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Numerical Methods for ODE

• One-step Methods

• Euler’s Method 

• Analysis of the one-step methods

• Runge-Kutta Methods

• Multi-step Methods 

• Adams-Bashforth

• Adams-Moulton 

• Predictor-Corrector

• Systems of ODE

• Stability 

• Stiff Problems

Martin Kutta  

Carl David Runge (1856-1927)

J.C. Adams

(1819-1882)

Leonhard Euler (1707-1783),



Stiff Differential Equations

STIFF : Indicates a sort of ill-conditioning of the scalar or

systems IVP that makes unstable almost all considered

numerical methods.

An initial-value scalar/system of ODE is stiff if the step size

needed to maintain absolute stability of the numerical method

is much smaller than the step size needed to represent the

solution accurately.

Stiff IVPs force explicit methods to use a very small step size 

and thus become unreasonably expensive.

For these problems we consider methods characterized by a 

“large” region of absolute stability



How to identify a stiff problem?

• Both scalar and systems of ODEs can be stiff. 

• Example:
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IVP:

Exact sol:

although the transient 

occurs for only a small 

fraction of the 

integration interval, it 

controls the maximum 

allowable step size.



Explicit Euler’s method
-stability limit h = 0.0015

-for h > 0.002

totally unstable solution

Implicit Euler’s method
unconditionally stable.



How to identify a stiff problem?

• A system of linear ODE with constant coefficients

• Assume  A has m distinct eigenvalues

• Solution
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Example

• Problem 1

• Problem 2
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Numerical Solution
Problem 1

• RK Method of order 45

Adaptive step size with  toll=0.01, 
in [0,10].

– 25 steps

– 169 function eval.

• Implicit Method of order 4
– 41  steps

– 90 function eval.

Problem 2

• RK Method of order 45
Adaptive step size with  toll=0.01, 
in [0,10]. 

- 3015 steps

– 18769 function eval.

• Implicit Method of order 4 
– 48 steps

– 112 function eval.

With fixed step h=0.1: the method fails (overflow)



Problem 1

Problem 2



Problem 1

Problem 2



Remarks

• The problem is ill-conditioned, 

phenomenon known as stiffness

• Problem 2 is stiff, 

while problem 1 is not stiff.

• It’s a property that does not depend on the 

solution, but on the problem data itself.



How to identify a stiff problem?

General solution

In the example,

the solutions can

be written as

• c1 and c2 are constants. Then for the y solution

approaches to the particular solution Ψ, because each of

the solutions tends to zero for

• Stability theory can give us a motivation..
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PROBLEM 1  A eigenvalues 

PROBLEM 2 A eigenvalues 

Requirement for Absolute  Stability:  hλj be located in the method's 

absolute stability region Ra, for all eigenvalues  λj of A.

Method RK 45 has absolute stability region (-3,0):

– for problem 1 –3*h  (-3,0) thus h<1.0

– for problem 2 –1000*h  (-3,0) thus h<0.003 and this is a strong 
limit for the time step h. 

Method IMPLICIT 4 order has absolute stability region that includes the 
negative semi-axis of the complex plane, then hλRa for each step h, 
when λ has real negative real part.
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Characterization of stiffness for 

ODE systems

Solution: ψ(x)vecy(x) j
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Assume: ,...,m.,j    λ j 210Re =

Then for the solution y tends to the particular solution

Ψ , since each of the particular solutions tends to zero

for x approaching infinity.
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Ψ solution of the steady-state (i.e. for infinite times) 

a solution of the transient state (for finite times)



Characterization of stiffness for 

ODE systems
• If is large it corresponds to a fast transient, a component

of the solution (a) that decays very rapidly

• If is small it corresponds to a slow transient, a component of
the solution that decays much more slowly.

Let

If we are interested to reach the steady state solution Ψ then we
continue to integrate until the slower transient is not negligible.
Smaller and longer we will continue to integrate.

If we use a numerical scheme with region of absolute stability (h*Ra)
and is larger, then the step h must be very small for a very
long period of time in order to obtain the stationary solution.

Then the step h appears to have limitations that depend on the
maximum modulus of the eigenvalues of A.
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Characterization of stiffness for 

ODE systems
We have stiffness when…

is very small

is very large

Stiffness Ratio
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A system of linear ODE with constant coefficients is stiff if

the eigenvalues of the matrix A all have negative real part

and rs>>1
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Numerical Methods 

for stiff ODE problems

• Problems for which A has eigenvalues with 

significantly different magnitudes are called stiff 

differential equations. 

• No conditionally stable method is suitable for 

approximating a stiff problem.

• For such stiff problems, implicit methods 

(which generally have much larger stability 

regions) are generally favored. However, Implicit 

methods are more expensive.
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