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Numerical Methods for ODE

• One-step Methods

• Euler’s Method 

• Analysis of the one-step methods

• Runge-Kutta Methods

• Multi-step Methods 

• Adams-Bashforth

• Adams-Moulton 

• Predictor-Corrector

• Systems of ODE

• Stability 

• Stiff Problems

Martin Kutta  

Carl David Runge (1856-1927)

Leonhard Euler (1707-1783),

J.C. Adams

(1819-1882)



"...It is by looking into the same problem

from different points of view that one arrives

to a complete insight of it."

Euler



Ordinary Differential Equations

ODE
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Scalar Linear ODE of the first order

The term order indicates the maximum order of differentiation 
of the unknown function that is present in the equation.
The ODE is said to be homogeneous if f(x) = 0:

Theorem: Solution of the homogeneous equation
The set of solutions is given by the family of functions in the 
form: ( )( ) p x dxy x Ce−=
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Ordinary Differential Equations

ODE
Procedure to solve a homogeneous ODE with separable

variables:
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Constant coefficient linear ODE
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In general, a linear ODE with constant coefficients (λ)

has solution:



Ordinary Differential Equations

ODE
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A first order diff. equation takes the  general form 

f(x,y(x)) is a linear or nonlinear function on y.

The differential equation is satisfied by a family of 

functions. The initial condition

isolates one of these solutions

(solution of the Initial Value Problem IVP)



Initial Value Problems (IVP)

CAUCHY PROBLEM (or IVP)

Determine the solution of an ordinary differential, scalar 

or vector equation, completed by appropriate initial 

conditions.

IVP associated with an ODE of the first order

Determine a function y(x), continuous and differentiable

on the interval I in R such that
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Systems of first order ODE

A first order SYSTEM OF m ORDINARY EQUATIONS:

Each unknown function satisfies an ODE with initial
condition. All initial conditions are specified at the same value 
of the independent variable x.
In compact form:
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Constant coefficient linear 

system of ODEs
• Linear first order system of ODEs

• A linear system of ODEs with constant coefficients

• The system of ODEs is homogeneous if f(x) = 0

• Assume  A has constant coefficients and f(x) = 0,

then the solution is
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Constant coefficient linear 

system of ODEs
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Procedure to solve a homogeneous system of ODEs:

When A is diagonalizable, compute the eigenvalues and the

eigenvectors of the coefficient matrix A   such that
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Constant coefficient linear 

system of ODEs

by changing variables to
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The solution of the original (coupled) ODE system is



nth-order Differential Equation

Any mth-order differential equation, requires m 

conditions to obtain a unique solution
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and it is equivalent to a system of m equations of the 

first order:



nth-order Differential Equation

Let:
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Second order ODE: Example

Linear second order differential equation for a

vibrating system with springs:

The initial conditions are x(0) = x0 and x’(0) = 0.
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Let's rewrite the equation:
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Second order ODE: Example



The equation can be rewritten as a system of

two equations of the first order

The initial conditions are z1(0) = x0 and z2(0) = 0.
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Second order ODE: Example



Second order ODE:

Example
Predict the motion of a swinging 

pendulum of mass m hanging from a 

wire of length L in the absence of 

friction.

Non-linear second order ODE in θ (the 

angle with the vertical):
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of two non-linear ODEs 
of the first order



Lipschitz Function

Definition Rudolph Sigismund Lipschitz (1832-1903)

A function f :I -> R is Lipschitz (short Lip) in the interval I

if it exists a constant L such that, for whatever pair of

values (y1, y2) in I × I , the following upper bound holds

• This is equivalent to saying that the incremental ratio of f 

in the interval I is limited

• L is the Lipschitz constant for f if it is the lower bound of 

the constants L for which the inequalities hold. 

(f differentiable ->  f Lip.,   f Lip. -> f continuous)
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Assume that the function f(x,y) is

1. continuous with respect to both its arguments;

2. Lipschitz-continuous with respect to its second 

argument, that is, there exists a positive constant L (named 

Lipschitz constant) such that

Then the solution y = y(x) of the Cauchy problem exists, is 

unique and belongs to C1(I):

Theorem : 
Existence and uniqueness of solutions
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• The Lipschitz constant measures how much f(x,y(x)) 

changes if we perturb y (at some fixed time x)

• Example

λ=-3 Asymptotically stable sol.        λ=3 unstable solution
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IVP is a well-posed problem

The Cauchy problem, when the function f(x,y) verifies the

Lipschitz condition, is a well posed problem; that is, the

solution has existence, uniqueness and has a

continuous dependence on the initial data.

From the numerical point of view, the continuous

dependence on data is essential, since one works on

approximate quantities, but it may not be sufficient for an

adequate numerical approximation.

In fact, the problem must be well conditioned: small

changes in the data leads to small variations on the

results.



Stability vs. Conditioning

• The terms stability and conditioning are used

with a variety of meanings in Numerical

Analysis. They have in common the general 

concept of the response of a set of computations

to perturbations arising from

– the data,

– the specific arithmetic used on computers.

• In other words, a numerical algorithm is not only 

perturbed by the errors in the data, but also with 

respect to the errors arising in the process of 

computations.

• They are not synonymous.



Stability

• In Mathematics the notion of stability derives from 

the homonymous notion in mechanics.

• It regards the behavior of the motion of a system 

when it is moved away from the equilibrium.

• Three ingredients enters in the definition, i.e.

– the existence of a reference solution, i.e. the equilibrium;

– the perturbation of the initial status (the initial 

conditions);

– the duration of the motion, which is supposed to be 

infinite.



Conditioning

• Many problems, however, do not last for a long 

(in principle, infinite) time, and/or do not have an 

equilibrium.

• The above concept of stability do not apply, as it 

stands.

• The numerical analysts would like to know if the 

dependence of the solution on data, although 

continuous (if the problem is well-posed), may 

result disastrous for the error growth.

• This requires the notion of Conditioning.



"The most fundamental is the distinction 

between instability in the underlying 

mathematical problem and instability in 

an algorithm for the (exact or approximate) 

treatment of the problem".

Dahlquist

Stiffness is the ill-conditioning of the 

continuous problem



Ill-Conditioning:

linear system of ODEs

(*)

The study of conditioning can be done exactly with linear ODE 

systems of the type:
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Ill-Conditioning:

linear system of ODEs
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Solve (***) by diagonalization
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Ill-Conditioning:

linear system of ODEs
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The eigenvalues of the matrix A characterize the response of

the system to the introduction of initial value perturbations.
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When all the eigenvalues of the matrix A have negative 

real parts we define the problem

Asymptotically Stable Problem (AS)
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Example

• Given the IVP system

• Eigenvalues and eigenvectors:

• General solutions:

• Replace initial conditions:
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Esempio

• perturbing the initial conditions:

• Solution of the perturbed problem
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The initial error is multiplied by the amplification factor ex so 

the problem is unstable.
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Ill-Conditioning:

nonlinear system of ODEs
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Ill-Conditioning:

nonlinear system of ODEs

Consider only the linear part
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Ill-Conditioning:

nonlinear system of ODEs

Assuming that fy(x,y(x)) is almost constant, i.e.
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we can say that, as a first approximation,

propagation of the initial error ε is defined by
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Ill-Conditioning:

nonlinear system of ODEs

• Scalar nonlinear IVP: 

If fy <0 then the IVP is well-conditioned

otherwise is ill-conditioned

• System of nonlinear IVPs

if all the eigenvalues λl of the Jacobian matrix fy have a 

negative real part then the IVP system is ill-condirtioned

well-conditioned otherwise
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Ill-Conditioning:

nonlinear system of ODEs

The study of the propagation of an initial perturbation

it was possible assuming:

• the term is negligible

• the Jacobian is constant

In reality these hypotheses are often not verified and the

behavior of δ(x) may not be well represented by the

eigenvalues of fy(x0,y0).
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NUMERICAL METHODS for ODE: 

discretization
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Basic Idea

• Subdivide the integration interval I into Nh intervals

of length h = I/Nh; h is called the discretization step.

• Consider the sequence of points xj=x0+jh with j = 0,1,2, ...

named nodes.

• Approximate the values of the solution y(xj) at the nodes xj 

and call this approximation uj. j=0,1,2,….

The sequence of points (xj,uj) is the numerical solution

that approximates the solution y(x) in I

Determine an approximate solution of the Cauchy Problem:
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Let x’ and x’’ be two nodes of the discretization:

x’ = xi x’’ = xi+h
Then the right term is numerically integrated with a

quadrature formula.

Fundamental theorem of integral calculus

NUMERICAL METHODS for ODE: 

discretization



Some numerical Methods for 

ODE
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General concepts for numerical 

ODE methods

1. number of steps

2. Explicit or implicit approaches

3. stability property

4. convergence property

5. order of convegence



General concepts for numerical 

ODE methods

1. The number of steps

A  numerical method is one-step if

uj+1  depends only on uj.

0j 

1 1, ,...,j j j pu u u− + −

)2( p

One step

Multistep 
A  numerical method is p-step if

uj+1  depends on:
 1j p  −



General concepts for numerical 

ODE methods
2. Explicit vs Implicit approaches

A method is said to be explicit if uj+1 is derived directly

as a function of the known values uj , uj-1 ….

),(211 jjjj uxfhuu =− −+

),(1 jjjj uxfhuu =−+ Forward Euler’s Method

Midpoint Method

),( 111 +++ =− jjjj uxfhuu Backward Euler’s Method

Consequently the implicit methods require at every step  

solving in general a nonlinear equation for uj+1 .

A method is said to be implicit if the computation of uj+1

depends implicitly on uj+1 itself!



General concepts for numerical 

ODE methods

3. Stability Property

A numerical method is said to be stable if small

variations in the initial values correspond to small

variations in the solutions.

Unstable - that is, it amplifies errors

If the numerical method were not stable, the

rounding errors introduced on y0 and propagated in

the calculation of f(xn,un) at each step, would make

the calculated solution completely meaningless.



General concepts for numerical 

ODE methods

4. Convergence Property

A numerical method is said to be convergent with 

respect to h if

where C(h) is infinitesimal with respect to h when h 

tends to zero.

A zero-stable method turns out to be convergent if and

only if it is also consistent:

CONVERGENCE = ZERO-STABILITY+CONSISTENCE

0 independent on h s.t.
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General concepts for numerical 

ODE methods

5. The order of convergence

The accuracy of a convergent method is measured by the 

infinitesimal order of the error with respect to h.

Specifically, a numerical method converges with order p if

0 independent on h s.t.
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