

SR geodesics

19/1/26

- * Sub-Riemannian manifolds
- * Admissible curves
- * Sub-Riemannian distance
- * Rashevskii - Chow theorem

Sub-Riemannian manifolds

Vector distributions

Def: M smooth manifold, D vector distribution of rank $= m$, is a family of subspaces $D_q \subset T_q M$ for $q \in M$ such that the distribution is smooth $\forall q \exists U \ni q$ neigh. st $D_q = \text{Span} \{X_1(q), \dots, X_m(q)\}$ for some $X_1, \dots, X_m \in \text{Vec}(U)$

D is **involutive** if $[D, D] = \text{Span} \{ [x, y] \mid x, y \in D \} = D$

therefore if x_1, \dots, x_m is a local base then

$$\exists a_{ij}^k \text{ st } [x_i, x_j] = \sum a_{ij}^k x_k$$

D is **flat** if $\forall g \in M \exists$ loc. diffeomorphisms

$$\psi : \underset{q_0}{\underset{\cup}{U}} \rightarrow \mathbb{R}^n \text{ st } \psi_* D_g = \mathbb{R}^m \times \{0\} \quad \forall g \in U$$

Theorem (Frobenius)

A smooth distribution is involutive iff it is flat

→ Proof: FLAT \Rightarrow INVOLUTIVE

$$D_q = \psi_*^{-1}(\mathbb{R}^m \times \{0\}) \Rightarrow D_q = \text{Span} \{X_1, \dots, X_m\} \text{ if } X_i = \psi_*^{-1} \frac{\partial}{\partial x_i}$$

$$[X_i, X_j] = [\psi_*^{-1} \partial_i, \psi_*^{-1} \partial_j] = \psi_*^{-1} [\partial_i, \partial_j] = 0$$

INVOLUTIVE \Rightarrow FLAT

$$D_q = \text{Span} \{X_1(q), \dots, X_m(q)\}, \text{ we want}$$

$$e_{\psi_*}^{tX_k}(D) = D$$

Let's define $y_i^k(t) = e^{tX_k} x_i$

$$\frac{d}{ds} e^{sX_k} y = [X, y]$$

$$\Rightarrow \dot{y}_i^k(t) = e^{tX_k} [x_i, x_k]$$

$$= e^{tX_k} \left(\sum_{i,j} a_{ik}^j x_j \right)$$

$$= \sum_{i,j} a_{ik}^j(t) y_j^k(t)$$

$$\boxed{a_{ik}^j(t) := a_{ik}^j \circ e^{-tX_k}}$$

we denote by $\dot{\Gamma}^j(t)$ the solution of the ODE

$$\dot{\Gamma}^j = (a_{ik}^j(t))_{ik} \Gamma(t)$$

$$\Gamma^{\vec{\delta}}(t) = \left(\gamma_{ik}^{\vec{\delta}}(t) \right)_{i,k}$$

and we finally have $\gamma_i^{\vec{\delta}}(t) = \sum_k \gamma_{ik}^{\vec{\delta}}(t) \cdot \gamma_k^{\vec{\delta}}(0)$

and this proves the claim

because $e^{tX_j} X_i = \sum_k \gamma_{ik}^j(t) X_k$ and therefore

the pushforward of every X_i is again a
lin. combination of the X_k 's

$$T_g M = \text{Span} \left\{ \underbrace{x_1, \dots, x_m}_{\text{distribution}}, \underbrace{z_{m+1}, \dots, z_n}_{\text{basis completion}} \right\}$$

$$\psi(t_1, \dots, t_n) = e^{t_1 x_1} \circ e^{t_2 x_2} \circ \dots \circ e^{t_m x_m} \circ e^{t_{m+1} z_{m+1}} \circ \dots \circ e^{t_n z_n}$$

$$\mathbb{R}^n \rightarrow M$$

$$\frac{\partial \psi}{\partial t_i} = e^{t_1 x_1} \circ e^{t_2 x_2} \circ \dots \circ e^{t_i x_i} (x_i) (\psi(t_1, \dots, t_n)) \in D_{\psi(t_1, \dots, t_n)}$$

$$\Rightarrow D_g = \psi_* \text{Span} \left\{ \frac{\partial}{\partial t_1}, \dots, \frac{\partial}{\partial t_m} \right\} \quad \square$$

Therefore D is involutive \Leftrightarrow loc. there is

↪ sub-manifold $S \subset M$ st. $\forall q \in S, D_q = T_q S$

A **sub-Riemannian manifold** is a smooth manifold M such that $\exists D \subset TM$ smooth vector distribution

(1) $\text{Lie}(D_q) = T_q M \quad \forall q \in M \quad (\text{Hörmander's condition})$

$$\text{Lie}(D_q) = \text{Span} \{ X, [X, Y], [[X, Y], Z], \dots | X, Y, Z, \dots \in D \}$$

$r(q)$ step of the distribution is the minimal length of the Lie brackets such that $\text{Span} \{ \text{Lie bracket of length} \leq r \} = T_q M$

(2) There exists on D a smooth scalar product

$$\langle x, y \rangle_{SR} \text{ positively def } \forall x, y \in D$$

A **SR structure** is the data of a vector bundle U a sm. linear map f such that

there exist a scalar product on U

$$\begin{array}{ccc} U & \xrightarrow{f} & T\mathcal{M} \\ & \searrow & \downarrow \\ & & \mathcal{M} \end{array}$$

For every SR manifold there exists a trivial SR structure of some dimension such that

$$\text{Im}(f)_q = D_q$$

$$\begin{array}{ccc} M \times \mathbb{R}^k & \xrightarrow{f} & TM \\ & \searrow & \downarrow \\ & & M \end{array}$$

and the scalar product on D is induced by the scalar product on $M \times \mathbb{R}^k$

therefore every $X \in D$ is $X = \sum_{i=1}^k u_i x_i$

Admissible curves

A lipschitz curve $\gamma: [0, T] \rightarrow M$ is **admissible**

if $\dot{\gamma}(t) \in D_{\gamma(t)}$

Working with "controls", $\dot{\gamma}(t) = \sum u_i(t) X_i(\gamma(t))$

with $u_i(t)$ ess. bounded and measurable

$$\dot{\gamma}(t) = f(\gamma(t), u(t))$$

Length of an admissible curve

$$l(\gamma) = \int_0^T \|\dot{\gamma}(t)\|_{SR} dt$$

- Lemma 2: $l(\gamma)$ is invariant under Lipschitz reparametrization

→ Proof: $\varphi: [0, \bar{T}] \rightarrow [0, T]$, $\dot{\gamma}\varphi = \dot{\gamma} \circ \varphi$

$\dot{\gamma}\varphi = \dot{\gamma}(\varphi(\eta)) \cdot \dot{\varphi}(\eta)$ so again this is Lipschitz & admissible

$$\begin{aligned}
 l(f\varphi) &= \int_0^T \|\dot{f}\varphi\| = \int_0^T \|\dot{f}(\varphi(t))\| \cdot |\dot{\varphi}(t)| dt = \\
 &= \int_0^T \|\dot{f}(s)\| ds = l(f)
 \end{aligned}$$

□

- Lemma 2 every adm. curve with $l(f) < \infty$ is \mathcal{C}^1 Lip. reparametrization of an adm. curve parametrized by arc length, measuring $\|\dot{f}\|_{SR} = 1$

$$\xrightarrow{\text{Proof}} \ell(t) := \int_0^t \|\dot{f}(s)\| ds \quad , \quad \ell(T) = \ell(f)$$

$\ell(t)$ is Lip. & monotonic

$$\zeta : [0, \ell] \rightarrow M \quad \text{at} \quad \zeta(z) = f(t) \quad \text{if} \quad z = \ell(t)$$

$$|\gamma(t_2) - \gamma(t_1)|_{\text{Eucl.}} \leq \int_{t_1}^{t_2} \|\dot{\gamma}(s)\|_{\text{Eucl.}} ds \leq C \cdot \int_{t_1}^{t_2} \|\dot{\gamma}(s)\|_{SR} ds$$

$$\Rightarrow |\zeta(s_2) - \zeta(s_1)| = |\gamma(t_2) - \gamma(t_1)| \leq \boxed{C \cdot |\ell(t_2) - \ell(t_1)|} = C \cdot |s_2 - s_1|$$

Moreover $\gamma(t) = \zeta(\ell(t))$; $\dot{\gamma}(t) = \dot{\zeta}(\ell(t)) \cdot \dot{\ell}(t)$

$\dot{\ell}(t) = \|\dot{\gamma}(t)\|_{SR}$ if it exists , $\|\dot{\zeta}\|_{SR} = 1$ at every point $\ell(t)$ where $\dot{\ell}(t)$ is defined

$C_\ell := \{s : s = \ell(t), \dot{\ell}(t) \text{ exists and } \ell(t) = 0\}$

has dimension 0 (Exercise)

Minimal control

differentiability

$f: [0, T] \rightarrow M$ admissible curve, at every \checkmark point we

can write

$$f(t) = \sum_{i=1}^k u_i(t) X_i(f(t))$$

$u^*(t) = (u_1^*(t), \dots, u_k^*(t))$ is the minimal control

if I choose X_i 's of SR-works = 1 &

$$|u(t)| = \sqrt{\sum u_i^2(t)}$$
 is minimal among the k -uples
st $\sum u_i(t) X_i(f(t)) = f(t)$

the "minimal control" is the right definition of "norm"

on a SR-structure.

Measuring that

$$U \xrightarrow{f} TM \quad \downarrow \quad M$$

$$\|v\| := \min \{ |u| : f(q, u) = v \}$$

Lemma: $u^*(t)$ is measurable and essentially bounded

$$\overbrace{\hspace{5cm}}^{\text{L}_1}$$

Sub-Riemannian distance

$\forall q_0, q_1 \in M$ SR-wfd

$$d_{SR}(q_0, q_1) = \inf \left\{ l(\gamma) : \gamma : [0, T] \rightarrow M \text{ admissible curve} \right. \\ \left. \text{st } \gamma(0) = q_0 \text{ and } \gamma(T) = q_1 \right\}$$

Rashevskii-Chow theorem

M sub-Piemannian wfd, connected, then

(1) (M, d_{SR}) is a metric space

(2) the topology induced by d_{SR} is the wfd topology

In particular d_{SR} is continuous wrt the wfd topology

→ Proof d respects the triangle inequality and is symmetric ✓

Next I want $\forall q_0 \in M \exists \forall \exists q_0$ neighborhood

such that $U_{q_0} \subset B_{\delta}(q_0, \varepsilon)$

Observation the property above \Rightarrow finiteness of the distance because the subset $\{q_2 : d(q_0, q_2) < \infty\}$ must be open then by connectedness $d(q_0, q_2) < \infty \quad \forall q_0, q_2 \in M$

Lemma $N \subset M$ is a submfld, $\mathcal{F} \subset \text{Vec}(M)$ such that

$$X(g) \in T_g N \quad \forall X \in \mathcal{F} \quad \forall g \in N$$

Then $\text{Lie}_g(\mathcal{F}) \subset T_g N \quad \forall g \in N$

→ Proof: $\begin{cases} \dot{g} = X(g) & \text{has a unique solution locally} \\ g(0) = g_0 & \text{therefore if } X|_N \in TN \text{ then} \end{cases}$

$$\Rightarrow e^{tX}(g) \in N \quad \text{for } t \text{ small enough}$$

by def. of $[X, Y] = \frac{d}{dt} e^{-tX} Y$ if X, Y are tangent to N

then $[x, y]$ is also tangent to N

\Rightarrow iterating $\text{Lie}_p(\mathcal{F}) \subset T_p N \quad \forall p \in N \quad \square$

Lemma if $\mathcal{F} = \text{Span}\{X_1, \dots, X_m\}$, $\text{Lie}_p(\mathcal{F}) = T_p M \quad \forall p \in M$

then $\forall q_0 \in M \quad \forall V \subset \mathbb{R}^n$ a neighbourhood of $\underline{0} \in \mathbb{R}^n$

$\exists \bar{s} = (\bar{s}_1, \dots, \bar{s}_n) \in V$ and n vector fields

$y_1, \dots, y_n \in \mathcal{F}$ such that \bar{s} is a regular point

for the map $\Psi: \mathbb{R}^n \rightarrow M$, $(s_1, \dots, s_n) \mapsto e^{s_n y_n} \circ \dots \circ e^{s_1 y_1}(q_0)$

Rank: if $\mathcal{J}_{q_0} \subsetneq T_{q_0} M$ then \bar{s} can't be $(0, \dots, 0)$

because $\text{Im}(d\psi_0) = \text{span}\{\psi_1, \dots, \psi_m\} \subset \mathcal{J}_{q_0}$

→ Proof (A) $\dim 1$ I take $\psi_1 \in \mathcal{J}$ st $\psi_1(q_0) \neq 0$

⇒ for $|s_1|$ small enough $s_1 \mapsto e^{s_1 X_1}$ is

2 loc. diff. between R and $\sum_1 = \text{Im}(e^{s_1 X_1}(q_0))$

$\psi_1: s_1 \mapsto e^{s_1 X_1}(q_0)$

(B) $\dim = 2$

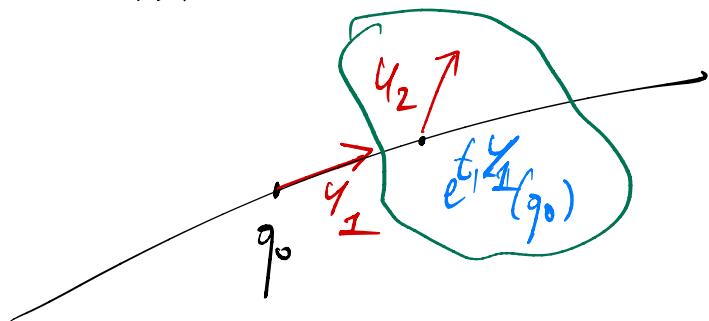
$\exists t_1$ sufficiently small $\exists \gamma_2 \in \mathcal{J}$ such that

γ_2 is not tangent Σ_1 at $e^{t_1 X_1}(q_0)$

$\gamma_2: (s_1, s_2) \mapsto e^{s_2} \gamma_2 \circ e^{s_1} \gamma_1(q_0)$

this is a loc. diff.

around $(t_1, 0)$

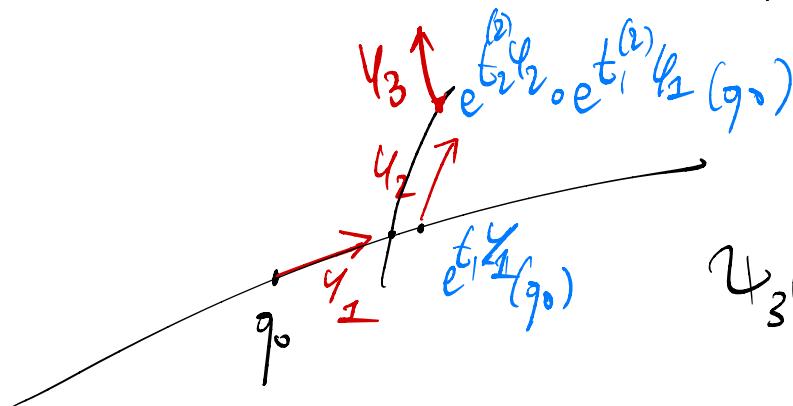


(c) $\dim = 3$

Then $\exists t_1^{(2)}, t_2^{(2)}$ suff. small such that at

$\Psi_2(t_1^{(2)}, t_2^{(2)})$, $\exists U_3 \in \mathcal{Y}$ which is not tangent

to $\Sigma_2 = \text{Im}(d\Psi_2)$



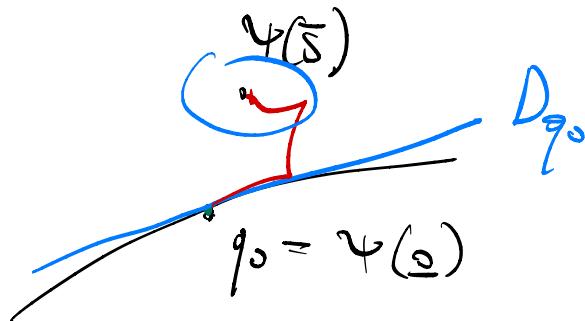
$$\Psi_3(s_1, s_2, s_3) = e^{s_3} \Psi_3 \circ e^{s_2} \Psi_2 \circ e^{s_1} \Psi_1 (q_0)$$

After n steps we have

$$\psi: (s_1, \dots, s_n) \mapsto e^{s_n \ell_n} \circ e^{s_{n-1} \ell_{n-1}} \circ \dots \circ e^{s_1 \ell_1} (g_0)$$

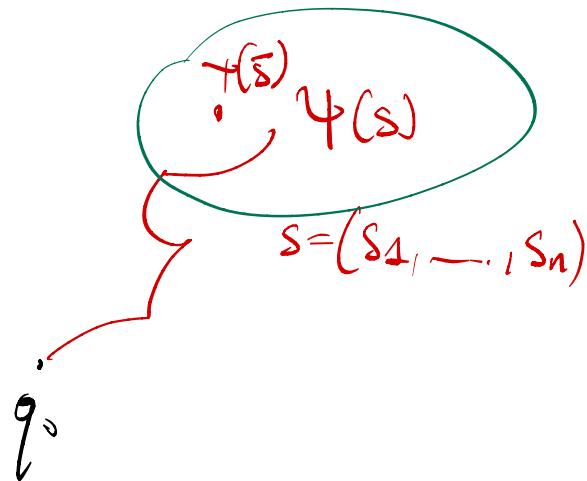
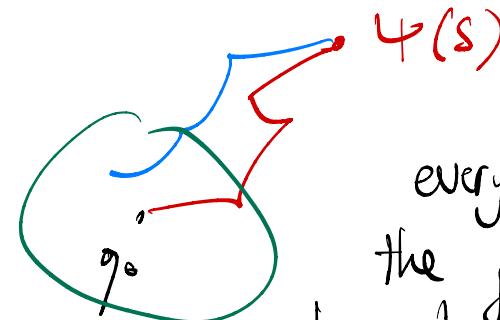
and is regular at $(\bar{s}_1, \dots, \bar{s}_n) = (t_1^{(n)}, t_2^{(n)}, \dots, 0)$

$$V \subset \mathbb{R}^n$$



Observe that we can put such a system of local coordinates around q_0

$$(s_1, \dots, s_n) \mapsto e^{-s_1 \gamma_1} \circ \dots \circ e^{-s_n \gamma_n} \circ e^{s_n \gamma_n} \circ \dots \circ e^{s_1 \gamma_1} (q_0)$$



every point in
the green neighbor
has $d_{SR} < 2n \cdot \varepsilon$

We want to prove $\forall U \ni q_0 \text{ neigh. } \exists \varepsilon > 0$

$$B_{\delta R}(q_0, \varepsilon) \subset U$$

Observe that if KCM is a compact with $q_0 \in \text{int}(K)$

\exists local coordinates on K then $\exists \delta_k > 0$

such that $\forall \gamma$ admissible starting at q_0 at

$l(\gamma) \leq \delta_k$ does not exit K

$$C = \max_{\substack{q \in K \\ \|v\|_{SR} = 1}} |v|_{\text{Eucl.}}$$

$$v \in D_q \subset T_q M$$

we choose δ_k such that $C \cdot \delta_k < d_{\text{Eucl.}}(q_0, \partial K)$

$$\Rightarrow l_{\text{Eucl.}}(f) = \int_0^T |f'(s)| ds \leq \int_0^T C \cdot \|f'(s)\| ds \leq C \cdot l_{SR}(f)$$