILITY
CONTROLLABILITY OF LINEARIZED SYSTEM

~~Ex~~
NO

Example : \mathbb{R}^3

$$\begin{cases} \dot{x} = u_1 \\ \dot{y} = u_2 \\ \dot{z} = x u_2 \end{cases} \quad q = (x, y, z)$$

equivalently $\dot{q} = u_1(t) X_1 + u_2(t) X_2$ where $X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$; $X_2 = \begin{pmatrix} 0 \\ 1 \\ x(t) \end{pmatrix}$

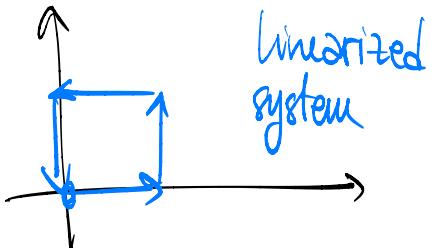
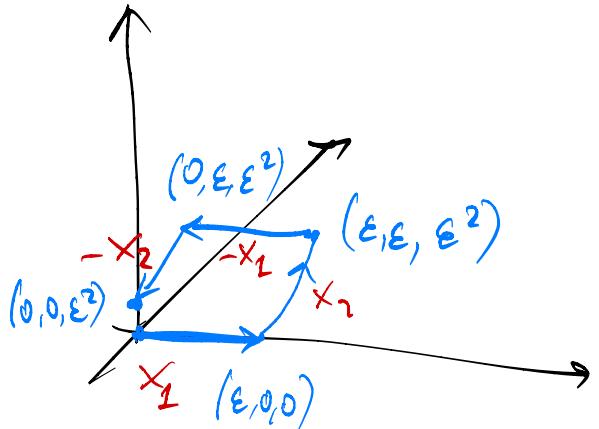
The linearized system in $(0, 0)$ is non-controllable,

because $\dot{q} \in \langle X_1, X_2 \rangle$ which has dimension $= 2 < 3$

$$= \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ x(t) \end{pmatrix} \right\rangle$$

We are going to show that we can reach points on $\{(0, 0, z)\}$

$$(u_1(t), u_2(t)) = \begin{cases} (1, 0) & \text{when } t \in [0, \varepsilon) \\ (0, 1) & \text{when } t \in [\varepsilon, 2\varepsilon) \\ (-1, 0) & \text{when } t \in [2\varepsilon, 3\varepsilon) \\ (0, -1) & \text{when } t \in [3\varepsilon, 4\varepsilon) \end{cases}$$



We have controllability even if the lin. system is non-controllable

$$\text{time} = 4\varepsilon$$

$$\text{distance} = \varepsilon^2$$

T travel time

If we go from $(0,0,0)$ to (x,y,z)

following trajectories that respect the control system

$$\Rightarrow \left. \begin{array}{l} x = \int_0^T u_1(t) dt \leq T \\ y = \int_0^T u_2(t) dt \leq T \\ z = \int_0^T u_2(t) \cdot x(t) dt \leq T^2 \end{array} \right\} \frac{1}{3} (|x| + |y| + |z|^{1/2}) \leq T$$

Observation : I can go from 0 to $(x, 0, 0)$ in time $|x|$

from $(x, 0, 0)$ to (x, y, xy) in time $|y|$

from (x, y, xy) to (x, y, z) in time $4\sqrt{|z-xy|}$

$$T \leq |x| + |y| + 4\sqrt{|z-xy|} \leq |x| + |y| + 4|z|^{1/2} + 2|x| + 2|y|$$

$$\leq 4(|x| + |y| + |z|^{1/2})$$

We just showed $T \sim |x| + |y| + |z|^{1/2}$

Differential Geometry preliminaries

M smooth manifold

if $q \in M$, $C^\infty(M) = \{f: M \rightarrow \mathbb{R} \text{ smooth}\}$, $C^\infty_q = \{f \in C^\infty(U) \text{ st } U \ni q\}$
(Equivalent) definitions of tangent space $T_q M$ neighborhood

(1) $T_q M = \{V: C^\infty_q \rightarrow \mathbb{R} \text{ linear st } V(fg) = f(q) \cdot V(g) + g(q) \cdot V(f)\}$

(2) $\overline{T_q M} = \{\gamma: (-\varepsilon, \varepsilon) \rightarrow M \mid \gamma(0) = q\} / [\gamma \sim \bar{\gamma} \text{ if } (\gamma \circ \bar{\gamma})'(0) = (\gamma \circ \bar{\gamma})'(0)]$

(3) $T_q M = \left\langle \frac{\partial}{\partial x_i} \mid i=1, \dots, n \right\rangle \quad \begin{array}{l} \forall f \in C^\infty(M) \\ \{x_1, \dots, x_n\} \text{ loc. chart of } M \end{array}$

Sketch of (1) = (3)

if V is a derivation we can prove that $V(\text{constant}) = 0$

and we can show that $\frac{\partial}{\partial x_i}$ are derivations for $i=1, \dots, n$

Now we want to show that

every derivation V can be written as

$$V = \sum_{i=1}^n V(x_i) \cdot \frac{\partial}{\partial x_i} \quad (\text{Exercise})$$

Vector fields

we defined a derivation of $C^\infty(M)$, in general a

derivation is an operator $C^\infty(M) \rightarrow C^\infty(M)$

such that $V(fg) = V(f) \cdot g + V(g) \cdot f$

$\text{Vec}(M) = \{ \text{Derivations } C^\infty(M) \rightarrow C^\infty(M) \}$

This is equivalent to the notion of

tangent bundle $TM \rightarrow M$ of $T_p M$ is defined as before

If $X \in \text{Vec}(M)$ then the $\begin{cases} \dot{q}(t) = X(q(t)) \\ q(0) = q_0 \end{cases} \quad q_0 \in M$

has a solution at least
locally

$\exists \varepsilon > 0, \gamma: (-\varepsilon, \varepsilon) \rightarrow M$ st $\gamma(t, q)$ is defined

in some neighborhood $(-\varepsilon, \varepsilon) \times U$

where $U \subset M$ is a neighborhood
of q_0

The vector field
is complete
when the solution $\gamma^{(t, q)}$
exists $\forall t \in \mathbb{R} \quad \forall q \in M$

Flow map

In the case of a complete vector field we can consider the map

$$P_t^X: M \rightarrow M$$

$$q_0 \mapsto q(t)$$

where $q(\cdot)$ is the solution of the associated ODE

$P_t^X, P_{s,t}^X$ is smooth in (t, q)

and P_t^X is a 1-parameter subgroup of $\text{Diff}(M)$

$$\begin{cases} P_0 = \text{id} \\ P_t \circ P_s = P_s \circ P_t = P_{t+s} \\ P_t^{-1} = P_{-t} \text{ (implied by above)} \end{cases}$$

Sometimes for the flow map we use the notation

$$\rho_t^X = \exp(tX) = e^{tX}$$

Exercise : $a \in C^\infty(M)$, $a_t = a(e^{tX})$ $a_t : \mathbb{R} \times M \rightarrow \mathbb{R}$

(i.) $\dot{a}_t = \frac{d}{dt} a(e^{tX}) = X_a$

(ii.) $a_t(q) = a(q) + t \cdot X_a(q) + \dots$ the usual Taylor series

————— // —————

Non-autonomous vector fields

A na-vf is a family $\{X_t \in \text{Vec}(M)\}_{t \in \mathbb{R}}$

such that

(1) $t \mapsto X_t(q)$ is measurable $\forall q \in M$ $\] = \forall \varphi \in C^\infty(M)$

(2) $q \mapsto X_t(q)$ is smooth $\forall t \in \mathbb{R}$ $\] (t, q) \mapsto X_t(q)$

(3) for every system of coordinates on $\Omega \subset M$ and every $K \subset \Omega$ compact and $I \subset \mathbb{R}$ compact interval $\exists c(t), k(t) \in L^\infty(I)$ st

$$\|X_t(q)\| \leq c(t) ; \|X_t(q) - X_t(q')\| \leq k(t) \|q - q'\| \quad \forall t \in I \quad \forall q, q' \in K$$

Example

$$X_t(q) = \sum a_i(t) X_i(q) \quad \text{where } a_i(t) \text{ control functions}$$

and $X_i \in \text{Vec}(M)$

the conditions above mean that $a_i(t)$ are essentially bounded, $\|X_i\|$ are essentially bounded,

$$\left\| \frac{\partial X_i}{\partial x_j} \right\| \leq L_k$$

A non-autonomous rf is **autonomous** when it is constant wrt t

• Carathéodory theorem: X a non-aut vf, then

(*) $\begin{cases} \dot{q}(t) = X(q(t)) \\ q(t_0) = q_0 \in M \end{cases}$ has a unique solution γ defined on an open interval I , that respects (*) for a.e. $t \in I$ and moreover

$(t, q_0) \mapsto \gamma(t, t_0, q_0)$ is loc. Lipschitz wrt to t and smooth wrt to q_0

X_t is complete if γ is defined on $I = \mathbb{R}$, $\forall t_0 \in \mathbb{R}$

$P_{t_1, t_2}^X = \gamma(t_2, t_1, -)$ flow of X

$$\left\{ \begin{array}{l} P_{t_0, t} = \text{id} \\ P_{t_2, t_3} \circ P_{t_1, t_2} = P_{t_1, t_3} \\ P_{t_1, t_2}^{-1} = P_{t_2, t_1} \quad (\text{implied by the two above}) \end{array} \right.$$

If $P_{t,s}$ family of diffeomorphisms of M , respects the three above, then its infinitesimal generator

$$X_t := \frac{d}{ds} P_{t,s} \Big|_{s=t} \quad \text{is } \underline{\text{autonomous}} \quad \text{iff} \quad P_{0,t} \circ P_{0,s} = P_{0,t+s}$$

Differentials of smooth maps

$\varphi: M \rightarrow N$ smooth map between smooth manifolds

$$d\varphi: TM \rightarrow TN, \quad \boxed{d\varphi(v) = \frac{d}{dt} \varphi(e^{tv}) \in T_{\varphi(q)} N}$$

$v \in T_q M$

Observation: $d(\varphi \circ \psi) = d\varphi \circ d\psi$ (COVARIANT behavior)

$$\varphi_* = d\varphi$$

Q: what happens when we work with vector fields?

If $X \in \text{Vec}(M)$ $(d\varphi X)(\varphi(q)) := d\varphi(X(q))$ $M \xrightarrow{\varphi} N$
 $q \mapsto \varphi(q)$

so if $P \in \text{Diff}(M)$

then $(dP X)(q) = (P_* X)(q) = dP(X(P^{-1}(q))) \quad \forall q \in M$

or $(dP X)_q = dP(X_{P^{-1}(q)})$

Vector fields and diffeomorphisms as operators

$q \in M$, then q can be seen as an operator

$C^\infty(M) \rightarrow \mathbb{R}$, $a \mapsto a(q)$, we write $\hat{q}a = a(q)$

$X \in \text{Vec}(M)$, $a \mapsto Xa$, we can write $\hat{X}a = Xa$

$P \in \text{Diff}(M)$, $a \mapsto a \circ P$, we can write $\hat{P}a = a \circ P$

Examples : $a_t = \hat{e^{tX}}(a)$, $X(q)a = \hat{q} \hat{X}a$ sometimes we write $\hat{q} \odot \hat{X}$

In this notation $\hat{P}_* X = \hat{P}^{-1} \circ \hat{X} \circ \hat{P} = \text{Ad}_{P^{-1}}(X)$

$$P_* X(q) = P_* X(P^{-1}(q))$$

If $a \in C^\infty(M)$, then $(P_* X)_a = (X(a \circ P)) \circ P^{-1}$

If an operator $g X g^{-1}$ makes sense
this is denoted by $\text{Ad}_g(X)$

Lie Bracket

$X, Y \in \text{Vec}(M)$

$$[X, Y] = \frac{\partial}{\partial t} \Big|_{t=0} e^{-tX} Y = \frac{\partial^2}{\partial t \partial s} \Big|_{t=s=0} e^{-tX} \circ e^{sY} \circ e^{tX}$$

Lemma 2 : $[X, Y] = XY - YX$

→ Proof: $\alpha \in C^\infty(M)$ and let's consider $\widehat{(e^{-tX} Y) \alpha} =$

$$= \widehat{e^{tX}} (Y \widehat{(\alpha \circ e^{-tX})}) = \widehat{e^{tX}} (Y (\alpha - tX\alpha + O(t^2))) =$$

$$\begin{aligned}
 &= \widehat{e^{tX}} (ya - tYXa + O(t^2)) = \\
 &= ya - tYXa + O(t^2) + tXya - t^2XYXa + O(t^2) = \\
 &= ya + t \underbrace{(XY - YX)a}_{\text{red}} + O(t^2)
 \end{aligned}$$

therefore this $\xrightarrow{\text{is}}$ $\frac{d}{dt} \Big|_{t=0} (e^{-tX} y)_a$ \square

Exercises: (1) find the coordinate expression of $[X, Y]$

$$\begin{aligned}
 (2) \quad P \in \text{Diff}(M) \Rightarrow P_* [X, Y] &= [P_* X, P_* Y] \\
 &\quad \forall X, Y \in \text{Vec}(M)
 \end{aligned}$$

• Proposition : $X, Y \in \text{Vec}(\mathbb{R}) \Rightarrow$ the following are equivalent

$$(1) \quad [X, Y] = 0$$

$$(2) \quad e^{tX} \circ e^{sY} = e^{sY} \circ e^{tX}$$

→ Proof : $(1 \Rightarrow 2)$ $[X, Y] = 0 \Rightarrow e^{-tX} Y = Y$

$$\phi_s = e^{-tX} \circ e^{sY} \circ e^{tX} \Rightarrow \frac{\partial}{\partial s} \phi_s = \frac{\partial}{\partial \varepsilon} \Big|_{\varepsilon=0} e^{-tX} e^{(s+\varepsilon)Y} e^{tX} =$$

$$= \frac{\partial}{\partial \varepsilon} \Big|_{\varepsilon=0} e^{-tX} \circ e^{\varepsilon Y} \circ e^{tX} \circ e^{-tX} \circ e^{sY} \circ e^{tX} = Y \circ \phi_s$$

I just proved that $\phi_s = e^{sY}$

$$e^{-tX} \cdot e^{sY} \cdot e^{tX} = e^{sY}$$

by uniqueness of the flow

————— //

$$(2 \Rightarrow 1) \quad e^{tX} \cdot e^{sY} \cdot e^{-tX} = e^{sY}$$

if we derive both sides wrt s , then

we get

$$e^{-tX} \cancel{s} Y = Y$$

□

Exercise : introduce $f(t) := e^{-tY} \circ e^{-tX} \circ e^{tY} \circ e^{tX}$

$$\eta: \mathbb{R}_{\geq 0} \rightarrow M$$

\Rightarrow prove that $\eta(t) = f(\sqrt{t})$ is C^1 in a

neighborhood of 0 and $\eta'(0) = [X, Y]$

\rightarrow Proof : consider $u(t, s) = e^{-tY} e^{-sX} e^{tY} e^{sX}$

$$\Rightarrow \frac{\partial u}{\partial t} = -Y + \text{Ad}_{e^{-sX}}(Y) ; \quad \frac{\partial u}{\partial s} = \text{Ad}_{e^{-tY}}(-X) + X$$

$$\frac{\partial^2 u}{\partial t \partial s} = 0 ; \quad \frac{\partial^2 u}{\partial t^2} = [X, Y] ; \quad \frac{\partial^2 u}{\partial s^2} = [Y, -X] = [X, Y]$$

$$\eta(t^2) = u(t, t)$$

and by Taylor expansion

$$\overbrace{\eta(t^2)}^{\eta(t^2)a} a = a \circ \eta(t^2) = a(g) + t^2 [X, Y] a + o(t^3)$$

and this concludes

□