G. Albrecht

Exercises Universià di Bologna, May 2012

Exercise 9:

In the real projective space P^2 four points E_1 , E_2 , E_3 , E are given by the vectors

$$\overrightarrow{e}_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \ \overrightarrow{e}_2 = \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \ \overrightarrow{e}_3 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ \overrightarrow{e} = \begin{pmatrix} 0\\0\\2 \end{pmatrix},$$

- a) Verify that the points E_1 , E_2 , E_3 and E are in general position.
- b) Choose $\{E_1, E_2, E_3; E\}$ as projective coordinate system and determine the projective coordinates of the point X with respect to this coordinate system, where X is given by the vector $\overrightarrow{x} = (4, 2, 3)^T$.

Exercise 10:

Let $\{A_1, A_2, A_3; A\}$ be a projective coordinate system in the real projective plane P^2 with respect to which the four points E_1, E_2, E_3, E have the projective coordinates $E_1(9, 4, 1), E_2(27, 8, 1), E_3(3, 2, 1), E(0, -6, -4)$.

- a) Show that it is possible to introduce $\{E_1, E_2, E_3; E\}$ as new projective coordinate system in P^2 .
- b) In the projective coordinate system $\{A_1, A_2, A_3; A\}$ the point X has the coordinates (x_1, x_2, x_3) . Determine the projective coordinates (y_1, y_2, y_3) of X in the projective coordinate system $\{E_1, E_2, E_3; E\}$.

Exercise 11:

In a coordinate system in the Euclidean plane the points P_i , Q_i have the coordinates:

$$P_1(0,-1), P_2(-1,0), P_3(0,1), P_4(1,0), P_5(0,0)$$

 $Q_1(1,1), Q_2(1,3), Q_3(3,3), Q_4(3,1),$

- a) Represent the situation graphically.
- b) Write the points P_i and Q_i in homogeneous coordinates.

- c) Show that there exists one and only one projective map $\pi: P^2 \longrightarrow P^2$ with $\pi(P_i) = Q_i$ for $i = 1, \dots, 4$. Find its matrix. Tip: Make projective coordinate systems out of the points P_1, \ldots, P_4 respectively Q_1, \ldots, Q_4 .
- d) Determine the image point Q_5 of the point P_5 with respect to π .

Exercise 12:

Let $B_0(\vec{b_0}), B_1(\vec{b_1}), B_2(\vec{b_2})$ be the control points of a parabola, where $\vec{b_0} = (0,0)^T, \vec{b_1} = (-1,5)^T, \vec{b_2} = (6,2)^T$. Determine the parameter representation of the parabola $\overrightarrow{x}(t)$ defined by the points B_0, B_1, B_2 , on the interval [0,1]. Compute the curve point corresponding to the parameter value t = 1/4 by using de Calsteljau's algorithm. Illustrate graphically.

Exercise 13:

Let

$$\overrightarrow{x}(t) = \frac{\sum_{i=0}^{2} w_i \overrightarrow{b}_i B_i^2(t)}{\sum_{i=0}^{2} w_i B_i^2(t)}$$

where $\overrightarrow{b}_0 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, $\overrightarrow{b}_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\overrightarrow{b}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $w_0 = 1$, $w_1 = w_2 = 4$, be a conic section in Bézier form. Determine its type.

Exercise 14:

Let c be a circle with center C(1,1) and radius 1, and let $B_0(1,2), B_2(2,1) \in$ c be two points of this circle (where $B_0(\overrightarrow{b}_0), B_2(\overrightarrow{b}_2)$). Determine the point $B_1(\overrightarrow{b}_1)$ and the weight w_1 such that the rational

Bézier segment

$$\vec{x}(t) = \frac{\vec{b}_0 B_0^2(t) + w_1 \vec{b}_1 B_1^2(t) + \vec{b}_2 B_2^2(t)}{B_0^2(t) + w_1 B_1^2(t) + B_2^2(t)}$$

describes a circular arc c.