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28.1

Case Studies: Ordinary
Differential Equations

The purpose of this chapter is to solve some ordinary differential equations using the nu-
merical methods presented in Part Seven. The equations originate from practical engineer-
ing applications. Many of these applications result in nonlinear differential equations that
cannot be solved using analytic techniques. Therefore, numerical methods are usually re-
quired. Thus, the techniques for the numerical solution of ordinary differential equations
are fundamental capabilities that characterize good engineering practice. The problems in
this chapter illustrate some of the trade-offs associated with various methods developed in
Part Seven.

Section 28.1 derives from a chemical engineering problem context. It demonstrates
how the transient behavior of chemical reactors can be simulated. It also illustrates how op-
timization can be used to estimate parameters for ODEs.

Sections 28.2 and 28.3, which are taken from civil and electrical engineering, respec-
tively, deal with the solution of systems of equations. In both cases, high accuracy is de-
manded, and as a consequence, a fourth-order RK scheme is used. In addition, the electrical
engineering application also deals with determining eigenvalues.

Section 28.4 employs a variety of different approaches to investigate the behavior of a
swinging pendulum. This problem also utilizes two simultaneous equations. An important
aspect of this example is that it illustrates how numerical methods allow nonlinear effects
to be incorporated easily into an engineering analysis.

USING ODES TO ANALYZE THE TRANSIENT RESPONSE
OF A REACTOR (CHEMICAL/BIO ENGINEERING)

Background. In Sec. 12.1, we analyzed the steady state of a series of reactors. In addi-
tion to steady-state computations, we might also be interested in the transient response of a
completely mixed reactor. To do this, we have to develop a mathematical expression for the
accumulation term in Eq. (12.1).

Accumulation represents the change in mass in the reactor per change in time. For a
constant-volume system, it can be simply formulated as

d
Accumulation = VFj (28.1)
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FIGURE 28.1
A single, completely mixed reactor with an inflow and an oufflow.

where V= volume and ¢ = concentration. Thus, a mathematical formulation for accumu-
lation is volume times the derivative of ¢ with respect to .

In this application we will incorporate the accumulation term into the general mass-
balance framework we developed in Sec. 12.1. We will then use it to simulate the dynamics
of a single reactor and a system of reactors. In the latter case, we will show how the system’s
eigenvalues can be determined and provide insight into its dynamics. Finally, we will illus-
trate how optimization can be used to estimate the parameters of mass-balance models.

Solution.  Equations (28.1) and (12.1) can be used to represent the mass balance for a sin-
gle reactor such as the one shown in Fig. 28.1:

dc
VE = Qc¢p — Qc (28.2)
Accumulation = inputs — outputs

Equation (28.2) can be used to determine transient or time-variable solutions for the
reactor. For example, if ¢= ¢y at £= 0, calculus can be employed to analytically solve
Eq. (28.2) for

= an(l — e @V 1 qe @V
If ¢y = 50 mg/m®, Q= 5 m¥min, V= 100 m®, and ¢y = 10 mg/m?, the equation is
¢ =50(1 — e™%%) 4 10e~%%"

Figure 28.2 shows this exact, analytical solution.

Euler’s method provides an alternative approach for solving Eq. (28.2). Figure 28.2
includes two solutions with different step sizes. As the step size is decreased, the numeri-
cal solution converges on the analytical solution. Thus, for this case, the numerical method
can be used to check the analytical result.

Besides checking the results of an analytical solution, numerical solutions have added
value in those situations where analytical solutions are impossible or so difficult that they
are impractical. For example, aside from a single reactor, numerical methods have utility
when simulating the dynamics of systems of reactors. For example, ODEs can be written
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FIGURE 28.2

Plot of analytical and numerical
solutions of Eq. [28.2). The
numerical solutions are
obtained with Euler's method
using different step sizes.
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for the five coupled reactors in Fig. 12.3. The mass balance for the first reactor can be writ-
ten as

dc
[/17; = Quicnn + Q3103 — Quzar — Qisa

or, substituting parameters (note that Qycy; = 50 mg/min, Qyzcos = 160 mg/min, V; =
50 m3, V=20 m®, V3= 40 m?, V; = 80 m3, and 15 = 100 m®),

dC1

— =-0.12 0.02 1

7 c + a3+
Similarly, balances can be developed for the other reactors as

d

&2 0150 — 0.15¢,

dt

d

&5 = 0.025¢, — 0.225¢5 + 4

dt

dC4

i 0.1c3 —0.1375¢4 + 0.025¢5

dC5

o = 0.03¢; +0.01¢c; — 0.04¢5

Suppose that at = 0 all the concentrations in the reactors are at zero. Compute how
their concentrations will increase over the next hour.

The equations can be integrated with the fourth-order RK method for systems of equa-
tions and the results are depicted in Fig. 28.3. Notice that each of the reactors shows a
different transient response to the introduction of chemical. These responses can be pa-
rameterized by a 90 percent response time tyy, which measures the time required for each
reactor to reach 90 percent of its ultimate steady-state level. The times range from about
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Plots of fransient or dynamic response of the network of reactors from Fig. 12.3. Note that all

the reactors eventually approach their steady-sfate concentrations previously computed in

Sec. 12.1. In addition, the time to steady state is parameterized by the 90 percent

response time foq.
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10 min for reactor 3 to about 70 min for reactor 5. The response times of reactors 4 and 5
are of particular concern because the two outflow streams for the system exit these tanks.
Thus, a chemical engineer designing the system might change the flows or volumes of the
reactors to speed up the response of these tanks while still maintaining the desired outputs.
Numerical methods of the sort described in this part of the book can prove useful in these
design calculations.

Further insight into the system’s response characteristics can be developed by comput-
ing its eigenvalues. First, the system of ODEs can be written as an eigenvalue problem as

0.12 -2 0 —0.02 0 0 el

—-0.15 0.15—-A 0 0 0 e
0 —0.025 0.225—-1 0 0 e3¢ = {0}

0 0 —0.1 0.1375—x —0.025 e

—0.03 —0.01 0 0 0.04—Xx ||es

where A and {e} = the eigenvalue and the eigenvector, respectively.
A package like MATLAB software can be used to very conveniently generate the
eigenvalues and eigenvectors,

>> a=[0.12 0.0 -0.02 0.0 0.0;-.15 0.15 0.0 0.0 0.0:0.0
-0.025 0.225 0.0 0.0; 0.0 0.0 —.1 0.1375 -0.025;-0.03 -0.01
0.0 0.0 0.0471;

>> [e,l]=cig(a)

0 0 -0.1228 -0.1059 0.2490
0 0 0.2983 0.5784 0.8444
0 0 0.5637 0.3041 0.1771
0 0.2484 -0.7604 -0.7493 0.3675
0 0.9687 0.0041 -0.0190 -0.2419

0.1375 0 0 0 0
0 0.0400 0 0 0
0 0 0.2118 0 0
0 0 0 0.1775 0
0 0 0 0 0.1058

The eigenvalues can be interpreted by recognizing that the general solution for a sys-
tem of ODEs can be represented as the sum of exponentials. For example, for reactor 1, the
general solution would be of the form

a=cne M + e + e + e+ cse !
where c;; = the part of the initial condition for reactor 7 that is associated with the jth eigen-
value. Thus, because, for the present case, all the eigenvalues are positive (and hence neg-
ative in the exponential function), the solution consists of a series of decaying exponentials.
The one with the smallest eigenvalue (in our case, 0.04) will be the slowest. In some
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FIGURE 28.4
A simple experiment to collect rafe dafa for a chemical compound that decays with fime

[reprinted from Chapra 1997).

cases, the engineer performing this analysis could be able to relate this eigenvalue back to
the system parameters. For example, the ratio of the outflow from reactor 5 to its volume
is (55 + O54)/ V5 = 47100 = 0.04. Such information can then be used to modify the sys-
tem’s dynamic performance.

The final topic we would like to review within the present context is parameter esti-
mation. One area where this occurs frequently is in reaction kinetics, that is, the quantifi-
cation of chemical reaction rates.

A simple example is depicted in Fig. 28.4. A series of beakers are set up containing a
chemical compound that decays over time. At time intervals, the concentration in one of the
beakers is measured and recorded. Thus, the result is a table of times and concentrations.

One model that is commonly used to describe such data is

dc
T kc" (28.3)
where k= a reaction rate and n= the order of the reaction. Chemical engineers use
concentration-time data of the sort depicted in Fig. 28.4 to estimate & and n. One way to do
this is to guess values of the parameters and then solve Eq. (28.3) numerically. The pre-
dicted values of concentration can be compared with the measured concentrations and an
assessment of the fit made. If the fit is deemed inadequate (for example, by examining a
plot or a statistical measure like the sum of the squares of the residuals), the guesses are
adjusted and the procedure repeated until a decent fit is attained.
The following data can be fit in this fashion:

fd | © ] 3 5 10 15 20
emg/L | 12 107 9 71 46 25 18
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A | B | C D E F G H
1 Fitting of reaction rate
2 data with the integral /leastsquares approach
3 k 0.091528
4 n 1.044425
5 dt 1
6 f k1 k2 k3 k4 cp cm [cpcm)2
7 0 —1.22653 —1.16114 —1.16462 —1.10248 12 12
8 ] —1.10261 —1.04409 —1.04719 —0.99157[ 10.83658 10.7 0.018653
9 2 —0.99169 —0.93929 —0.94206 —0.89225| 9.790448
10 3 —0.89235 —0.84541 —0.84788 —0.80325| 8.849344 9 0.022697
11 4 —0.80334 -0.76127 —-0.76347 —0.72346| 8.002317
12 5 —0.72354 —0.68582 —0.68779 —0.65191| 7.239604 /.1 0.019489
13 6 —0.65198 -0.61814 —0.61989 —0.5877| 6.552494
14 / —0.58776 —0.55739 —0.55895 —0.53005[ 5.933207
15 8 —0.53011 —0.50283 —0.50424 —0.47828| 5.374791
16 9 -0.47833 —0.45383 —0.45508 -0.43175| 4.871037
17 10 —-0.4318 —0.409/8 —-0.4109 —0.38993| 4.416389 4.6 0.033713
18 11 —0.38997 —-0.37016 -0.37117 —0.35231| 4.005877
19 12 —0.35234 —0.33453 —0.33543 —0.31846| 3.635053
20 13 —0.31849 —0.30246 —0.30326 —0.28/798| 3.299934
21 14 —0.28801 —0.27357 —0.2743 —0.26054| 2.996949
22 15 —0.26056 —0.24756 —0.24821 —0.23581 2.7229 2.5 0.049684
23 16 —0.23583 —0.22411 —0.22469 —0.21352| 2.474917
24 17 —0.21354 —0.20297 —0.20349 —0.19341| 2.250426
25 18 —0.19343 —0.18389 —0.18436 —0.17527| 2.047117
26 19 —0.17529 —0.16668 —0.16711 —0.1589 1.862914
27 20 —0.15891 —0.15115 —0.15153 —0.14412| 1.695953 1.8 0.010826
28
29 SSR = 0.155062

FIGURE 28.5
The application of a spreadsheet and numerical methods to defermine the order and rate
coefficient of reaction dafa. This application was performed with the Excel spreadsheet.

The solution to this problem is shown in Fig. 28.5. The Excel spreadsheet was used to per-
form the computation.

Initial guesses for the reaction rate and order are entered into cells B3 and B4, respec-
tively, and the time step for the numerical calculation is typed into cell B5. For this case, a
column of calculation times is entered into column A starting at 0 (cell A7) and ending at
20 (cell A27). The k; through k4 coefficients of the fourth-order RK method are then cal-
culated in the block B7..E27. These are then used to determine the predicted concentrations
(the ¢, values) in column F. The measured values (c,;) are entered in column G adjacent to
the corresponding predicted values. These are then used in conjunction with the predicted
values to compute the squared residual in column H. These values are then summed in
cell H29.

At this point, the Excel Solver can be used to determine the best parameter values.
Once you have accessed the Solver, you are prompted for a target or solution cell (H29),
queried whether you want to maximize or minimize the target cell (minimize), and
prompted for the cells that are to be varied (B3..B4). You then activate the algorithm
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FIGURE 28.6
Plot of fit generated with the integral /leastsquares approach.

[s(olve)], and the results are as in Fig. 28.5. As shown, the values in cells B3..B4 (k=
0.0915 and n= 1.044) minimize the sum of the squares of the residuals (SSR = 0.155)
between the predicted and measured data. A plot of the fit along with the data is shown in
Fig. 28.6.

PREDATOR-PREY MODELS AND CHAOS
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. Environmental engineers deal with a variety of problems involving sys-
tems of nonlinear ordinary differential equations. In this section, we will focus on two of
these applications. The first relates to the so-called predator-prey models that are used to
study the cycling of nutrient and toxic pollutants in aquatic food chains and biological
treatment systems. The second are equations derived from fluid dynamics that are used to
simulate the atmosphere. Aside from their obvious application to weather prediction, such
equations have also been used to study air pollution and global climate change.

Predator-prey models were developed independently in the early part of the twentieth
century by the Italian mathematician Vito Volterra and the American biologist Alfred
J. Lotka. These equations are commonly called Lotka-Volterra equations. The simplest
example is the following pair of ODEs:

d

= ax — bxy (28.4)
dt

dy

—_ = - d 28.5
o cy+ dxy (28.5)

where xand y = the number of prey and predators, respectively, a = the prey growth rate,
¢ = the predator death rate, and b and d = the rate characterizing the effect of the predator-
prey interaction on prey death and predator growth, respectively. The multiplicative terms
(that is, those involving xy) are what make such equations nonlinear.



