G. Albrecht

Groupe CGAO, Laboratoire LAMAV, Université de Valenciennes, France

G. Albrecht

★ ∃ → ★

Conic sections

- Conic sections

イロト イ団ト イヨト イヨト

Invariants

Theorem (Projective group)		
The $\left\{ \begin{array}{c} projectivities \\ affinities \end{array} \right\}$ of the $\left\{ \begin{array}{c} projective \\ affine \end{array} \right\}$ plane form a group with		
respect to their composition, the $\left\{ \begin{array}{c} projective \\ affine \end{array} \right\}$ group. A quantity		
that is invariant with respect to a $\left\{ \begin{array}{c} projectivity \\ affinity \end{array} \right\}$ is called		
{ projectively affinely } invariant. The determination of all { projective affine }		
invariants of the $\left\{ \begin{array}{c} projective \\ affine \end{array} \right\}$ group is referred to as the theory of		
<i>invariants</i> of the $\left\{ \begin{array}{c} projective \\ affine \end{array} \right\}$ group.		

æ

イロト イヨト イヨト イヨト

Curves ○●○○○○○○○○○○○○○○○○

Conic sections

Invariants

Definition of "Geometry", Erlanger Programm, F. Klein, 1872

Geometry = Theory of invariants of a transformation group

Invariants

Invariants

Examples

Affine invariants	Projective invariants
collinear points	collinear points
parallelity of lines	
ratio of 3 collinear points	cross ratio of 4 collinear points
affine classification of	projective classification of
conic sections	conic sections

Invariants

Examples

Affine invariants	Projective invariants
collinear points	collinear points
parallelity of lines	
ratio of 3 collinear points	cross ratio of 4 collinear points
affine classification of	projective classification of
conic sections	conic sections

Remark

The notion of parallelity of two lines does not exist in the projective plane; two lines always intersect in one point.

< ロ > < 同 > < 回 > < 回 >

 \Leftarrow

Projective classification of conic sections

Conic section in the projective plane

$$a_{00}x_0^2 + 2a_{01}x_0x_1 + a_{11}x_1^2 + 2a_{02}x_0x_2 + a_{22}x_2^2 + 2a_{12}x_1x_2 = 0$$

$$\overrightarrow{x}^{T}A\overrightarrow{x}=0\,,\;A=(a_{ij})\in R^{3,3},$$
symmetric

 \Leftarrow

 \Longrightarrow

Projective classification of conic sections

Conic section in the projective plane

$$a_{00}x_0^2 + 2a_{01}x_0x_1 + a_{11}x_1^2 + 2a_{02}x_0x_2 + a_{22}x_2^2 + 2a_{12}x_1x_2 = 0$$

$$\overrightarrow{x}^{T}A\overrightarrow{x}=0\,,\;A=(a_{ij})\in R^{3,3},$$
symmetric

Applying a projectivity

$$\overrightarrow{x} = T \overrightarrow{y}, \ rk(T) = 3$$

$$\overrightarrow{y}^T \underbrace{T^T A T}_B \overrightarrow{y} = 0, \ B := T^T A T$$

G. Albrecht

Projective classification of conic sections

Congruent matrix normal forms

A, B... congruent matrices

 \implies normal forms of real 3 \times 3 congruent matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

< □ > < 同 > < 三 > < 三

Projective classification of conic sections

Conic normal forms

a) rk(A	4) = 3:	
a1)	$x_0^2 + x_1^2 + x_2^2 = 0$	imaginary
a2)	$x_0^2 + x_1^2 - x_2^2 = 0$	real
b) rk(A	A) = 2:	
b1)	$x_0^2 + x_1^2 = 0$	imaginary
b2)	$x_0^2 - x_1^2 = 0$	real
a) rk(A	A) = 1:	
$x_0^2 =$	= 0	

イロト イポト イヨト イヨト

Projective classification of conic sections

Conic normal forms

a)	rk(A) = 3: non-degenerate conic section	
	a1) $x_0^2 + x_1^2 + x_2^2 = 0$	imaginary
	a2) $x_0^2 + x_1^2 - x_2^2 = 0$	real
b)	rk(A) = 2: pair of intersecting lines	
	b1) $x_0^2 + x_1^2 = 0$	imaginary
	b2) $x_0^2 - x_1^2 = 0$	real
a)	rk(A) = 1: double line	
	$x_0^2 = 0$	

> < = > < = >

Projective classification of conic sections

Conic normal forms

a)	rk(A) = 3: non–degenerate conic section	
	a1) $x_0^2 + x_1^2 + x_2^2 = 0$	imaginary
	a2) $x_0^2 + x_1^2 - x_2^2 = 0$	real
b)	rk(A) = 2: pair of intersecting lines	
	b1) $x_0^2 + x_1^2 = 0$	imaginary
	b2) $x_0^2 - x_1^2 = 0$	real
a)	rk(A) = 1: double line	
	$x_0^2 = 0$	

Projective versus affine classification

projective classification of conics \leftrightarrow affine classification of conics Illustration

Conic sections as rational Bézier curves

Homogeneous form

$$\begin{pmatrix} x_0(t) \\ x_1(t) \\ x_2(t) \end{pmatrix} = \sum_{i=0}^2 w_i \begin{pmatrix} 1 \\ \overrightarrow{b}_i \end{pmatrix} B_i^2(t), \text{ where } \overrightarrow{b}_i = \begin{pmatrix} b_i^1 \\ b_i^2 \end{pmatrix}, w_i \in I\!\!R$$

Conic sections as rational Bézier curves

Homogeneous form

$$\begin{pmatrix} x_0(t) \\ x_1(t) \\ x_2(t) \end{pmatrix} = \sum_{i=0}^2 w_i \begin{pmatrix} 1 \\ \overrightarrow{b}_i \end{pmatrix} B_i^2(t), \text{ where } \overrightarrow{b}_i = \begin{pmatrix} b_i^1 \\ b_i^2 \end{pmatrix}, w_i \in I\!\!R$$

Projection into the plane $x_0 = 1$

$$\overrightarrow{X}(t) = \frac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}$$

rational Bézier curve of degree 2

 $B_i(\overrightarrow{b}_i) \dots$ control points $w_i \dots$ weights

Conic sections as rational Bézier curves

Theorem

Polynomial parametric curves of degree 2

$$\overrightarrow{x}(t) = \sum_{i=0}^{2} \overrightarrow{b}_{i} B_{i}^{2}(t)$$
 (*)

are parabolas and every parabola can be represented in the form (*).

Conic sections as rational Bézier curves

Theorem

Polynomial parametric curves of degree 2

$$\overrightarrow{x}(t) = \sum_{i=0}^{2} \overrightarrow{b}_{i} B_{i}^{2}(t)$$
 (*)

are parabolas and every parabola can be represented in the form (*).

Theorem

Rational parametric curves of degree 2

$$\overrightarrow{x}(t) = \frac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)} \qquad (**)$$

are conic sections and every conic section can be represented in the form (**).

Conic sections

Conic sections as rational Bézier curves

Corollary (***)

A rational parametric Bézier curve of degree 2

$$\overrightarrow{x}(t) = rac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}, \ t \in [0, 1]$$

with $w_i \in IR^+$, and $B_0(\overrightarrow{b}_0)$, $B_1(\overrightarrow{b}_1)$, $B_2(\overrightarrow{b}_2)$ not collinear, represents a connected segment of a non–degenerate conic section.

Conic sections as rational Bézier curves

Theorem

A rational parametric Bézier curve of degree 2 as in Corollary (***) has the following properties:

a)
$$\overrightarrow{x}(0) = \overrightarrow{b}_0, \ \overrightarrow{x}(1) = \overrightarrow{b}_2$$

Conic sections as rational Bézier curves

Theorem

A rational parametric Bézier curve of degree 2 as in Corollary (***) has the following properties:

a)
$$\overrightarrow{x}(0) = \overrightarrow{b}_0, \ \overrightarrow{x}(1) = \overrightarrow{b}_2$$

b)
$$\frac{d}{dt}\overrightarrow{x}(t)|_{t=0} = \frac{2w_1}{w_0}(\overrightarrow{b}_1 - \overrightarrow{b}_0), \ \frac{d}{dt}\overrightarrow{x}(t)|_{t=1} = \frac{2w_1}{w_2}(\overrightarrow{b}_2 - \overrightarrow{b}_1)$$

Conic sections as rational Bézier curves

Theorem

A rational parametric Bézier curve of degree 2 as in Corollary (***) has the following properties:

a)
$$\overrightarrow{x}(0) = \overrightarrow{b}_0, \ \overrightarrow{x}(1) = \overrightarrow{b}_2$$

b)
$$\frac{d}{dt}\overrightarrow{X}(t)|_{t=0} = \frac{2w_1}{w_0}(\overrightarrow{b}_1 - \overrightarrow{b}_0), \ \frac{d}{dt}\overrightarrow{X}(t)|_{t=1} = \frac{2w_1}{w_2}(\overrightarrow{b}_2 - \overrightarrow{b}_1)$$

c) $\overrightarrow{x}(t)|_{t\in[0,1]} \subset H(B_0(\overrightarrow{b}_0), B_1(\overrightarrow{b}_1), B_2(\overrightarrow{b}_2))$ convex hull property

→ ∃ →

Conic sections as rational Bézier curves

Theorem

A rational parametric Bézier curve of degree 2 as in Corollary (***) has the following properties:

a)
$$\overrightarrow{x}(0) = \overrightarrow{b}_0, \ \overrightarrow{x}(1) = \overrightarrow{b}_2$$

b)
$$\frac{d}{dt}\overrightarrow{x}(t)|_{t=0} = \frac{2w_1}{w_0}(\overrightarrow{b}_1 - \overrightarrow{b}_0), \ \frac{d}{dt}\overrightarrow{x}(t)|_{t=1} = \frac{2w_1}{w_2}(\overrightarrow{b}_2 - \overrightarrow{b}_1)$$

c) $\overrightarrow{X}(t)|_{t \in [0,1]} \subset H(B_0(\overrightarrow{b}_0), B_1(\overrightarrow{b}_1), B_2(\overrightarrow{b}_2))$ convex hull property

d) For
$$w_0 = w_2 = 1$$
,

$$\vec{x}(t) := \frac{\vec{b}_0 B_0^2(t) - w_1 \vec{b}_1 B_1^2(t) + \vec{b}_2 B_2^2(t)}{B_0^2(t) - w_1 B_1^2(t) + B_2^2(t)}$$

represents the complementary conic segment with respect to $\vec{x}(t)$.

< ロ > < 同 > < 回 > < 回 >

Conic sections as rational Bézier curves

Role of the weights

Let

$$\overrightarrow{x}(t) = \frac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}, \ t \in [0, 1]$$

and

$$\overrightarrow{\widetilde{x}}(au) = rac{\sum_{i=0}^{2} \widetilde{w}_i \overrightarrow{b}_i B_i^2(au)}{\sum_{i=0}^{2} \widetilde{w}_i B_i^2(au)} \,, \ au \in [0,1]$$

Are there weights (w_i, \tilde{w}_i) , i = 0, 1, 2 such that $\vec{x}(t), \vec{\tilde{x}}(\tau)$ represent the same curve ?

Conic sections as rational Bézier curves

Role of the weights

$$t=\frac{\tau}{(1-k)\tau+k}\,,\ k\in I\!\!R\setminus\{0\}$$

 \Rightarrow

Conic sections as rational Bézier curves

Role of the weights

$$t=\frac{\tau}{(1-k)\tau+k}\,,\ k\in I\!\!R\setminus\{0\}$$

$$B_i^2\left(\frac{\tau}{(1-k)\tau+k}\right) = \begin{pmatrix} 2\\i \end{pmatrix} \left(1-\frac{\tau}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^i$$

 \Rightarrow

Conic sections as rational Bézier curves

Role of the weights

$$t=\frac{\tau}{(1-k)\tau+k}\,,\ k\in I\!\!R\setminus\{0\}$$

$$B_i^2\left(\frac{\tau}{(1-k)\tau+k}\right) = \begin{pmatrix} 2\\i \end{pmatrix} \left(1 - \frac{\tau}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^i \\ = \begin{pmatrix} 2\\i \end{pmatrix} \left(\frac{k(1-\tau)}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^i$$

 \Rightarrow

Conic sections as rational Bézier curves

Role of the weights

$$t=\frac{\tau}{(1-k)\tau+k}\,,\ k\in I\!\!R\setminus\{0\}$$

$$B_i^2\left(\frac{\tau}{(1-k)\tau+k}\right) = \binom{2}{i} \left(1 - \frac{\tau}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^i$$
$$= \binom{2}{i} \left(\frac{k(1-\tau)}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^i$$
$$= \left(\frac{1}{(1-k)\tau+k}\right)^2 \binom{2}{i} k^{2-i}(1-\tau)^{2-i}\tau^i$$

 \Rightarrow

Conic sections as rational Bézier curves

Role of the weights

$$t=\frac{\tau}{(1-k)\tau+k}\,,\ k\in I\!\!R\setminus\{0\}$$

$$B_{i}^{2}\left(\frac{\tau}{(1-k)\tau+k}\right) = {\binom{2}{i}} \left(1 - \frac{\tau}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^{i}$$
$$= {\binom{2}{i}} \left(\frac{k(1-\tau)}{(1-k)\tau+k}\right)^{2-i} \left(\frac{\tau}{(1-k)\tau+k}\right)^{i}$$
$$= {\binom{1}{(1-k)\tau+k}}^{2} {\binom{2}{i}} k^{2-i} (1-\tau)^{2-i} \tau^{i}$$
$$= \frac{k^{2-i}}{((1-k)\tau+k)^{2}} B_{i}^{2}(\tau)$$

Conic sections as rational Bézier curves

Role of the weights

We thus obtain

$$\overrightarrow{x}(t) = \frac{\sum_{i=0}^{2} w_{i} k^{2-i} \overrightarrow{b}_{i} B_{i}^{2}(\tau)}{\sum_{i=0}^{2} w_{i} k^{2-i} B_{i}^{2}(\tau)}$$

 \implies

Conic sections as rational Bézier curves

Role of the weights

We thus obtain

$$\overrightarrow{\mathbf{x}}(t) = \frac{\sum_{i=0}^{2} \mathbf{w}_{i} \mathbf{k}^{2-i} \overrightarrow{\mathbf{b}}_{i} B_{i}^{2}(\tau)}{\sum_{i=0}^{2} \mathbf{w}_{i} \mathbf{k}^{2-i} B_{i}^{2}(\tau)}$$

$$\tilde{w}_i = w_i k^{2-i}, \ i = 0, 1, 2$$

- A B M A B M

Conic sections as rational Bézier curves

Role of the weights

We thus obtain

$$\overrightarrow{x}(t) = \frac{\sum_{i=0}^{2} w_i k^{2-i} \overrightarrow{b}_i B_i^2(\tau)}{\sum_{i=0}^{2} w_i k^{2-i} B_i^2(\tau)}$$

$$ilde{w}_i = w_i k^{2-i}, \ i = 0, 1, 2$$

in particular: $k = \sqrt{\frac{w_2}{w_0}} \Longrightarrow ilde{w}_0 = w_2, \ ilde{w}_2 = w_2$

.

Conic sections as rational Bézier curves

Role of the weights

We thus obtain

$$\vec{X}(t) = \frac{\sum_{i=0}^{2} w_i k^{2-i} \vec{b}_i B_i^2(\tau)}{\sum_{i=0}^{2} w_i k^{2-i} B_i^2(\tau)}$$

$$\tilde{w}_i = w_i k^{2-i}, \ i = 0, 1, 2$$

in particular:
$$k = \sqrt{\frac{w_2}{w_0}} \Longrightarrow \tilde{w}_0 = w_2, \ \tilde{w}_2 = w_2$$

Theorem

Every rational parametric Bézier curve of degree 2 can be written in standard form, i.e., $w_0 = w_2 = 1$.

Conic sections

Conic sections as rational Bézier curves

Role of the weights

Let the conic section $\vec{x}(t)$ be in standard form ($w_0 = w_2 = 1$).

1) weight w_1 increases $\implies \overrightarrow{x}(t)$ gets near B_1 weight w_1 decreases $\implies \overrightarrow{x}(t)$ gets away from B_1

Conic sections as rational Bézier curves

Role of the weights

Let the conic section $\vec{x}(t)$ be in standard form ($w_0 = w_2 = 1$).

1) weight w_1 increases $\implies \overrightarrow{x}(t)$ gets near B_1 weight w_1 decreases $\implies \overrightarrow{x}(t)$ gets away from B_1

2) $w_1 \leftrightarrow \text{affine type of the conic}$

 \Leftrightarrow $w_1 \leftrightarrow$ behavior of the conic with respect to the line at infinity

Conic sections as rational Bézier curves

Role of the weights

2)

$$\overrightarrow{x}(t) = rac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}, \ t \in [0,1]$$

Conic sections as rational Bézier curves

Role of the weights

2)

$$\overrightarrow{x}(t) = rac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}, \ t \in [0, 1]$$

 $\Longrightarrow x_0(t) = \sum_{i=0}^{2} w_i B_i^2(t) > 0, \ t \in [0, 1]$

Conic sections as rational Bézier curves

Role of the weights

2)

$$\overrightarrow{x}(t) = \frac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}, t \in [0, 1]$$

$$\implies x_0(t) = \sum_{i=0}^{2} w_i B_i^2(t) > 0, t \in [0, 1]$$

$$\implies \text{eventual poles are in the complement } \overrightarrow{x}(t):$$

$$\overline{x}_0(t) = B_0^2(t) - w_1 B_1^2(t) + B_2^2(t) = 0$$

イロト イヨト イヨト イヨト

Conic sections as rational Bézier curves

Role of the weights

2)

$$\vec{x}(t) = \frac{\sum_{i=0}^{2} w_i \vec{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}, \ t \in [0, 1]$$

$$\implies x_0(t) = \sum_{i=0}^{2} w_i B_i^2(t) > 0, \ t \in [0, 1]$$

$$\implies \text{eventual poles are in the complement } \vec{x}(t):$$

$$\bar{x}_0(t) = B_0^2(t) - w_1 B_1^2(t) + B_2^2(t) = 0$$

$$\iff t_{1/2} = \frac{1 + w_1 \pm \sqrt{w_1^2 - 1}}{2 + 2w_1}$$

Conic sections as rational Bézier curves

Theorem

The conic section in rational parametric Bézier representation $\vec{x}(t)$ and in standard form ($w_0 = w_2 = 1$) is part of a $\begin{cases} ellipse \\ parabola \\ hyperbola \end{cases}$ if $\begin{cases} w_1 \\ w_1 \\ w_1 \\ w_1 \end{cases}$.

Conic sections as rational Bézier curves

Theorem

The conic section in rational parametric Bézier representation $\vec{x}(t)$ and in standard form ($w_0 = w_2 = 1$) is part of a $\begin{cases} ellipse \\ parabola \\ hyperbola \end{cases}$ if $\begin{cases} w_1 < 1 \\ w_1 = 1 \\ w_1 > 1 \end{cases}$.

Conic sections as rational Bézier curves

Theorem

The conic section in rational parametric Bézier representation $\vec{x}(t)$ and in standard form ($w_0 = w_2 = 1$) with $\| \overrightarrow{B_0B_1} \| = \| \overrightarrow{B_1B_2} \|$ describes a circular arc if and only if $w_1 = \cos \phi$, where $\phi = \angle B_2 B_0 B_1 = \angle B_0 B_2 B_1$.

.