
Geometric Modeling: 

surface 
Patch:  

   - patch di Bézier 

   - NURBS surfaces 

    



Polygonal Mesh: 
piecewise planar surfaces  

 

70000 facce 



Polygonal Mesh: 

 

Territorial data 

16K x 16K verteces 

~537 milion of triangles 



Parametric Surfaces 

 
Tensor product surfaces 



Bézier Patch 

A surface is the locus of a 

curve that is moving 

through space and 

thereby changing its 

shape.  

 

A surface is obtained by 

moving the control points 

of a Bézier curve along 

other Bézier curves. 



Bézier Patch 

 



Bézier Patch 



Bézier Patch 

 



Bézier Patch 

 



Bézier Patch 

 



Bézier Patch 
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bij control points 

Control mesh : (n+1)x(m+1) 

Given an initial Bézier curve of degree m 

 

 

 

Let each control point bj traverse a Bézier curve of degree n 

 

 

 

Combine these two eqs. and obtain the surface:  

Tensor-product surface defined on a rectangular parameter domain 
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Example:  

bicubic Bézier Patch 



Control Mesh 

• Consider a bicubic Bézier surface (bicubic means that it is a cubic 

function in both the u and w parameters) 

• A cubic curve has 4 control points, and a bicubic surface has a grid 

of 4x4 control points, p0 through p15 
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Normal Vectors 

The normal vector n of a parametric surface is a normalized 

vector that is normal to the surface in a given point (u,v). 

  

It is computed by the cross product of any two vectors that 

are tangent to the surface at that point: 
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Properties 
 The patch interpolates the four control points corners of 

the control mesh 

 

 

 Boundary curves: The 4 boundaries of the Bézier 

surface are just Bézier curves defined by the points on 

the edges of the surface. 
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Properties 

 Partition of Unity 

 

 Convex Hull property: for 0 ≤ u,v ≤1, the terms  

    are non-negative.  

 Then, taking into account the partition of unity property,   

 

 

 is a convex combination. The Bézier patch will fall within 

the convex hull of the control points. 

 Affine Invariance:  each affine transformation of the 

control mesh defines a new Bézier patch which is the 

transformation of the original. 
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Properties 

 Linear Precision: when all the control points lie on a 

plane, then the patch lies on the same plane. 

 

 Shape approximation: the control mesh approximates 

the shape of the patch 

 

 

 

 



Bilinear Surface: Bézier patch  

of degree (1,1)  
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Hyperbolic paraboloid 

 
The “simplest” 

surface between 

four points 



A Bézier patch object  

 the Utah teapot 
• 32 patches  16 control points/patch  

     = 288 vertices 

     = 288  3 real numbers 



Tensor  product 

Spline Surfaces  
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Given two knot vectors U and V on a parametric domain 

[0,1]x[0,1],  

 

 

 

the spline surface of orders n and m defined by the 

bidirectional net of control points Pij is: 

 

 

 

 

where  the CP define the    Control Mesh 

Ni,n(u),Nj,m(v)       univariate B-Spline basis functions  

    of degree n-1 and m-1 
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Spline surfaces 
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Pij= (xij,yij,zij)  control points Control mesh : KxL 



Properties 

• The properties of the tensor product basis functions  

 

 follow from the corresponding properties of the univariate 

basis functions (nonnegativity, partition of unity, ..) 

 Local support:   

 

 

•  The spline surface have the following properties: 

– Affine invariance 

– Local convex hull property 

– Local modification: if Pij is moved it affects the surface 

only in the rectangle 

– No variation diminishing property for spline surface   
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UxV=[0,1]x[0,1]  

Parametric domain 

Example of tensor 

product bicubic spline  

(6x3 patch) 

Spline Surface  

 



 

  Surface shape control 



Non Uniform Rational B-Splines 

(NURBSs) 
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Pij control points  --   Control mesh : KxL 

UxV=[0,1]x[0,1]   Parametric domain, knot vectors 

Ni,n(u),Nj,m(v)   B-Spline basis functions 

wij     weights ≥0  

Let sw be a spline surface in the homogeneous space 4D: 

Project into 3D 



Non Uniform Rational B-Splines 

(NURBSs) 
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A NURBS surface of degree n-1 in the u-direction and m-1 in the 

v direction is a bivariate vector-valued piecewise rational 

function of the form: 

 

 

 

 

 

Introducing the piecewise rational basis functions: 

 

 

 

 

The surface can be written as 
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w4,3=50 

w4,3=5 

P43 

The effect of  

varying the weights 

If wi=1 for all i, then the NURBS is a non-rational spline surface 

w4,3=1 

 



 Rational Bézier Patch: A NURBS surface without internal 
knots and open knot vector 

 

 Closed Surface (no periodic): First column of the CP grid (or 
first row) coincides with the last column (or row) 

 

 Corner:  If all the CP in a subgrid (n-1)x(m-1) coincide, then 
the surface interpolates that CP, modelling a corner. 

 By using multiply coincident CP, visual discontinuities can be 
created where there are no corresponding discontinuity in the 
basis functions.  

 

 Planarity:  If all the CP in a subgrid nxm lie on a plane, then 
the surface lies on the same plane. 



How to store a spline/NURBS 

surface 

FILENAME: namefile.snurbs 

DEGREE_U_V 

         2         2 

N.C.P._U_V 

         5         9 

N.KNOTS_U_V 

         8         12 

COORD.C.P.(X,Y,Z,W) 

0.000000e+00 0.000000e+00 1.000000e+00 0.00000e+00 

…. 

KNOTS_U 

0.000000e+00 

…. 

KNOTS_V 

0.000000e+00 

…. 



NURBS limits 

 

 NURBS surfaces have rectangular topology 
 

 Arbitrary topologies 

can be obtained by 

collapsing CP, which 

can cause bad 

parameterizations, or 

by joining patch 

together  



Trimmed NURBS surfaces 

A trimmed NURBS surface is one in which specified patches 

have been trimmed out, or removed. 



Trimmed NURBS surfaces 

The surface S(u,v) is limited to a subdomain D in UxV of the 

parametric space, called Trimming Region (TR) 

 TR specifies in the parametric domain regions of interest 

 Visualize the original surface S(u,v) only on TR 

Lab 

Surf 

Parametric Domain 

D 



Trimming Region 

Parametric Domain 

Lab 

Surf 

• A trimming region is defined by a set of closed trimming 

loops in the parameter space of a surface.  

• A trimming loop consists of a closed 

 NURBS curve and/or piecewise linear curve. 

• Self intersecting curves are not allowed. 
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Jorg Peters’ UFL group 



Trimmed NURBS surfaces 

Applications: 
 

 Hierarchical modelling 

 

 Composing solids by Boolean Operations 



Trimmed NURBS surfaces: 

hierarchical modelling 
 Using Trimmed NURBS 

 Restrict the domain into regions of interest 

 The original surface is unchanged 

 Construct local details on the trimming regions 

 Locally modify the surface adding geometric details  without any 

parametric changes. 



Hierarchical modelling 

 



Hierarchical modelling 

 



Hierarchical modeling 

 

Courtesy of CGGroup , xcmodel , Univ. Bologna 



Geometric Modelling of surfaces 

• Modelling/ design  methods: 

– Cross-section design 

 

– Interactive design by manipulating the control mesh 

 

– Creating a patch net or mesh from a set of 3D points 

representing a real object (surface interpolation/surface 

fitting) 



Surface fitting 

interpolant approximant 



.. to a spline surface interpolant 

From a gray scale image 



Spline Surface by interpolating a  

network of curve 



Cross sectional design:  

from curves to surfaces 
Model the shape of a surface by modifing its 3D CP in a 

2D window is a difficult task, 

We need tools to construct surfaces from curves 

automatically. 

 

 Extruded Surface 

 Ruled Surface  

 Surfaces of Revolution  

 Skinned Surface 

 Swept Surface 

 .... 



Extruded Surface 

Obtained by moving a profile curve c(u) in a given 

direction W for a a given distance d 

 



Extruded Surface 

Extrusion direction: W (unitary vector in v direction) 

Extrusion offset: d 

 

 For fixed u, s(u,v) is a straight segment from c(u) to c(u)+dW 

 For fixed v , s(u,v) is the curve 
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Extruded Surface 
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Extruded surface : 

 
 

 

 

 

Control points  Pi1=Pi;  Pi2=Pi+dW;  

Knot vectors:  UxV, V=[0,0,1,1] 

 

If c(u) is rational (NURBS) with weights wi,  

then s(u,v) is rational with weights  wi1=wi2=wi 



Extruded Surfaces 
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The cylinder is obtained by traslating 

the NURBS circle (9 points) a 

distance d along a vector normal to 

the plane of the circle.  



Ruled Surface 
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2

1

Obtained by linear interpolation in v direction between curves 

c1(u) and c2(u) defined on U parametric domain. 

For fixed u, s(u,v) is a straight segment joining c1 and c2 

Same degree n-1 

Same knot vector U 

 



Ruled Surface 
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The spline ruled surface on the parametric domain 

UxV, V=[0,0,1,1] is defined as : 

If the two curves are NURBS, then the ruled 

surface is rational as well, with weights 



Surfaces of revolution 

Given a profile curve c(t) in the plane, the surface is defined by 

spinnig it through an arbitrary angle around an axis 

  

 



Surfaces of revolution 
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Profile curve in the x-z plane (revolve it about the z axis): 

Control points 

For fixed u=u0, s(u0,v) is the isoparametric curve c(v) 

rotated by a given angle around the z axis  

 

For fixed v=v0, s(u,v0) is a circle in x-y plane, with its center 

on the z axis 

 



Surfaces of revolution 
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NURBS surface of revolution s(u,v): 

Weights for the NURBS  

circle curve 

Knot vector for a 9-points circle 





Example: profile curve and 

Surfaces of revolution 

 



Sphere as a revolution  

NURBS surface  
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Revolving about the z-axis a half-circle 

(unitary ray, centered at the origin) c(u) of order 3 

 

 

 

 

 

 

 

 

 

  

CP at the North and South poles are repeated 9 times, 
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Skinned Surface 
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cj(u) 

Qij 

Skinning is the process of interpolating (blending) a 

given set of NURBS curves (section curves with 

common degree and number of CP) to form a 

surface. 

 
Section curves of degree n-1 and knot vector U: 

 

 

 
For each index i, the CP Qij

w (points   ) in v direction are 

interpolated in the homogeneous space, obtaining the 

curves 

 

 



Skinned Surface 

 

 
The skinned surface is defined by the computed CP Pij

w  
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Example 

 
Section curves 

Skinned surface 



Skinning example 

 



Skinning for animation 

(morphing) 

• Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Transactions on Graphics (SIGGRAPH 2005), 24(3), 

August 2005 



Swept Surfaces 

Surface defined by a 

cross sectional curve 

moving along a spine. 

Simple version: a single 

3D curve for spine and a 

single 2D curve for the 

cross section 

 

Sweeping example: 

several cross sections 

rather than just one.  

The planes containing the cross sections are perpendicular to the spine 



Swung surfaces 
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It’s a generalization of a surface of revolution where 

the trajectory curve is not necessary circular. 

Profile Curve P(u) defined in the xz plane: 

 

 

 

Trajectory Curve T(v) defined in the xy plane: 

 

 

 

Trace out surface s(u,v) by moving a profile curve 

P(u) along a trajectory curve T(v) 
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Swung surface 

 Swinging P(u) about the z axis and simultaneously 

scaling it according to T(v), s is an arbitrary scaling 

factor. S(u,v) has a NURBS representation given by: 

  T
zyxxx uPvTusPvTusPvus )(),()(),()(),( 

Profile Curve Trajectory curve 



 Tzyxxxij ijiji
PTsPTsPQ ,,

Swung surface 

Control points of the swung surface:  

jiij www and weights: 
The U and V knot vectors for s(u,v) are those defining 

P(u) and T(v).  

Fixing u yields curves having the shape of T(v) but scaled in 

the x and y directions. 

Fixing v=v the isoparametric curve Cv(u) are obtained by 

rotating P(u) into the plane containing the vector (Tx(v), 

Ty(v),0), and scaling the x and y coords. of the rotated curve 

with the factor s|T(v)|.  

 

 



Swinging Example 

 



Tessellation 

• Tessellation is the process of taking a complex surface 
and approximating it with a set of simpler surfaces (like 
triangles) 

 

• The most straightforward way to tessellate a parametric 
surface is uniform tessellation 

• With this method, we simply choose some resolution in u 
and v and uniformly divide up the surface like a grid 

• This method is very efficient to compute, as the cost of 
evaluating the surface reduces to approximately the same 
cost as evaluating a curve 

• However, as the generated mesh is uniform, it may have 
more triangles than it needs in flatter areas and fewer than 
it needs in highly curved areas 



Adaptive Tessellation 

• The goal of a tessellation is 
to provide the fewest 
triangles necessary to 
accurately represent the 
original surface 

 

• For a curved surface, this 
means that we want more 
triangles in areas where the 
curvature is high, and fewer 
triangles in areas where the 
curvature is low 



Adaptive Tessellation 

• We may also want more 
triangles in areas that are 
closer to the camera, and 
fewer farther away 

 Level Of Details 

 

• Adaptive tessellation 
schemes are designed to 
address these 
requirements 



Draw a Bézier patch:  

adaptive subdivision method 

 – basic approach: recursively test flatness 

• if the patch s(u,v) is not flat enough,  

• subdivide into four using curve subdivision twice in 

v=1/2 and u=1/2, and  

• recursively process each subpatch 

– as with curves, convex hull property is useful for 

termination testing (is inherited from the curves) 

Flat test: (convex hull flatness test) 

Construct a plane interpolating 3 noncollinear CP 

Compute the distances di from the remaining CP from 
this plane.  D=max |di| 

If (D < Tolerance Tol) then the patch is considered flat 
and is approximated as a flat quadrilateral.   



Crack Problem 

With adaptive subdivision, must take care with cracks 

– at the boundaries between degrees of subdivision 

A surface is subdivided and its neighbor is not :  

small gaps or small overlaps can appear in the surface 

 



Crack Problem and solutions 

Solution: 

Replace the patch B with two coplanar patches to allow 

the common boundary to have the same points and 

normals  
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