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Numerical Methods for ODE

• One-step Methods

• Euler’s Method 

• Analysis of the one-step methods

• Runge-Kutta Methods

• Multi-step Methods 

• Adams-Bashforth

• Adams-Moulton 

• Predictor-Corrector

• Systems of ODE

• Stability 

• Stiff Problems

Martin Kutta  

Carl David Runge (1856-1927)

J.C. Adams

(1819-1882)

Leonhard Euler (1707-1783),



Runge-Kutta Methods (1905)

• The Runge-Kutta methods are famous due to

their efficiency; are included in almost all ODE

software packages.

• They are one-step methods, like Euler's

methods, but they are more accurate (order)

• However, the number of function evaluations for

each step increases.
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Runge-Kutta Methods

Key Idea: compute the integral

Consider a partition of [xn, xn+1]:

we approximate the integral with a quadrature formula on

m stages (nodes):
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Generalized form of one-step methods:



Runge-Kutta Methods m stages
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THE VALUE OF y(x) IN NODES IS NOT KNOWN xn+hcr , 
we approximate it with vr . 

Let v1 = y(xn) = un . At each node, compute an 
approximation Kr evaluating f(t,y) as a linear 
combination of the previous estimates



Runge-Kutta Methods m stages
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General formula of RK methods:



Runge-Kutta Methods m stages

Explicit and Implicit
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If    0   for ,    1,2,...,ija j i i m=  =Explicit RK:

then each Kr can be explicitly calculated in function of the only

r-1 coefficients K1, K2, ..., Kr-1 already previously calculated.

Otherwise it is implicit and the Ki calculation generally requires

the solution of a non-linear system.
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Runge-Kutta Methods m stages
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The method is certainly accurate if:
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RK Methods: coefficient calculation

The accuracy order of a method is the exponent

of the power of h of the ELT.

The unknown RK coefficients are calculated by

imposing the desired order s in the local

truncation error, i.e.

Imposing that s terms in the Taylor series

expansion of the exact solution y(xn+1) in a

neighborhood of xn coincide with those of the

approximate solution un+1.



Second order Runge-Kutta (m=2)
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Second order Runge-Kutta

(m=2): Heun’s method

If we use the coefficients:

we get the RK scheme:
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Second order Runge-Kutta

(m=2): example

If we use the coefficients:

we get the RK scheme:
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Fourth order Runge-Kutta (m=4): 

example
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The most popular RK methods are fourth order. 

The following is the most commonly used form:



Fourth order Runge-Kutta (m=4)

xi xi + h/2 xi + h
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RK Methods

Comparison of Runge-Kutta methods

of the 2nd order and 4th order.

Runge Kutta Comparison
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Runge-Kutta Methods 

Order p 1 2 3 4 5 6 7 8

Stages m 1 2 3 4 6 7 9 11

Ordermax =m for m=1,2,3,4

Ordermax =m-1 for m=5,6,7

Ordermax =m-2 for m=8,9

Ordermax =m-3 for m 10

RK Explicit

RK Implicit methods with m stages, then maximum order is 2m



The relationship between the number of evaluations of the 

function f (m) and the order of the local truncation error (p) 

is given by the following table:

Proposition: for p ≥ 8 there is no explicit method of order p with m = p + 2 stages



Adaptive step methods

h big low cost but large discretization error

h small significant calculation effort but greater 

accuracy

Determine the largest increment of the step h in 

such a way that the discretization error, after 

having carried out a step with such an increment, 

remains still below a certain tolerance.

nnn xxh −= +1



An example of a solution of an 

ODE that exhibits an abrupt 

change. Automatic step-size 

adjustment has great 

advantages for such cases.

-> adaptive step-size control 

methods.



Adaptive step-size methods

Being one step, the Runge-Kutta methods are well suited

to changing the integration step h, as long as you have an

efficient estimator of the local error committed to the single

step.

Strategies for estimating the local truncation error

1.using the same Runge-Kutta method with two different

steps (typically 2h and h);

2.using two different order Runge-Kutta methods at the

same step, but with the same number m of stages.



Estimate of

the local truncation error
2. Strategy with different orders

Simultaneously use two RK methods at m and m * nodes, 

of order p and p + 1 respectively, which have the same 

set of values Ki, i = 1, .., m.

The following ELT estimate is assumed:

: order p method with m stages

: order p+1 method with m* stages
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Proof
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Adaptive step-size Algorithm
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Given a tolerance ε

At each step:

Compute

Estimate the LTE

If

then un+1 is not accepted, decrease step h,

recalculate,

otherwise, un+1 is accepted and continues

 n

Algorithm to adjust the step size. 

In general, the strategy is to increase the step size if the error is too 

small and decrease it if the error is too large.



4th order Runge-Kutta

coupled with the 5th order 

RK, same number of stages.

RKF45 : routine with 

adaptive step-size with 

automatic ELT control.

RK23 2nd order Runge-Kutta coupled with the 3rd order RK, same 

number of stages.

RKF45 Method:

Runge-Kutta Fehlberg 4° order

Remark: the existence of points of singularity in the solution are 

detected by the presence of excessively small step-sizes.
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RK 4

RK 5



Regions of absolute stability

Metodi Runge-Kutta

Explicit RK methods are generally unsuitable for the solution of ODE stiff 

because their region of absolute stability is small; in particular, it is 

bounded. They can never be A-stable. A-stable Runge-Kutta method is 

necessarily implicit.

Explicit RK r nodes, r = 1, .., 4 Implicit RK r nodes
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