

Virtual Reality (VR) Augmented Reality (AR)

Coordinate Systems and Projective Geometry

G. Albrecht, Groupe CGAO, Laboratoire LAMAV, Université de Valenciennes

May 2012, Università di Bologna

Literature:

- G. Albrecht, Géométrie projective, Encyclopédie Les Techniques de l'Ingénieur, AF 206 1-14,4 2008.
- 2. G. Klinker, Class notes, TU München, 2010.

- 1. Scene graph
- 2. Coordinate systems and transformations
- 3. Homogeneous coordinates and projective geometry

World:

- People (hands, eyes, ...)
- Objects (subparts, tracked targets, ...)
- Trackers

Representation of the world:

- Individual description of objects (independently of their current position in the world)
- Replication of objects (or parts) without having to (re)describe all geometric details
- Determination of an object's current position with respect to different reference frames
 - » A tracker
 - » The world
 - » The user
 - » A display

Describe the world as an interrelated system of coordinate systems

Scene graph

Block A

Source:[2]

Scene graph

Source:[2]

Most important components of a scene graph:

- Nodes: coordinate systems of
 - object parts
 - groups of objects
 - scene
 - camera (eye)
- Directed edges: geometric transformations such as changes in
 - position
 - orientation
 - scale
 - perspective

Scene graph in AR:

can be a true graph, Spatial Relationship Graph (SRG)

Source:[2]

Rendering the scene

= traversing the corresponding scene graph

Rendering the scene

= traversing the corresponding scene graph

Rendering the scene

= traversing the corresponding scene graph

Coordinate systems:

Counterclockwise rotation around respective axis

Source:[2]

2D transformations:

Source:[2]

No uniform matrix representation of these transformations in affine coordinates

In homogeneous coordinates: simple matrix multiplication

2D translation:

$$\begin{pmatrix}
x_{w} \\
y_{w} \\
1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x_{o} \\
y_{o} \\
1
\end{pmatrix} = \begin{pmatrix}
x_{w} \\
y_{w} \\
1
\end{pmatrix} = \begin{pmatrix}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x_{o} \\
y_{o} \\
1
\end{pmatrix}$$
2D rotation:

$$\begin{pmatrix}
x_{w} \\
y_{w} \\
1
\end{pmatrix} = \begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x_{o} \\
y_{o} \\
1
\end{pmatrix}$$

Projective plane P^2 = set of one-dimensional vector spaces of R^3

(x, y) ... affine coordinates

 (x_1, x_2, x_3) ... projective or homogeneous coordinates

$$x = \frac{x_1}{x_3}, y = \frac{x_2}{x_3}$$

 $x_3 \neq 0$... proper points $x_3 = 0$... points at infinity forming the line at infinity

affine plane = projective plane \ line at infinity

Projective coordinate system:

Points E_1, E_2, E_3, E have to be in **general position**, i.e., not any three of them have to be collinear

Role of the point E:

Normalization of representing vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3$

Source:[1]

Corresponding affine coordinate system: E_2 (0,1) $E_3(0,0)$ (1,0) E_1

Source:[1]

Examples for points in homogeneous coordinates:

\mathbf{R}^2	P ²
$P_1 = \begin{pmatrix} 0.4, & 0.3 \end{pmatrix}^{\mathrm{T}}$	$\mathbf{x}_1 = \begin{pmatrix} 0.4w, & 0.3w, & w \end{pmatrix}^{\mathrm{T}}$
	$= (0.4, 0.3, 1.0)^{\mathrm{T}}$
	$= (0.8, 0.6, 2.0)^{\mathrm{T}}$
$P_2 = (0.1, -0.3)^{\mathrm{T}}$	$\mathbf{x}_2 = (0.3, -0.9, 3.0)^{\mathrm{T}}$
$P_3 = (0.5, 0.5)^{\mathrm{T}}$	$\mathbf{x}_{3} = (0.5, 0.5, 1.0)^{\mathrm{T}}$

Equation of a straight line in homogeneous coordinates:

$$u_1 x_1 + u_2 x_2 + u_3 x_3 = 0$$

 (x_1, x_2, x_3) variable point coordinates (u_1, u_2, u_3) constant

→ A line can be identified by (u_1, u_2, u_3) , its line coordinates.

Dual interpretation:

$$(u_1, u_2, u_3)$$
 variable line coordinates
 (x_1, x_2, x_3) constant

→ A point can be identified by (x_1, x_2, x_3) , its point coordinates.

Prinicple of duality of projective geometry:

$$u_1 x_1 + u_2 x_2 + u_3 x_3 = 0$$

point=intersection of lines

Line joining the points P and Q:

Points
$$P(p_1, p_2, p_3), Q(q_1, q_2, q_3)$$

 $\rightarrow \text{line } h = P \land Q : h_1 x_1 + h_2 x_2 + h_3 x_3 = 0 :$
 $(h_1, h_2, h_3)^T = (p_1, p_2, p_3)^T \land (q_1, q_2, q_3)^T$

Point at the intersection of the lines g and h:

Lines
$$g(g_1, g_2, g_3), h(h_1, h_2, h_3)$$

 $\rightarrow \text{point } S(s_1, s_2, s_3) = g \land h$:
 $(s_1, s_2, s_3)^T = (g_1, g_2, g_3)^T \land (h_1, h_2, h_3)^T$

Interpretation in 3-space:

Situation in 2D:

Examples for lines in homogeneous coordinates:

	R^2	\mathbf{P}^2	
$l_1: 2x - y - 2 = 0$		$\mathbf{l}_{1} = (2, -1, -2)^{\mathrm{T}}$	
		$= (-1, 0.5, 1.0)^{\mathrm{T}}$	
$l_2: 2x - y - 0.5 = 0$		$\mathbf{l}_2 = (2, -1, -0.5)^{\mathrm{T}}$	
		$= (-4, 2, 1)^{\mathrm{T}}$	
$l_3: x - 3y + 1 = 0$		$\mathbf{l}_3 = \begin{pmatrix} 1, & -3, & 1 \end{pmatrix}^{\mathrm{T}}$	

Source:[2]

Line joining two points:

\mathbf{R}^2	P^2
$P_1 = (0.4, 0.3)^{\mathrm{T}}$	$\mathbf{x_1} = (0.4, 0.3, 1.0)^{\mathrm{T}}$
$P_2 = (0.1, -0.3)^{\mathrm{T}}$	$\mathbf{x}_2 = (0.1, -0.3, 1.0)^{\mathrm{T}}$
$l_2: 2x - y - 0.5 = 0$	$\mathbf{l_2} = (2.0, -1.0, -0.5)^{\mathrm{T}}$
$\begin{pmatrix} 0.4\\ 0.3\\ 1.0 \end{pmatrix} \times \begin{pmatrix} 0.1\\ -0.3\\ 1.0 \end{pmatrix}$	$ = \begin{pmatrix} 0.6 \\ -0.3 \\ -0.15 \end{pmatrix} = -6.66 \begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix} $

Source.[∠]

Intersection of two lines:

	R ²	P ²	
$l_2: 2x - y - 0.5 = 0$		$l_2 = (-4.0, 2.0, 1.0)^T$	
$l_3: x - 3y + 1 = 0$		$l_3 = (1.0, -3.0, 1.0)^T$	
$P_3 = (0.5 0.5)^{\mathrm{T}}$		$\mathbf{x_3} = (0.5, 0.5, 1.0)^{\mathrm{T}}$	
Source:[2]	$\begin{pmatrix} -4 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$	$ \begin{vmatrix} 5\\5\\10 \end{vmatrix} $	

Intersection of two parallel lines:

	R^2	\mathbf{P}^2	
$l_1: 2x - y - 2 = 0$		$\mathbf{l_1} = \begin{pmatrix} 2, & -1, & -2 \end{pmatrix}^{\mathrm{T}}$	
$l_2: 2x - y - 0.5 = 0$		$\mathbf{l_2} = (2, -1, -0.5)^{\mathrm{T}}$	
	$\begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ -0.5 \end{pmatrix} = \begin{pmatrix} -1 \\ -0.5 \end{pmatrix}$	$\begin{pmatrix} -1.5 \\ -3 \\ 0 \end{pmatrix} = 1.5 \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$	

Intersection of parallel lines:

Projective map: $\pi: P^2 \to P^2$ $X(x_1, x_2, x_3) \mapsto Y(y_1, y_2, y_3)$ $\begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} \mapsto T \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_2 \end{pmatrix},$ $T = (t_{ii}) \in R^{3 \times 3}$, regular, determined up to a constant factor $y_3 = t_{31}x_1 + t_{32}x_2 + t_{33}x_3$

Consider: all those projective maps that do not change the line at infinity, i.e., $x_3 = 0 \Leftrightarrow y_3 = 0$ $\Rightarrow t_{31} = t_{32} = 0$ $\Rightarrow T = \begin{pmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ 0 & 0 & t_{22} \end{pmatrix}$ affine: $x_3 = 1, y_3 = 1 \Longrightarrow t_{33} = 1$ $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} t_{13} \\ t \end{pmatrix} x_3 \qquad \Rightarrow \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} t_{13} \\ t_{23} \end{pmatrix} x_3$ Affine map

Coordinate Systems and Projective Geometry Generalization to 3D:

(x, y, z) ... affine coordinates

 (x_1, x_2, x_3, x_4) ... projective or homogeneous coordinates

$$x = \frac{x_1}{x_4}, y = \frac{x_2}{x_4}, z = \frac{x_3}{x_4}$$

 $x_4 \neq 0 \dots$ proper points $x_4 = 0 \dots$ points at infinity forming the plane at infinity

affine 3-space = projective 3-space \ plane at infinity

3D transformations in homogeneous coordiantes:

3D translation:

$$\begin{pmatrix} x_w \\ y_w \\ z_w \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_o \\ y_o \\ z_o \\ 1 \end{pmatrix}$$

glScale
$$(s_x, s_y, s_z)$$

OpenGL

glTranslat
$$(t_x, t_y, t_z)$$

3D scaling:

$$\begin{pmatrix} x_w \\ y_w \\ z_w \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_o \\ y_o \\ z_o \\ 1 \end{pmatrix}$$

Coordinate Systems and Projective Geometry 3D transformations in homogeneous coordiantes:

3D rotation:

OpenGL

Perspective Projection: glFrustum* (I,r,b,t,n,f)

 $\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$

• Orthographic Projection: glOrtho* (I,r,b,t,n,f)

Source:[2]

OpenGL

glTranslatef (0.0, 0.0, -5.0); // along z-axis glRotatef (45.0, 0.0, 1.0, 0.0); // around y-axis

OpenGL

glTranslatef (0.0, 0.0, -5.0); // along z-axis glRotatef (45.0, 0.0, 1.0, 0.0); // around y-axis

OpenGL

glTranslatef (0.0, 0.0, -5.0); // along z-axis glRotatef (45.0, 0.0, 1.0, 0.0); // around y-axis

A sample OpenGL program

