

Introduzione all'ambiente MATLAB

Parte I

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Matlab - Licenza Campus

In seguito ad un accordo con MathWorks l'Ateneo ha attivato la licenza Campus di MATLAB, grazie alla quale tutti i docenti, i ricercatori, il personale tecnico-amministrativo e gli studenti possono installare gli applicativi MATLAB e Simulink (comprensivi di 50 toolbox/librerie) sui propri computer, oltre che seguire gratuitamente corsi di formazione online.

Codici di attivazione

http://www.unibo.it/it/servizi-e-opportunita/studio-e-non-solo/agevolazioniper-computer-tablet-e-software/matlab-licenza-campus/matlab-licenzacampus

Matlab per studenti

(accesso con credenziali istituzionali @studio.unibo.it)

Sito ufficiale di MATHWORKS:

http://www.mathworks.it/help/index.html

Tutorial in italiano

http://guide.supereva.it/manuali/matlab

Tutorial in inglese: MATLAB primer

http://math.ucsd.edu/~driver/21d-s99/matlab-primer.html

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

- MATLAB e le sue potenzialità
 - Funzionalità di MATLAB
 - Ambiente di sviluppo MATLAB
- II manuale o Help
- Le variabili e lo spazio di lavoro
- Operatori MATLAB
 - Operatori di base, operatori logici, operatori relazionali
 - Vettori e Matrici

- Operazioni tra matrici
 - Matrici speciali
- Operatori su elementi
- Operazioni aritmetiche su vettori-matrici
 - Variabili complesse
- Grafica in MATLAB

Ci sono software gratuiti open source alternativi a MATLAB, in particulare **GNU Octave, FreeMat, e Scilab che sono compatibili** con MATLAB (ma non nell'ambiente MATLAB desktop).

MATLAB (MATrix LABoratory) è un ambiente interattivo ad alto livello che consente di costruire e gestire facilmente matrici e, come casi particolari, vettori e scalari.

La struttura dati di base è la matrice: ciò significa che durante l'elaborazione ogni quantità viene trattata dall'ambiente di calcolo come una matrice di dimensione **nxm**.

Un vettore è una matrice **1xn**, uno scalare è gestito come una matrice **1x1**

Il pacchetto però non è utilizzato solo per gestire matrici, ma è un'ottima piattaforma di sperimentazione e verifica per il calcolo numerico in genere.

Il calcolo simbolico in MATLAB è basato sul software Maple.

Funzionalità di MATLAB

MATLAB fornisce un ambiente di calcolo, visualizzazione e programmazione scientifica, in cui è possibile:

calcolare direttamente espressioni matematiche;

>> ((tan(pi/5)+2)*exp(2.3)-0.01)/log(2)

ans =

39.2197

- utilizzare il semplice ambiente di programmazione per costruire i propri algoritmi (Parte II);
- sfruttare algoritmi di base già implementati
 - built-in function -
- >> mean([1.5 2.5 3.5])

ans =

2.5000

Built-in functions

Tabella 5. Alcune funzioni predefinite in MATLAB.

Funzione	Significato
sin	seno
COS	coseno
asin	arcoseno
acos	arcocoseno
tan	tangente
atan	arcotangente
exp	esponenziale
log	logaritmo naturale
log2	logaritmo in base 2
log10	logaritmo in base 10
sqrt	radice quadrata
abs	valore assoluto o modulo
real	parte reale
imag	parte immaginaria
sign	funzione segno
factorial	fattoriale
round	arrotonda all'intero più vicino
floor	arrotonda per difetto all'intero più vicino
ceil	arrotonda per eccesso all'intero più vicino
chop(x,t)	arrotonda x a t cifre significative

- Matematica e calcolo
- Sviluppo di procedure e applicazioni
- Modellistica, simulazione e prototipizzazione
- Analisi di dati, esplorazione e visualizzazione
- Disegno industriale e scientifico
- Costruzione di interfacce utente
- TOOLBOX vari

Con il comando **demos** è possibile vederne alcuni esempi.

🚯 Help

< All Products

< MATLAB

Documentation ≡ CONTENTS

MATLAB Examples

Getting Started Language Fundamentals

Mathematics Graphics

App Building Advanced Software Development New Features Videos

Programming Scripts and Functions Data Import and Export

📥 🎃 👷 - 🞯 🕴 MATLAB Examples 💥 🕂

Close

0

- Mathematics

11.00

Integer Arithmetic

Single Precision Math

Predicting the US Population

FFT for Spectral Analysis

Grid-based Interpolation

Splines in Two Dimensions

Using FFT

Square Wave from Sine Waves

Creating and Editing Delaunay Triangulations

toolbox

MATLAB R2016a - acade	mic use	PS EDI	TOR	PUBLISH	VIEW		-	-	-			
et More Install Package Apps App App	AVORTES											
FILE			PID		∿ r			Č.	3			
🔶 🖬 🖾 🔰 🕐 Ci i	Curve Fitting	Optimization	PID Tuner	System	Signal Analysis	Image	Instrument	MATLAB Coder	Application			
rrent Folder				Identification		Acquisition	Control		Compiler			
Name A	MATH, STATISTIC	S AND OPTIMIZATIO	DN									
LAB_0607		A *		6	×	2XXX						
LAB_0708	Classification	Cuso Eitting	Distribution	MuRAD	Ontimization	PDE						
LAB_0809	Learner	Curve Fitting	Fitting	Notebook	Optimization	FUL						
LAB_1011	CONTROL SYSTEM	M DESIGN AND AN	ALVSIS									
LAB_1112	_	_	_	_	_ +	_ +						
LAB_1213				A B C D	PID							
LAB_1415	Control System	Control System	Linear System	Model Reducer	PID Tuner	System						
LAB_1516	Designer	Tuner	Analyzer			Identification						
app.pgm	SIGNAL PROCESS	ING AND COMMU	VICATIONS									тор 🛣
approx2.ppt	200	5	200	200								
APPROXLS.pdf				20								
CALCNUM1.pdf	Analysis	Signal Analysis	& Analysis	& Analysis								
CALCNUM1.ppt	INANCE DEOCESSI		D VISION									TOD -
CALCNUM2.pdf	INAGE PROCESSI	NO AND COMPOTE										
CALCNUM3.pdf	(38				A		A	
CALCNUM3.ppt	Camera	Color	Image	Image Batch	Image Region	Image	Image Viewer	Map Viewer	OCR Trainer	Stereo Camera	Training Image	Video Viewer
Calcolo.m	Calibrator	Thresholder	Acquisition	Processor	Analyzer	Segmenter				Calibrator	Labeler	
T	TEST AND MEASU	JREMENT										тор 🛣
etalis	(
	Control											
Select a f	ile to view details											
-												
		1	Script									
			Script									
		1	Script									
		1	Script									
			Script									
			a		-		-		1			
					– H'x	zam	mle	NC. U	lem	າດເ		
			Script			vall.	ιμι	.J. C	IUII	102		
							-					

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

🛃 Script

🛃 Script

🋃 Script

MATLAB ha anche un linguaggio proprio per programmare.

E' un linguaggio interpretato e non compilato: questo significa che le istruzioni vengono tradotte in linguaggio macchina (il linguaggio "capito" dal processore) e subito eseguite una per volta.

Utilizzando C, Fortran, C++, la traduzione da linguaggio ad alto livello a linguaggio macchina avviene invece nel processo di compilazione, in cui tutto il programma viene tradotto in linguaggio macchina e poi eseguito.

- Per lanciare MATLAB da ambiente Windows basta cliccare due volte con il mouse sull'icona corrispondente.
- La finestra che appare quando si esegue MATLAB viene chiamata <u>desktop</u>.
- Il simbolo prompt >> indica che il calcolatore è pronto a ricevere le istruzioni e ad eseguirle.
- Per uscire dall'ambiente basta digitare
 > quit

Interfaccia grafica (per gestire files, variabili e programmi)

Editor

L'editor è la finestra in cui si scrivono i programmi MATLAB (M-files, cioè file con estensione ".m").

Si può accedere al manuale o tramite il menu

Help → MATLAB Help (guida in linea)

o digitando **help** dalla Command Window (help generale di tutte le funzioni).

- Per visualizzare l'help di un singolo comando digitare help <nomecomando> dalla Command Window (esempio help plot).
- Digitando lookfor <keyword> si attiva invece la ricerca di funzioni basate su una parola chiave.
- Attraverso il comando doc si accede direttamente alla documentazione online di MATLAB.

KO I					
MATLAB R2016a - academic use		-	The second s		
HOME PLOTS	APPS EDITOR PU	BLISH VIEW			
Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script FLE Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script Image: Compare Script	New Variable Open Variable Open Variable Open Variable Variable Variable Variable Variable Clear Workspace Variable Clear Workspace Variable Clear Workspace Variable Clear Workspace Variable Variable Variable Variable Variable Variable Serena Siggle Precision Math	Analyze Code Run and Time Clear Commands CODE NI • LEZIONI_CESENA_1 titled Matrix Operations	Simulink Layout SMULINK ENVIRONMENT	Community Help Request Support ESOURCES	
Documentation Close < Al Products < MATLAB < Mathematics < Linear Algebra Matrix Operations Linear Equations	Matrix Operations Unes and dot products, transpose Functions cross dot kron	Cross product Dot product Kronecker tensor	product		
Matrix Decomposition Eigenvalues and Singular Values Matrix Analysis Matrix Functions	tril triu transpose Examples and How To Matrices in the MATLAB Environment	Lower mangu Urber triangu Tinspose ve	Help →		
Select a file to view det	tails		 Language Fundamentals Syntax, operators, data types, array indexing and ma Mathematics Linear algebra, basic statistics, differentiation and int Graphics Two- and three-dimensional plots, data exploration a 	anipulation legrals, Fourier transforms, and other mathematics and visualization techniques, images, printing, and graphics o	bjects

C

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Le variabili

Variabile: nome associato ad una entità (scalare, vettore, matrice) che contiene dati.

I nomi scelti (meglio se legati all'entità che rappresentano) devono rispettare le seguenti regole di sintassi:

- possono contenere solo lettere, cifre e il carattere di sottolineatura ("_");
- 2. non possono iniziare con una cifra;

3. non si possono utilizzare parole riservate di MATLAB.

- Matlab è un linguaggio <u>case sensitive</u>, ossia distingue fra lettere maiuscole e minuscole: la variabile A è quindi diversa dalla variabile a.
- La variabile utilizzata da MATLAB in default è ans.

Introdurre 4 variabili e farne la media.

25

Tipi di variabili

Tipo	Tipo dato	Occupazione di memoria
Double	Numeri reali nell'intervallo [10 ⁻³⁷ ,10 ³⁷]	8 byte
Complex double	Numeri complessi	16 byte
Logical double	Risultato di una operazione logica (1=vero, 0=falso)	8 byte
Char	Carattere	2 byte

var_testo = 'questa stringa viene assegnata alla
variabile var_testo' Char array

L'output può essere visualizzato in diversi modi, pur non influendo sul formato che MATLAB usa per memorizzare ed elaborare i dati (double precision).

SHORT	(default) Virgola fissa 5 cifre
SHORT E	Virgola mobile 5 cifre
SHORT G	Meglio tra virgola fissa e mobile 5 cifre
LONG	Virgola fissa 15 cifre
LONG E	Virgola mobile 15 cifre
LONG G	Meglio tra virgola fissa e mobile 15 cifre
RAT	Approssimazione mediante il rapporto ridotto ai minimi termini

Esempio

>>y = 8/6

>>format short 1.3333 >>format short e 1.3333E+000 >>format short g 1.3333 >>format long 1.33333333333333333 >>format long e 1.333333333333333E+000 >>format long g 1.3333333333333333 >>format rat 4/3

default : format short

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Workspace: lo spazio di lavoro

E' l'insieme delle variabili mantenute in memoria durante una sessione MATLAB.

Workspace

Informazioni per ogni variabile attiva:

e bace 🍃	Clear Workspa	ace 👻 🎽 Clear (Commands	🔹 🤤 Pa	arallel 🔻	reup 🔄 Request Support	
VARIAB	LE	0	CODE SIMULINK	ENVIRON	MENT	RESOURCES	
;ktop ► I	avoro unibo	 caso B 					2
D Com	mand. 💿	Workspace					\odot
(1) N	lew to MATL	Name 🔺	Value	Size	Min	Max	
^ <i>fx</i> >	>	🕂 AdB	10	1x1	10	10	-
			1.0000e+09		1.6000		
		Et	3.9716e-10	1x1	3.9716	3.9716	
		F F	3.1623	LX1	3.1623	3.1623	
		H FdB	21622		2 1622	3	Ξ
		Gadh	5.1023	1.1	5,1023	5,1023	
			100	1/1	100	100	
=		Gr1dbVector	20	1v1	20	20	
-		Gr2	3 1623	1v1	3 1623	31623	
		Gr2db	5	1x1	5	5	
		Gt	1	1x1	1	1	
		Gtdb	0	1x1	0	0	
		N0vector	4.9459e-21	1x1	4.9459	4.9459	
		H NSvector	128	1x1	128	128	
		Η Na	4	1x1		4	
-		🗄 Ncicli	10	1x1	10	10	
*		🔣 Nr	6	1x1	6	6	
		🖶 Pa	[10 0;0 10;10 20;20 10]	4x2	0	20	
		💾 Pr	<6x2 double>	6x2	4	16	
		🛨 Pt	7.9433e-05	1x1	7.9433.	7.9433	
			· · · · · · ·	•			
		ynı varı	abile sara	VISU	Jaliz	zata insieme allo spazio da 🛛 💷 💷	-
	e	ssa oc	cupato, al	nur	nero	di elementi, e al suo tipo.	

Con il workspace si può:

- visualizzare e modificare le variabili dell'area di lavoro (eventualmente cambiandone il formato output);
- 2. cancellare le variabili dell'area di lavoro;
- **3.** rappresentare graficamente le variabili dell'area di lavoro;
- 4. salvare l'area di lavoro;
- 5. caricare un'area di lavoro precedentemente salvata.

La sessione di lavoro

Il comando

diary <nome file>

memorizza nel file ASCII < nomefile > la sessione di lavoro (comandi dati e workspace) da quel punto in poi in modo da poterla poi consultare con un qualsiasi editor (es. WORD).

Non possiamo però utilizzare il file < nomefile > per ricaricare il lavoro fatto e continuare a lavorarci; per questo si devono utilizzare i comandi save e load.

Ogni sessione di lavoro può essere salvata in un file binario (nomefile.mat) mediante il comando

save <nome file>

e ricaricata in ambiente MATLAB mediante

load <nome file>

Le variabili utilizzate in ogni workspace possono essere consultate semplicemente digitando il nome della variabile stessa.

La sessione di lavoro

- Per cancellare la variabile nomevariabile
 clear <nomevariabile>
- Per cancellare tutte le variabili di una sessione di lavoro clear
- Per pulire il desktop di MATLAB
 clc
- Per pulire la finestra di una figura clf
- Per avere un elenco degli m-files memorizzati what

- **pwd** visualizza la directory in cui si sta lavorando
- dir, o ls elenca i file presenti nella directory
- **cd** modifica la directory attuale
- path, o matlabpath elenca i possibili percorsi delle directory in MATLAB
- addpath aggiunge la directory ai percorsi già esistenti
- **pathtool** permette di accedere alla finestra degli strumenti per la gestione dei percorsi

&

Operatori Matlab

Operatori di base:

- + addizione
- sottrazione
- / divisione a destra
- \ divisione a sinistra
- elevamento a potenza
 moltiplicazione
 - moltiplicazione

Operatori logici:

- and
 - or

not

Operatori relazionali:

- ~ = diverso da
- <= minore uguale a
- < minore a
- >= maggiore uguale a
- > maggiore a
 - = uguale logico

(per ~ in una tastiera italiana premere ALT e digitare 126 nel tastierino numerico)

- Una matrice ha dimensione **nxm** (n righe, m colonne). Un vettore ha dimensione **nx1** (vettore colonna) o **1xn** (vettore riga). Uno scalare ha dimensione **1x1**.
- a = 1 (scalare, ovvero matrice 1x1)
- a = [0 1 2 3 4], a = [0,1,2,3,4] ed anche a = [0:4]
- b = [0, .5, 1, 1.5, 2, 2.5] ed anche b = [0:.5:2.5]
- c = [.1, .1, .1, .1, .1] ed anche c = ones(1,5) * 0.1

Costruire Vettori

» a = [1 2 3 4] a = 1 2 3	4	 Definisce un ve (le parentesi qu vettore o matric 	ettore RIGA "a" adre indicano ur ce)
» size(a) ans = 1 4	<	fornisce la dime	ensione di "a"
<pre>» length(a) ans = 4</pre>	<	usato per i vetto la loro lunghezz	ori indica a
Definire un vettor	e COLONNA	» size(a')	» length(a')
» o'	» [1·2·3·4]	ans =	ans =
ans = 3	ans = 4	4 1	4
		trasposta di "a"	(ha dimensioni
2	2	"invertite" rispet	to ad "a")
3	<u>э</u>		
4	4		

Tabella 6. Alcuni comandi per generare e manipolare vettori.

Comando	Azione
х'	genera il vettore trasposto di x
x=[]	genera il vettore vuoto x
sort(x)	riordina in ordine crescente le componenti del vettore \mathbf{x}
x=[a:h:b]	genera il vettore riga $x = (x_i)_{i=1,,m+1}$ ove $x_i = a + (i-1)h$
	e <i>m</i> è la parte intera di $(b-a)/h$
x=linspace(a,b,n)	genera il vettore riga $x = (x_i)_{i=1,,n}$ ove $x_i = a + (i-1)h$
	e h = (b-a)/(n-1)
x=logspace(a,b,n)	genera il vettore riga $x = (10^{x_i})_{i=1,\dots,n}$ ove $x_i = a + (i-1)h$
	e h = (b-a)/(n-1)
x(r)	estrae le componenti del vettore x i cui indici sono specificati in r
x(r)=z	assegna alle componenti del vettore \mathbf{x} (i cui indici sono specificati in \mathbf{r})
	i valori definiti in z rispettivamente
x(r)=[]	rimuove le componenti del vettore \mathbf{x} (i cui indici sono specificati in \mathbf{r})
x([i j])=x([j i])	scambia le componenti $i \in j$ del vettore ${\tt x}$

Tabella 7. Alcune funzioni predefinite in MATLAB agenti su un vettore x.

	• •
Comando	Azione
a=sum(x)	genera lo scalare $a = \sum_{i=1}^{n} x_i$
a=prod(x)	genera lo scalare $a = \prod_{i=1}^{n} x_i$
a=max(x)	genera lo scalare $a = \max_i x_i$
a=min(x)	genera lo scalare $a = \min_i x_i$
a=norm(x)	genera lo scalare $a = x _2$
a=norm(x,1)	genera lo scalare $a = x _1$
a=norm(x,inf)	genera lo scalare $a = x _{\infty}$
A=diag(x)	genera la matrice diagonale $A = (a_{ij})_{i,j=1,,n}$, con $a_{ii} = x_i$

Costruire Matrici

- » c =[1 2 3 4 ; 5 6 7 8] c = 1 2 3 4
 - 5 6 7 8
- Per fare riferimento ad un elemento della matrice "c":

- Usare ":" per indicare tutte le righe o tutte le colonne, esempio:
 - c(1,:) indica la prima riga, tutte le colonne
 - c(:,2) indica tutte le righe, la seconda colonna
 - c(:,2:4) indica tutte le righe, dalla seconda alla quarta colonna

» c(1,:)				» c(:,2)	» c(:,2:4)			
an	s =			ans =	ans =			
1	2	3	4	2	2 3 4			
				6	6 7 8			

Funzioni di matrici

» c =[1 2 3 4 ; 5 6 7 8]										
C =										
1	2	3	4							
5	6	7	8							
» sum(c)			» sum(c')			» sum(sum(c))				
ans =				ans =			ans =			
6	8	10	12		10	26	36			

La funzione *sum* calcola la somma degli elementi di una matrice per colonne; il risultato è un vettore.

Se la matrice è un vettore 1 x m (come sum(c)), allora la somma è calcolata sugli elementi del vettore.

» mean(c)				》	max(c)		» min(c)			
ans	=				an	S =				ans =	
	3	4	5	6		5	6	7	8	1 2 3	3 4

mean fornisce la media per colonne; max e min il massimo e il minimo ancora per colonne.

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Tabella 9. Alcune funzioni predefinite in MATLAB agenti su una matrice A.

Comando	Azione
a=norm(A)	genera lo scalare $a = A _2$
a=norm(A,1)	genera lo scalare $a = A _1$
a=norm(A,inf)	genera lo scalare $a = A _{\infty}$
x=sum(A)	genera il vettore riga $x = (x_j)_{j=1,,n}$, con $x_j = \sum_{i=1}^n a_{ij}$
x=max(A)	genera il vettore riga $x = (x_j)_{j=1,,n}$, con $x_j = \max_i a_{ij}$
x=min(A)	genera il vettore riga $x = (x_j)_{j=1,,n}$, con $x_j = \min_i a_{ij}$
x=diag(A)	genera il vettore colonna $x = (x_i)_{i=1,,n}$, con $x_i = a_{ii}$
B=abs(A)	genera la matrice $B = (b_{ij})_{i,j=1,\dots,n}$, con $b_{ij} = a_{ij} $
B=tril(A)	genera la matrice triangolare inferiore $B = (b_{ij})_{i,j=1,,n}$,
	$ con b_{ij} = a_{ij}, i = 1, \dots, n, 1 \le j \le i $
B=triu(A)	genera la matrice triangolare superiore $B = (b_{ij})_{i,j=1,,n}$,
	$\operatorname{con} b_{ij} = a_{ij}, i = 1, \dots, n, i \le j \le n$

Concatenazione di matrici

» A = [2,0; 0,1; 3,3]			; 3,3] » A(1:2,1:2)
A = 2 0 3	0 1 3		ans = 2 0 0 1
» A =[A,[1;2;3]] A =)]
2	0 1	1	2 0
3	3	3	3 3 1 2

Equivale a cat(2,A,[1;2;3])

Equivale a cat(1,A,[1 2])

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Definiamo una matrice "c" come concatenazione dei vettori "a" e "b".

Nota: l'uso di ";" entro [....] indica la fine della riga.

» size(c)

ans = 2 4

Definiamo la matrice "d" ponendo "a" e "b" a fianco: notare il risultato diverso da "c"

» d = [a b] d = 1 2 3 4 5 6 7 8

Possiamo definire un vettore "e" che è una funzione logica di d

» e = d>2 e = 0 0 1 1

Possiamo ora usare "e" per trovare gli elementi di d>2

» **d(e)** ans = 3

» ones(2,3)	» ones(2)
ans =	ans =
	1 1
1 1 1	1 1
1 1 1	
» zeros(1,4)	» zeros(2,1)
	ans =
ans =	0
0 0 0 0	0
» rand(3,3)	» eye(2)
ans -	ans =
	1 0
0.2176 0.4909 0.	³⁹⁸⁵ 0 1
0.4054 0.1294 0.	5943
0.5699 0.5909 0.	3020

ST ST STORENT

Alcuni comandi per manipolare matrici

Comando	Azione
A=[]	genera la matrice vuota A
Α'	genera la matrice trasposta di A
A=eye(n)	genera la matrice identità $A = (a_{ij})_{i,j=1,,n}$, con $a_{ij} = \delta_{ij}$
A=zeros(n,m)	genera la matrice $A = (a_{ij})_{i=1,\dots,n,j=1,\dots,m}$, con $a_{ij} = 0$
A=ones(n,m)	genera la matrice $A = (a_{ij})_{i=1,\dots,n,j=1,\dots,m}$, con $a_{ij} = 1$
A=rand(n,m)	genera la matrice $A = (a_{ij})_{i=1,\dots,n,j=1,\dots,m}$, con $0 < a_{ij} < 1$ pseudo-casuali
A=hilb(n)	genera la matrice di Hilbert $A = (a_{ij})_{i,j=1,,n}$, con $a_{ij} = 1/(i+j-1)$
A=vander(x)	genera la matrice di Vandermonde $A = (a_{ij})_{i,j=1,,n}$, con $a_{ij} = x_i^{n-j}$
A(r,c)	estrae gli elementi di A appartenenti all'intersezione delle righe e delle
	colonne specificate in r e in c rispettivamente
A(r,c)=C	assegna agli elementi di A (i cui indici di riga e di colonna sono specificati
	in \mathbf{r} e in \mathbf{c}) i valori definiti in C rispettivamente
A(r,c)=[]	rimuove gli elementi di A (i cui indici di riga e di colonna sono specificati
	in r e in c)
A([i j],c)=A([j i],c)	scambia gli elementi delle righe i e j di A appartenenti alle colonne
	specificate in c
A(r,[i j])=A(r,[j i])	scambia gli elementi delle colonne i e j di ${\tt A}$ appartenenti alle righe
	specificate in r

Operazioni aritmetiche su vettori-matrici

» a = [1 2 3] a = 2 3 1 » b = [4 5 6] **b** = 4 5 6 » a + b ans = 5 9 7 » ones(3)+5*ones(3)

ans =

Somma/sottrazione

tra elementi corrispondenti purchè le dimensioni siano compatibili

Operazioni aritmetiche su vettori

» a = [1 2 3] a = 3 1 2 » b = [4 5 6] **b** = 5 6 4 >> a'*b ans = 6 5 4 8 10 12 12 15 18 » a*b' ans = 32

Moltiplicazione tra vettori: -prodotto scalare -prodotto esterno

moltiplichiamo una matrice 3 x 1 per una 1 x 3 per ottenere una matrice 3 x 3)

moltiplichiamo una matrice 1 x 3 per una 3 x 1 per ottenere una 1 x 1 scalare)

Moltiplicazione tra matrici

C=A*B

moltiplicare una matrice A (n x m) con una matrice B (m x p) per ottenere una matrice (n x p)

>> A= [1 2; 0 2]; B= [2 3; 1 0] >> C= A*B $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} * \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 2 & 0 \end{bmatrix}$

Operazioni aritmetiche su vettori-matrici

Attenzione alle dimensioni dei vettori /matrici

??? Error using ==> mtimes Inner matrix dimensions must agree.

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Gli operatori su elementi indicano operazioni aritmetiche tra elementi corrispondenti: .* ./ ./ .^

» f =[1 2 3]; g= [4 5 6]; Definiamo i vettori 1x3 f e g.

Nota: usando ";" alla fine della linea si elimina la stampa del risultato.

>> h=f.*g h = 4 10 18 >> h=f.\g h = 4.0000 2.5000 2.0000 >> h=f./g h = 0.2500 0.4000 0.5000 >> h=f.^2 h = 1 4 9
Valido per vettori e matrici.

Tabella 10. Operazioni puntuali in MATLAB.

Operazione	Azione
z=x.*y	genera il vettore riga (colonna) $z = \{z_i\}_{i=1,,n}$, con $z_i = x_i * y_i$
z=x./y	genera il vettore riga (colonna) $z = \{z_i\}_{i=1,,n}$, con $z_i = x_i/y_i$
z=x.^y	genera il vettore riga (colonna) $z = \{z_i\}_{i=1,,n}$, con $z_i = x_i^{y_i}$
z=x.^e	genera il vettore riga (colonna) $z = \{z_i\}_{i=1,,n}$, con $z_i = x_i^e$
C=A.*B	genera la matrice $C = (c_{ij})_{i,j=1,\dots,n}$, con $c_{ij} = a_{ij} * b_{ij}$
C=A./B	genera la matrice $C = (c_{ij})_{i,j=1,,n}$, con $c_{ij} = a_{ij}/b_{ij}$
C=A.^B	genera la matrice $C = (c_{ij})_{i,j=1,\dots,n}$, con $c_{ij} = a_{ij}^{b_{ij}}$
C=A.^e	genera la matrice $C = (c_{ij})_{i,j=1,,n}$, con $c_{ij} = a_{ij}^{e}$

Variabili complesse

Un complex double array è visto come la somma di due double array.

Con le variabili 'i' o 'j' si indica l'unità complessa

$$i=\sqrt{-1}$$

Numeri complessi
 z = 3 + 4 * i (o z = 3 + 4 * j)

Variabili complesse

Array di variabili complesse

o equivalentemente

B=[1+5*j 2+6*j;3+7*j 4+8*j]

Non ci devono essere spazi bianchi nell'espressione del numero complesso.