Foglio di esercizi numero 7

Corso di Istituzioni di Matematiche I Corso di Laurea in Architettura

Esercizio 1. Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare definita nel modo seguente:

$$f(x, y, z, w) = (w, x + y, x + z, w).$$

Determinare una base di ker f e completarla in una base di \mathbb{R}^4 .

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione definita da: f(x, y, z, w) = (x + z, 3z - w, y). Determinare una base di ker f ed una base di Imf.

Esercizio 3. Si consideri l'applicazione $f: \mathbb{R}^4 \to \mathbb{R}^3$

$$f(x, y, z, w) = (x + w, w - z, 2x + 2z).$$

Determinare $\ker f$, Imf ed una base di ciascuno di tali sottospazi. Sia poi $v_1 = (0, 1, -2)$; determinare $f^{-1}(v_1)$.

Esercizio 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} 10 & 11 & -4 \\ 15 & 14 & -5 \end{array} \right).$$

Determinare il nucleo e l'immagine dell'applicazione lineare $f_A : \mathbb{R}^3 \to \mathbb{R}^2$ associata alla matrice A. Determinare $f_A^{-1}(1,1)$.

Esercizio 5. Sia $f_A: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare associata, rispetto alla base canonica, alla matrice

$$A = \left(\begin{array}{ccc} 1 & \alpha & 1\\ 0 & \alpha & 0\\ 1 & 2\alpha & 1 \end{array}\right)$$

con $\alpha \in \mathbb{R}$. Determinare $\ker f_A$, $Im f_A$ e le loro dimensioni, esibendo una base di tali sottospazi, al variare di $\alpha \in \mathbb{R}$.

Esercizio 6. Si consideri la seguente funzione f_s di \mathbb{R}^3 in se stesso:

$$f_s(x, y, z) = (x + y + z, x - y + s, sx + (s - 1)z).$$

- 1. Per quali valori di s l'applicazione f_s è lineare?
- 2. Per i valori di s trovati al punto 1.:
 - a) Determinare $\ker f_s$, $\operatorname{Im} f_s$.
 - b) Determinare la controimmagine mediante f_s del vettore (-1,1,1).

Esercizio 7. Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare f(x,y) = (x+3y,y,x+3y).

- 1. Determinare $\ker f \in Imf$.
- 2. Determinare $f^{-1}(1, 1, -1)$.

Esercizio 8. Si considerino, al variare del parametro reale k, le seguenti applicazioni lineari:

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

$$f_k(x, y, z) = (kx + y - z, ky + (k+1)z, (k-1)z).$$

- 1. Determinare per quali valori di k l'applicazione f_k è iniettiva.
- 2. Determinare per quali valori di k il vettore (1,0,0) appartiene a $\text{Im} f_k$.

Esercizio 9. Sia $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita da:

$$T(x,y) = (x+y, x-y, y).$$

- 1. Si determini KerT: se ne individui una base e se ne calcoli la dimensione. L'applicazione T è iniettiva?
- 2. Si determini ImT: se ne individui una base e se ne calcoli la dimensione. L'applicazione T è suriettiva?
- 3. Si costruisca, se possibile, un'applicazione lineare $S \neq T$, $S : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tale che KerS = KerT e ImS = ImT.

Esercizio 10. Sia $f_A: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare associata alla matrice:

$$A = \left(\begin{array}{ccc} 1 & 0 & \alpha \\ 1 & \alpha & 0 \\ 2 & 0 & 1 \end{array}\right)$$

con $\alpha \in \mathbb{R}$. Determinare $\ker f_A$, $Im f_A$ e le loro dimensioni, fornendo una base di tali sottospazi, al variare di $\alpha \in \mathbb{R}$.

Esercizio 11. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la trasformazione lineare così definita:

$$f(a, b, c) = (3a + c, -2a + b, -a + 2b + 4c).$$

Si richiede di:

- 1. dimostrare che f è invertibile;
- 2. determinare la forma esplicita della funzione f^{-1} .