

Il metodo degli elementi finiti nel caso multidimensionale

Metodo degli Elementi Finiti 2D

$\Omega \subset \Re^2$ dominio **Triangolazioni** T_h che ne rappresentino il ricoprimento con triangoli non sovrapposti.

Domino discreto

$$\Omega_{h} = \operatorname{int}\left(\bigcup_{K_{j}\in\mathsf{T}_{h}}K_{j}\right)$$
$$h = \max_{K_{i}\in\mathsf{T}_{h}}\operatorname{diam}(K_{j}), \quad \operatorname{diam}(K_{j}) = \operatorname{diametro}\operatorname{di}K_{j}$$

Metodo degli Elementi Finiti 2D

P_r spazio dei polinomi di grado minori od uguale a r

$$\mathbf{P}_{1} = \left\{ f\left(x_{1}, x_{2}\right) = a + bx_{1} + cx_{2}, \quad \text{con } a, b, c \in \Re \right\} \quad \dim(\mathbf{P}_{1}) = 3$$
$$\mathbf{P}_{2} = \left\{ f\left(x_{1}, x_{2}\right) = a + bx_{1} + cx_{2} + dx_{1}x_{2} + ex_{1}^{2} + gx_{2}^{2}, \text{ con } a, b, c, d, e, g \in \mathbb{R} \right\} \dim(\mathbf{P}_{2}) = 6$$
....

$$\mathbf{P}_{r} = \left\{ f\left(x_{1}, x_{2}\right) = \sum_{i+j \le r} a_{ij} x_{1}^{i} x_{2}^{j}, \quad \text{con } a_{ij} \in \Re \right\} \quad \dim(\mathbf{P}_{r}) = \frac{(r+1)(r+2)}{2}$$

Spazio generatore degli elementi finiti

$$X_h^r = \left\{ v_h \in C^0\left(\overline{\Omega}\right): v_h \mid_K \in \mathbf{P}_r, \quad \forall K \in \mathsf{T}_h \right\} \quad r = 1, 2, \dots$$

è lo spazio delle funzioni polinomiali sui singoli triangoli (elementi) sulla reticolazione $T_{\rm h}$

dim $P_r = \frac{(r+1)(r+2)}{2}$ dim $P_1 = 3$ dim $P_2 = 6$ dim $P_3 = 10$

Quindi su ogni singolo elemento della triangolazione T_h la generica funzione v_h è ben definita qualora se ne conosca il valore rispettivamente in 3, 6 e 10 nodi opportunamente scelti.

Nodi per polinomi lineari (r=1) quadratici (r=2) cubici (r=3)

$$X_h^r = \left\{ v_h \in C^0\left(\overline{\Omega}\right): v_h \mid_K \in \mathbf{P}_r, \quad \forall K \in \mathsf{T}_h \right\} \quad r = 1, 2, \dots$$

$$\stackrel{\circ}{X_{h}^{r}} = \left\{ v_{h} \in X_{h}^{r} : v_{h} \mid_{\partial \Omega} = 0 \right\}$$

$$\stackrel{\circ}{X_{h}^{r}} \in X_{h}^{r} \quad \text{sono idonei ad approximate rispettivamente}$$

$$H^{1}(\Omega) \in H^{1}_{0}(\Omega)$$

Elementi finiti lineari

• Prendiamo r = 1. Scegliamo come gradi di libertà per descrivere le funzioni di X_h^1

i valori nei vertici degli elementi di T_h

È abbastanza intuitivo che una funzione $v_h \in X_h^1$ sia completamente determinata dai valori che essa assume nei vertici degli elementi della triangolazione

Elementi finiti quadratici e cubici

• Prendiamo ora r = 2. Scegliamo come gradi di libertà per descrivere le funzioni di X_h^2

i valori nei vertici e quelli nei punti medi dei lati degli elementi di Th

• Per X_h^3 considereremo 10 gradi di libertà per ogni elemento (distribuiti come in figura) e così via per elementi di grado maggiore.

1

1

Determinare *u* tale che

$$\begin{cases}
-\Delta u = f & in \ \Omega \\
u = 0 & su \ \Gamma
\end{cases} \quad \Omega \subset \Re^2$$

trovare

 $u_h \in V_h$

D

$$\int_{\Omega} \nabla u_h \bullet \nabla v_h \quad d\Omega = \int_{\Omega} f \ v_h \ d\Omega \qquad \forall v_h \in V_h, \quad V_h = X_h^{r}$$

Ogni funzione $v \in V_h$ è caratterizzata in modo univoco dai valori che essa assume ai nodi N_i , con $i=1,2,...,N_h$ della triangolazione T_h (escludendo i **nodi di bordo** dove $v_h=0$).

$\begin{array}{ll} \textbf{Base} & \phi_j \in V_h, \quad j=1,2,\ldots,N_h \\ \textbf{dello spazio} & \\ \phi_j \left(N_i\right) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases} \quad i, j=1,2,\ldots,N_h \end{array}$

Se r = 1, i gradi di libertà sono i vertici degli elementi, non appartenenti al bordo di Ω , mentre φ_j è lineare su ogni triangolo ed assume il valore 1 nel nodo N_j e 0 in tutti gli altri nodi della reticolazione.

N_h i *nodi interni* della triangolazione T_h

Esprimendo

$$v_h(x) = \sum_{i=1}^{N_h} \eta_i \varphi_i(x)$$
 $x \in \Omega$ con $\eta_i = v_h(N_i)$
 $u_h(x) = \sum_{i=1}^{N_h} \xi_i \varphi_i(x)$

ed imponendo che essa verichi l'equazione $\int_{\Omega} \nabla u_h \bullet \nabla v_h \ d\Omega = \int_{\Omega} f \ v_h \ d\Omega$ per ogni funzione della base stessa,

$$\sum_{j=1}^{N_h} \eta_j \sum_{i=1}^{N_h} \xi_i \int_{\Omega} \nabla \phi_i \bullet \nabla \phi_j \quad d\Omega = \sum_{j=1}^{N_h} \eta_j \int_{\Omega} f \quad \phi_j \ d\Omega \qquad j = 1, 2, \dots, N_h$$

si trova il sistema lineare di N_h equazioni nelle N_h incognite ξ_i

$$\sum_{j=1}^{N_h} \eta_j \sum_{i=1}^{N_h} \xi_i \int_{\Omega} \nabla \phi_i \bullet \nabla \phi_j \quad d\Omega = \sum_{j=1}^{N_h} \eta_j \int_{\Omega} f \quad \phi_j \ d\Omega \qquad j = 1, 2, \dots, N_h$$

Matrice di stiffness N_h x N_h

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} \qquad a_{ij} = \int \nabla \varphi_i \bullet \nabla \varphi_j \ d\Omega$$

$$\xi = \begin{bmatrix} \xi_i \end{bmatrix} \qquad con \qquad \xi_i^{\Omega} = u_h(N_i)$$

$$b = \begin{bmatrix} b_i \end{bmatrix} \qquad con \qquad b_i = \int_{\Omega} f \varphi_i d\Omega$$

$$\boxed{A \ \xi = b} \qquad \text{Simmetrica, def pos., sparsa}$$

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} \qquad a\left(\varphi_i, \varphi_j\right) = a_{ij} = \sum_{K \in T_h} \int_K \nabla \varphi_i \bullet \nabla \varphi_j \ d\Omega$$

Essendo il supporto della generica funzione φ_i della base formato dai soli triangoli aventi in comune il nodo **N**_i, A è una matrice sparsa.

In particolare a_{ij} è diverso da zero solo se N_i e N_j sono nodi dello stesso triangolo

Matrice locale di stiffness dell'elemento K

$$\begin{bmatrix} a_{K}(\varphi_{i},\varphi_{i}) & a_{K}(\varphi_{i},\varphi_{j}) & a_{K}(\varphi_{i},\varphi_{k}) \\ a_{K}(\varphi_{j},\varphi_{i}) & a_{K}(\varphi_{j},\varphi_{j}) & a_{K}(\varphi_{j},\varphi_{k}) \\ a_{K}(\varphi_{k},\varphi_{i}) & a_{K}(\varphi_{k},\varphi_{j}) & a_{K}(\varphi_{k},\varphi_{k}) \end{bmatrix}$$

Assemblaggio: costruzione della matrice stiffness globale utilizzando le matrici relative ad ogni elemento $K \in T_{\mu}$

La matrice
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}$$
 $a(\varphi_i, \varphi_j) = a_{ij} = \sum_{K \in T_h} \int_K \nabla \varphi_i \bullet \nabla \varphi_j d\Omega$

- è definita positiva; inoltre A risulta essere simmetrica se la forma bilineare a(.,.) è simmetrica.
- Il suo numero di condizionamento è dato da

$$K_2(A) = \lambda_{max}(A) / \lambda_{min}(A);$$

essendo $\lambda_{max}(A) \in \lambda_{min}(A)$, gli autovalori di modulo massimo e minimo, rispettivamente, di A.

Si può dimostrare che $K(A) = C h^{-2}$

dove C è una costante indipendente dal passo reticolare h, ma dipendente dal grado degli elementi finiti utilizzati.

La matrice è pertanto *malcondizionata al decrescere di h.*

Stima dell'errore di approssimazione

Teorema

Sia $u \in V$ la soluzione esatta del problema variazionale

Determinare
$$u \in V$$
:
 $a(u,v) = F(v)$ $\forall v \in V$

e $\mathbf{u}_{\mathbf{h}}$ la sua approssimata con il metodo ad elementi finiti di grado r.

Se $u \in H^{r+1}(\Omega)$ allora vale la seguente disuguaglianza, detta anche stima a priori dell'errore:

$$\|u-u_h\|_{H^1(\Omega)} \le rac{M}{lpha} Ch^r |u|_{H^{r+1}(\Omega)}$$
 Norma
energia

L'elemento di riferimento

Come in 1D, ogni elemento triangolare $K \in \mathcal{T}_h$ è l'immagine dell'elemento di riferimento \widehat{K} attraverso la trasformazione di coordinate (invertibile)

dove

$$\mathbf{x} = \mathbf{x}(\widehat{\xi}) = B_K \widehat{\xi} + b_K \tag{5}$$

$$B_{K} = \begin{pmatrix} x_{2} - x_{1} & x_{3} - x_{1} \\ y_{2} - y_{1} & y_{3} - y_{1} \end{pmatrix} \quad b_{K} = \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix}$$

Figura 1: Trasformazione di coordinate da \widehat{K} al generico triangolo $K \in \mathcal{T}_h$.

Funzioni base sull'elemento di riferimento

Il caso r = 1

$$\widehat{\varphi}_0(\widehat{\xi}) = 1 - \xi - \eta$$
$$\widehat{\varphi}_1(\widehat{\xi}) = \xi$$
$$\widehat{\varphi}_2(\widehat{\xi}) = \eta$$

Il caso r = 2

Figura 2: Funzioni di base di grado 2 su \hat{K} .

$$\widehat{\varphi}_{0}(\widehat{\xi}) = (1 - \xi - \eta)(1 - 2\xi - 2\eta)$$
$$\widehat{\varphi}_{1}(\widehat{\xi}) = \xi(-1 + 2\xi)$$
$$\widehat{\varphi}_{2}(\widehat{\xi}) = \eta(-1 + 2\eta)$$
$$\widehat{\varphi}_{3}(\widehat{\xi}) = 4\xi(1 - \xi - \eta)$$
$$\widehat{\varphi}_{4}(\widehat{\xi}) = 4\xi\eta$$
$$\widehat{\varphi}_{5}(\widehat{\xi}) = 4\eta(1 - \xi - \eta)$$

Calcolo integrali sull'elemento di riferimento

Utilizzando la (5) si ottiene

$$\frac{\partial \varphi_i(x,y)}{\partial x} = \frac{\partial \widehat{\varphi_i}}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial \widehat{\varphi_i}}{\partial \eta} \frac{\partial \eta}{\partial x}, \qquad \frac{\partial \varphi_i(x,y)}{\partial y} = \frac{\partial \widehat{\varphi_i}}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial \widehat{\varphi_i}}{\partial \eta} \frac{\partial \eta}{\partial y}$$
ovvero

$$\nabla \varphi_i = B_K^{-T} \nabla \widehat{\varphi}_i$$

dove, indicando con |K| l'area del triangolo K, si ha

$$B_{K}^{-T} = \frac{1}{2|K|} \begin{pmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{pmatrix} = \frac{1}{2|K|} \begin{pmatrix} y_{3} - y_{1} & -(y_{2} - y_{1}) \\ -(x_{3} - x_{1}) & x_{2} - x_{1} \end{pmatrix}$$

$$a_{ij}^{K} = \int_{K} \nabla \varphi_{j} \cdot \nabla \varphi_{i} dx = \int_{\hat{K}} B_{K}^{-T} \nabla \hat{\varphi}_{j} \cdot B_{K}^{-T} \nabla \hat{\varphi}_{i} \left| \det B_{K} \right| d\hat{\xi}$$
$$f_{i}^{K} = \int_{K} f \varphi_{i} dx = 2 \left| K \right| \int_{\hat{K}} f(x(\hat{\xi})) \hat{\varphi}_{i} d\hat{\xi}$$

Elementi tetraedrici in 3D

In 3D valgono ragionamenti analoghi sui tetraedri.

Elementi quadrilateri Q^1 in 2D (bilineari-isoparametrici)

Mappatura geometrica: $\begin{cases} \hat{\varphi}_1 = (1-\xi)(1-\eta), & \hat{\varphi}_2 = (1+\xi)(1-\eta) \\ \hat{\varphi}_3 = (1+\xi)(1+\eta), & \hat{\varphi}_4 = (1-\xi)(1+\eta) \end{cases}.$

E' una base bilineare (ossia lineare rispetto ad ogni variabile indipendente). Se il quadrilatero fisico non è degenere, i requisiti per la convergenza sono soddisfatti. Osservazione: L'elemento triangolare lineare può essere visto come derivato da questo per "collasso" di due nodi.

Elementi di ordine elevato

- Quando si vuole procedere con elementi di ordine più elevato di 1, si hanno essenzialmente due possibilità:
- 1. Elementi affini: La mappatura geometrica rimane lineare, mentre i polinomi della base di Vh salgono di grado.

Esempio: i triangoli/tetraedri lineari con basi quadratiche.

2. Elementi Isoparametrici: La mappatura geometrica è descritta dalle stesse funzioni di base (di alto ordine). In questo modo si costruiscono elementi a lati curvi.

<u>Esempio: gli elementi</u> triangolari/quadrilateri curvi

6 nodi

10 nodi

Processo di discretizzazione del dominio

 $\Omega \subset \mathbb{R}^d \Rightarrow \mathcal{T}_h(\Omega) = \{K_i \subset \mathbb{R}^d : \bigcup_i K_i = \overline{\Omega_h}\}\$ $K_i = T_i(\widetilde{K}), \quad \widetilde{K} \text{ poliedro } T_i \text{ mappa continua ed invertibile}$ (p.es. affine)

Dominii non poligonali

Esempio di triangolazione di un dominio non-poligonale.

La triangolazione induce una *approssimazione* Ω_h *del dominio* Ω

L'errore è dell'ordine di h^2 a meno di non approssimare il bordo con polinomi a pezzi di grado $r \ge 2$ (*trasformazioni iso-parametriche*).

Utilizzeremo nel seguito il simbolo Ω per indicare indistintamente sia il dominio computazionale che la sua (eventuale) approssimazione.

Indichiamo con

- $h_K = \operatorname{diam}(K) = \max_{\mathbf{x}, \mathbf{y} \in K} |\mathbf{x} \mathbf{y}| \text{ il diametro dell'elemento } K \in \mathcal{T}_h$
- $\blacktriangleright \quad h = \max_{K \in \mathcal{T}_h} h_K;$
- ρ_K l'estremo superiore dei diametri dei cerchi contenuti in K (la sfericità)

Requisiti di una mesh di discretizzazione

Imporremo che la griglia soddisfi la seguente condizione di *regolarità.*

 Una famiglia di triangolazioni {T_h; h > 0} è detta regolare se, per un opportuno δ> 0 è vericata la condizione

$$\frac{h_{K}}{\rho_{K}} \leq \delta \qquad \forall K \in T_{h}, \forall h > 0$$

 $\delta\,$ livello di qualità della GRIGLIA DI CALCOLO

 Questa condizione impone che nella reticolazione non ci possano essere elementi con un angolo arbitrariamente piccolo.

Requisiti di una mesh di discretizzazione

Una mesh T_h deve descrivere correttamente il dominio fisico

- Deve rappresentare bene il bordo esterno o eventuali bordi interni (interfacce)
- L'approssimazione di bordi curvi può essere fatta:
- 1. rettificandoli
- 2 usando elementi iso-parametrici

$$\overline{\mathbf{\Omega}} = \bigcup_{K \in \mathsf{T}_h} K$$

Requisiti di una mesh di discretizzazione

La mesh deve essere coerente:

1.
$$K \neq \emptyset$$
, $\forall K \in \mathbf{T}_h;$

2.
$$K_1 \cap K_2 = \emptyset$$
 per ogni $K_1, K_2 \in \mathbf{T}_h$ con $K_1 \neq K_2$;

3. se
$$F = K_1 \cap K_2 \neq \emptyset$$
 con $K_1, K_2 \in \mathbf{T}_h$ e $K_1 \neq K_2$,
allora F è o un intero lato o un vertice della griglia;

Le mesh sono costituiti dai seguenti due elementi:

il poligono (poliedro) di riferimento è un *triangolo (tetraedro) e, di* conseguenza, K è un triangolo (tetraedro);

il poligono (poliedro) di riferimento è un *quadrato (cubo) e, di* conseguenza, K è un parallelogrammo (parallelepipedo).

Il requisito n. 3 impone che alle interfacce non ci siano "*crisi di identità*": un punto o è parte di uno spigolo o è un vertice *per tutti gli elementi sul cui bordo si trova quel punto*.

Sinistra:griglia conforme, destra: griglia non conforme

Una griglia che soddisfa il vincolo n. 3 si dice *conforme*.

Tutta l'analisi vista in questo corso si riferisce a *elementi finiti conformi*.

In effetti, è possibile definire il metodo degli elementi finiti per griglie **non conformi**. In generale, non è necessario lavorare con tali griglie, a parte casi specifici. (es.: problemi eterogenei risolti con griglie diverse).

La dimensione h deve essere scelta opportunamente. Questo è un aspetto delicato: la teoria dice che più h è piccolo e più la soluzione è accurata... ma anche computazionalmente costosa. La scelta ottimale di h è in realtà una funzione della soluzione e pertanto variabile localmente, in genere con una distribuzione non nota a priori. La mesh non è un dato, ma un'incognita del problema (M. Fortin - vd. ADAPT.)

Gli elementi devono essere "round", cioè non troppo schiacciati. Formalmente, questo si traduce in un vincolo su δ_K (mesh regolare):

 $\max_{K} \delta_{K} \leq \text{costante}$

Questo evita che vi siano elementi troppo "schiacciati", ove l'accuratezza della soluzione possa essere compromessa.

Esempio:

Nel nodo *P* la soluzione ha un valore *d* che dipende (nel caso di EF lineari) dai valori *a* e *b*. La derivata $\partial_y u$ in *P* sarà $\approx \frac{c-d}{\mathcal{H}}$ essendo \mathcal{H} l'altezza del triangolo. Se non c' è controllo su \mathcal{H} , il valore della derivata può essere arbitrariamente grande.

Reticolazione di un dominio poligonale

La condizione 3. limita le triangolazioni ammissibili a quelle cosiddette conformi. Un punto o è parte di uno spigolo o è un vertice per tutti gli elementi sul cui bordo si trova quel punto.

Esistono delle approssimazioni agli elementi finiti molto particolari che utilizzano griglie non conformi.

Griglie strutturate e non-strutturate

Griglie strutturate: utilizzano elementi quadrangolari e sono caratterizzate dal fatto che l'accesso ai nodi adiacenti ad un dato nodo (o agli elementi adiacenti ad un dato elemento) è immediato. Infatti è possibile stabilire una relazione biunivoca tra i nodi di griglia e le coppie di numeri interi (i,j), i=1,2,...,N_i, j=1,2,...,N_j tali per cui dato il nodo di coefficienti (i,j) , i 4 nodi adiacenti sono in corrispondenza agli indici (i-1,j),(i+1,j), (i,j-1),(i,j+1). Una analoga associazione può essere fatta tra gli elementi della griglia e le coppie (I,J), I=1,2,...,N_{i-1}, J=1,2,...,N_{i-1}.

Numero totale nodi N_iN_j.

Griglie strutturate e non-strutturate

Griglia non strutturata: l'associazione tra ciascun elemento di griglia ed i suoi nodi deve essere esplicitamente memorizzata nella **matrice delle connettività**, che appunto fornisce per ciascun elemento la numerazione dei nodi ad esso appartenenti.

Griglie strutturate

 algoritmi più efficienti sia in termini di memoria che tempi di calcolo

Griglie non strutturate

 Maggiore flessibilità sia dal punto di vista delle triangolazione di domini di forma complessa sia perché offrono la possibilità di raffinare/diradare localmente la griglia.

Griglie strutturate e non-strutturate

Griglie non strutturate sono in genere formate da triangoli, anche se è possibile avere griglie non strutturate quadrangolari.

Generazione griglie non strutturate - elementi triangolari

Algoritmi principali

Triangolazione di Delaunay.

Tecnica di avanzamento del fronte.

Triangolazione di Delaunay. Proprietà:

- Dato un set di punti, la sua triangolazione di Delaunay è unica, a parte situazioni particolari in cui m punti (m>3) giacciano su una circonferenza;
- Tra tutte le triangolazioni possibili la triangolazione di Delaunay è quella che massimizza il minimo angolo dei triangoli della griglia (proprietà max-min);
- 3. L'insieme formato dall'unione dei triangoli è la più piccola figura convessa che racchiude il set di punti dato.

Triangolazione di Delaunay

 Una triangolazione si dice di Delaunay se la circonferenza circoscritta di ciascun triangolo non contiene alcun vertice al suo interno.
 Il nodo P c

Il nodo P cade all'interno del cerchio circoscritto al triangolo K.

A sinistra, Griglia di Delaunay, a destra griglia NON Delaunay.

- La terza proprietà rende l'algoritmo di Delaunay impraticabile per domini non convessi, almeno nella sua forma originaria.
- <u>Variante:</u> algoritmo di Delaunay vincolato
- Permette di fissare a-priori un insieme di lati della griglia da generare (in particolare si possono fissare i lati che definiscono la frontiera della griglia).

Triangolazione di Delaunay

- Dati due punti P_1 e P_2 diremo che essi sono reciprocamente *visibili* se il segmento P_1P_2 non attraversa nessuno dei lati di frontiera (o, in generale, i lati che si vogliono fissare).
- Una triangolazione di Delaunay vincolata soddisfa la proprietà: l'interno del cerchio circoscritto a ciascun triangolo K non contiene alcun nodo che sia visibile da un punto interno di K.
- La triangolazione è unica e soddisfa la proprietà max-min.

Programma TRIANGLE www.netlib.org

PROPRIETÀ:

- dato un insieme di vertici, la griglia di Delaunay associata è unica (a meno di equivalenze);
- l'unione dei triangoli di Delaunay è la figura convessa di area minima che racchiuda l'insieme di punti dato;
- Ia triangolazione di Delaunay massimizza il minimo angolo dei triangoli della griglia (proprietà di regolarità max-min).

OSSERVAZIONI:

- il calcolo della mesh di Delaunay è un problema ben posto (esistenza e unicità della soluzione);
- ► la proprietà di max-min ne motiva la ricerca (regolarità);
- nella pratica, l'area che racchiude l'insieme di punti dato è assegnata, essendo il dominio fisico; questo richiede l'uso di opportune modifiche alle definizioni e metodi relativi a Delaunay, che tengano conto dei vincoli dati dai bordi esterni (*Constrained Delaunay Triangulation*).

1. A.Quarteroni: Modellistica Numerica per Problemi Differenziali, Springer Italia 2006.

2. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Cap. 1), Cambridge University Press, Cambridge (1987).

3. T. J. R. Hughes, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (Cap. 3), Dover Publishers, New York (2000).

4. P. J. Frey e P.-L. George, Mesh Generation. Application to finite elements, Hermes Science, 2000.