Roberto Pagaria
Università di Bologna

Unordered configuration spaces of surfaces

at UM topology seminar

March 24, 2022

Covered topics:

(1) Maps between configuration spaces
(2) Models for the cohomology
(3) Betti numbers

Let X be a topological space. Define:

$$
\begin{aligned}
& \mathrm{F}_{n}(X):=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\} \\
& \mathrm{C}_{n}(X):=\{E \subset X| | E \mid=n\} \simeq \mathrm{F}_{n}(X) / \mathfrak{S}_{n}
\end{aligned}
$$

Let X be a topological space. Define:

$$
\begin{aligned}
& \mathrm{F}_{n}(X):=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\} \\
& \mathrm{C}_{n}(X):=\{E \subset X| | E \mid=n\} \simeq \mathrm{F}_{n}(X) / \mathfrak{S}_{n}
\end{aligned}
$$

Example

$\mathrm{F}_{n}\left(S^{1}\right)=S^{1} \times \mathfrak{S}_{n-1} \times \mathbb{R}^{n-1}$ and $\mathrm{C}_{2}\left(S^{1}\right)$ is the Möbius strip.

Let X be a topological space. Define:

$$
\begin{aligned}
& \mathrm{F}_{n}(X):=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\} \\
& \mathrm{C}_{n}(X):=\{E \subset X| | E \mid=n\} \simeq \mathrm{F}_{n}(X) / \mathfrak{S}_{n}
\end{aligned}
$$

Example

$\mathrm{F}_{n}\left(S^{1}\right)=S^{1} \times \mathfrak{S}_{n-1} \times \mathbb{R}^{n-1}$ and $\mathrm{C}_{2}\left(S^{1}\right)$ is the Möbius strip.

Example

$F_{n}\left(\mathbb{R}^{2}\right)$ is the complement of the hyperplane arrangement of type A_{n-1}.

Delete a point

> Theorem (Fadell, Neuwirth 1962)
> If M is a manifold without boundary, then $p: F_{n}(M) \rightarrow F_{n-1}(M)$ is a fibration with fibre $M \backslash\{n-1$ points $\}$.

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_{n}(M) \rightarrow F_{n-1}(M)$ is a fibration with fibre $M \backslash\{n-1$ points $\}$.

Recall the long exact sequence of homotopy groups:

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_{n}(M) \rightarrow F_{n-1}(M)$ is a fibration with fibre $M \backslash\{n-1$ points $\}$.

Recall the long exact sequence of homotopy groups:

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S^{2} and $\mathbb{P}_{2}(\mathbb{R})$, then $F_{n}(S)$ and $\mathrm{C}_{n}(S)$ are $K(\pi, 1)$.

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_{n}(M) \rightarrow F_{n-1}(M)$ is a fibration with fibre $M \backslash\{n-1$ points $\}$.

Recall the long exact sequence of homotopy groups:

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S^{2} and $\mathbb{P}_{2}(\mathbb{R})$, then $F_{n}(S)$ and $C_{n}(S)$ are $K(\pi, 1)$.

Let M be a topological manifolds with boundary ∂M. The natural inclusion $\mathrm{F}_{n}(M \backslash \partial M) \rightarrow \mathrm{F}_{n}(M)$ is a homotopy equivalence.

Add a point

Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the fibration $p: F_{n}(M) \rightarrow F_{n-1}(M)$ has a section.

Add a point

Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the fibration $p: F_{n}(M) \rightarrow F_{n-1}(M)$ has a section.

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If M is a manifold that admits a non-zero vector field then $\operatorname{dim} H^{i}\left(\mathrm{~F}_{n}(M) ; \mathbb{Q}\right)$ is polynomial in n.
Moreover, for any $k>0$ there exists a replication map
$r: C_{n}(M) \rightarrow C_{k n}(M)$ that induces isomorphism in lower degree in rational cohomology.

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If M is a manifold that admits a non-zero vector field then $\operatorname{dim} H^{i}\left(\mathrm{~F}_{n}(M) ; \mathbb{Q}\right)$ is polynomial in n.
Moreover, for any $k>0$ there exists a replication map
$r: C_{n}(M) \rightarrow C_{k n}(M)$ that induces isomorphism in lower degree in rational cohomology.

Closed manifolds

Example

The sphere S^{2} does not admit isomorphisms in (co-)homology in lower degree, because
$H_{1}\left(\mathrm{C}_{n}\left(S^{2}\right) ; \mathbb{Z}\right)=H^{2}\left(\mathrm{C}_{n}\left(S^{2}\right) ; \mathbb{Z}\right)=\mathbb{Z} /(2 n-2) \mathbb{Z}$.

Closed manifolds

Example

The sphere S^{2} does not admit isomorphisms in (co-)homology in lower degree, because
$H_{1}\left(\mathrm{C}_{n}\left(S^{2}\right) ; \mathbb{Z}\right)=H^{2}\left(\mathrm{C}_{n}\left(S^{2}\right) ; \mathbb{Z}\right)=\mathbb{Z} /(2 n-2) \mathbb{Z}$.
However, the obvious multivalued map $p: C_{n+1}(M) \rightrightarrows C_{n}(M)$ induces isomorphism in rational cohomology:

Theorem (Church 2011)

The map $p_{*}: H_{i}\left(C_{n+1}(M) ; \mathbb{Q}\right) \rightarrow H_{i}\left(C_{n}(M) ; \mathbb{Q}\right)$ is an isomorphisms for $i<n$.

Remark

The condition $n>i$ is necessary since $H^{2}\left(\mathrm{C}_{1}\left(S^{2}\right) ; \mathbb{Q}\right)=\mathbb{Q}$ and $H^{2}\left(\mathrm{C}_{n}\left(S^{2}\right) ; \mathbb{Q}\right)=0$ for $n>1$.

Remark

The condition $n>i$ is necessary since $H^{2}\left(\mathrm{C}_{1}\left(S^{2}\right) ; \mathbb{Q}\right)=\mathbb{Q}$ and $H^{2}\left(\mathrm{C}_{n}\left(S^{2}\right) ; \mathbb{Q}\right)=0$ for $n>1$.

Let $i: N \hookrightarrow M$ be an inclusion of manifolds of the same dimension.

Theorem (Church 2011)

For each $k \leq n$, the map $i_{*}: H_{k}\left(C_{n}(N) ; \mathbb{Q}\right) \rightarrow H_{k}\left(C_{n}(M) ; \mathbb{Q}\right)$ has constant rank (independent from n).

The Euler characteristic

Theorem (Felix, Thomas 2000)

Let M be an even-dimensional manifold. Then

$$
\sum_{n=0}^{\infty} \chi\left(C_{n}(M)\right) u^{n}=(1+u)^{\chi(M)}
$$

Moreover, $\chi\left(F_{n}(M)\right)=n!\chi\left(C_{n}(M)\right)$.

The Betti numbers

Theorem (Drummond-Cole, Knudsen 2017)

Explicit calculation of the Betti numbers (i.e. $b_{i}(X)=\operatorname{dim} H^{i}(X)$) of $\mathrm{C}_{n}(S)$ for all surfaces S using the Chevalley-Eilenberg complex.

The Betti numbers

Theorem (Drummond-Cole, Knudsen 2017)

Explicit calculation of the Betti numbers (i.e. $\left.b_{i}(X)=\operatorname{dim} H^{i}(X)\right)$ of $\mathrm{C}_{n}(S)$ for all surfaces S using the Chevalley-Eilenberg complex.

For $4<i<n$, the number $b_{i}\left(C_{n}\left(\Sigma_{g}\right)\right)$ is

$$
\begin{aligned}
& -\binom{2 g+i-1}{2 g}-\binom{2 g+i-4}{2 g-1}+\sum_{j=0}^{g-1} \sum_{m=0}^{j}(-1)^{g+j+1} \frac{2 j-2 m+2}{2 j-m+2} . \\
& {\left[\binom{\frac{6 j+2 i+2 g-2 m+3-3(-1)^{i+j+g+m}}{4}}{m, 2 j-m+1}+\left(\frac{6 j+2 i+2 g-2 m+1+3(-1)^{i+j+g+m}}{4}\right)+\right.} \\
& \left.\binom{6 j+2 i+2 g-2 m-3+3(-1)^{i+j+g+m}}{m, 2 j-m+1}+\binom{6 j+2 i+2 g-2 m-5-3(-1)^{i+j+g+m}}{m, 2 j-m+1}\right]
\end{aligned}
$$

Differential graded algebras

Definition

A differential graded-commutative algebra $(E, \mathrm{~d})$ is a graded algebra $E=\oplus_{n \in \mathbb{N}} E^{n}$ and $x y=(-1)^{|x||y|} y x$ with a differential $\mathrm{d}: E \rightarrow E$ that satisfies the Leibniz rule $\mathrm{d}(x y)=\mathrm{d}(x) y+(-1)^{|x|} x \mathrm{~d}(y)$.

Differential graded algebras

Definition

A differential graded-commutative algebra $(E, \mathrm{~d})$ is a graded algebra $E=\oplus_{n \in \mathbb{N}} E^{n}$ and $x y=(-1)^{|x||y|} y x$ with a differential $\mathrm{d}: E \rightarrow E$ that satisfies the Leibniz rule $\mathrm{d}(x y)=\mathrm{d}(x) y+(-1)^{|x|} x \mathrm{~d}(y)$.

Example (A Koszul resolution)

Let V a finite dimensional vector space. The map $\mathrm{d}: \Lambda^{\bullet} V \otimes S^{\bullet} V \rightarrow \Lambda^{\bullet} V \otimes S^{\bullet} V$ defined by $\mathrm{d}(v \otimes 1)=0$ and $\mathrm{d}(1 \otimes v)=v \otimes 1$ defines a dga.

Moreover, $H^{i}\left(\Lambda^{\bullet} V \otimes S^{\bullet} V, \mathrm{~d}\right)=0$ for $i>0$.

The Kriz model

Theorem (Kriz 1994)

Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}(E(M), \mathrm{d}) \simeq H^{\bullet}\left(\mathrm{F}_{n}(M) ; \mathbb{Q}\right)$.

The Kriz model

Theorem (Kriz 1994)

Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}(E(M), \mathrm{d}) \simeq H^{\bullet}\left(\mathrm{F}_{n}(M) ; \mathbb{Q}\right)$.

Let E be the exterior algebra on generators

- x_{i} for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\operatorname{deg} x, 0)$,
- $G_{i, j}$ for $i<j$ with degree $(0, d-1)$,

The Kriz model

Theorem (Kriz 1994)

Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}(E(M), \mathrm{d}) \simeq H^{\bullet}\left(\mathrm{F}_{n}(M) ; \mathbb{Q}\right)$.

Let E be the exterior algebra on generators

- x_{i} for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\operatorname{deg} x, 0)$,
- $G_{i, j}$ for $i<j$ with degree $(0, d-1)$,
and relations
- $\left(x_{i}-x_{j}\right) G_{i, j}=0$,
- $G_{i, j} G_{j, k}-G_{i, j} G_{i, k}+G_{j, k} G_{i, k}=0$.

The Kriz model

Theorem (Kriz 1994)

Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}(E(M), \mathrm{d}) \simeq H^{\bullet}\left(\mathrm{F}_{n}(M) ; \mathbb{Q}\right)$.

Let E be the exterior algebra on generators

- x_{i} for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\operatorname{deg} x, 0)$,
- $G_{i, j}$ for $i<j$ with degree $(0, d-1)$,
and relations
- $\left(x_{i}-x_{j}\right) G_{i, j}=0$,
- $G_{i, j} G_{j, k}-G_{i, j} G_{i, k}+G_{j, k} G_{i, k}=0$.

The differential of degree $(d, 1-d)$ is given by

- $\mathrm{d}\left(x_{i}\right)=0$,
- $\mathrm{d}\left(G_{i, j}\right)=[\Delta]_{i, j}$.

The group $\mathfrak{S}_{n} \times S p(2 g)$ acts on the Kriz model $E\left(\Sigma_{g}\right)$ by $(\sigma \times M) \cdot x_{i}=(M x)_{\sigma(i)}$
$(\sigma \times M) \cdot G_{i, j}=G_{\sigma(i), \sigma(j)}$

The group $\mathfrak{S}_{n} \times S p(2 g)$ acts on the Kriz model $E\left(\Sigma_{g}\right)$ by

$$
\begin{aligned}
& (\sigma \times M) \cdot x_{i}=(M x)_{\sigma(i)} \\
& (\sigma \times M) \cdot G_{i, j}=G_{\sigma(i), \sigma(j)}
\end{aligned}
$$

Theorem (Félix, Tanré 2005)

Let M be a even dimensional closed manifold, there exist an explicit dga $\left(C_{n}(M), \mathrm{d}\right)$ such that:

$$
\left(C_{n}(M), \mathrm{d}\right) \simeq(E(M), \mathrm{d})^{\mathfrak{S}_{n}}
$$

Moreover $C_{n}^{r}(M)=\Lambda^{n-2 r} H(M) \otimes \Lambda^{r} s H(M)$, where s is the suspension.

Let $V=H^{1}\left(\Sigma_{g}\right)$, define the tri-graded algebra $A_{g}=\Lambda^{\wedge}[a, b] /\left(b^{2}\right) \otimes \Lambda^{\bullet} V \otimes S^{\bullet} V$ with the differential $\mathrm{d}(b)=0$, $\mathrm{d}(a)=\eta \in \Lambda^{2} V$ and $\mathrm{d}(1 \otimes v)=b \otimes(v \otimes 1)$.

Let $V=H^{1}\left(\Sigma_{g}\right)$, define the tri-graded algebra
$A_{g}=\Lambda^{\wedge}[a, b] /\left(b^{2}\right) \otimes \Lambda^{\bullet} V \otimes S^{\bullet} V$ with the differential $\mathrm{d}(b)=0$,
$\mathrm{d}(a)=\eta \in \Lambda^{2} V$ and $\mathrm{d}(1 \otimes v)=b \otimes(v \otimes 1)$.

Theorem (P. 2019)

There exists an isomorphism

$$
H\left(A_{g}^{\bullet \bullet,}, \leq n, d\right) \simeq H^{\bullet \bullet}\left(C_{n}\left(\Sigma_{g}\right)\right)
$$

Representation theory of $\mathfrak{s p}(2 g)$

From the Lie theory the irreducible representations of $\mathfrak{s p}(2 g)$ are parametrized by dominant weights, i.e. are isomorphic to V_{λ} for some vector $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2}+\cdots+a_{g} \omega_{g}, a_{i} \in \mathbb{N}$.

Representation theory of $\mathfrak{s p}(2 g)$

From the Lie theory the irreducible representations of $\mathfrak{s p}(2 g)$ are parametrized by dominant weights, i.e. are isomorphic to V_{λ} for some vector $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2}+\cdots+a_{g} \omega_{g}, a_{i} \in \mathbb{N}$. Let $\rho=g \omega_{1}+(g-1) \omega_{2}+\cdots+2 \omega_{g-1}+\omega_{g}$ be the half sum of positive roots.

Theorem (Weyl dimension formula)

$$
\operatorname{dim} V_{\lambda}=\prod_{\alpha \in \Delta^{+}} \frac{(\lambda+\rho, \alpha)}{(\lambda, \alpha)}
$$

Representation theory of $\mathfrak{s p}(2 g)$

From the Lie theory the irreducible representations of $\mathfrak{s p}(2 g)$ are parametrized by dominant weights, i.e. are isomorphic to V_{λ} for some vector $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2}+\cdots+a_{g} \omega_{g}, a_{i} \in \mathbb{N}$.
Let $\rho=g \omega_{1}+(g-1) \omega_{2}+\cdots+2 \omega_{g-1}+\omega_{g}$ be the half sum of positive roots.

Theorem (Weyl dimension formula)

$$
\operatorname{dim} V_{\lambda}=\prod_{\alpha \in \Delta^{+}} \frac{(\lambda+\rho, \alpha)}{(\lambda, \alpha)}
$$

Example

$$
\operatorname{dim} V_{i \omega_{1}+\omega_{j}}=\binom{2 g+i+1}{i, j} \frac{2 g+2-2 j}{2 g+2+i-j} \frac{j}{i+j}
$$

The algebra $\Lambda^{\bullet} V$

Problem: $\mathrm{d}(a)=\eta$ with $\eta \in V_{0} \subseteq \Lambda^{2} V$.

The algebra $\Lambda^{*} V$

Problem: $\mathrm{d}(a)=\eta$ with $\eta \in V_{0} \subseteq \Lambda^{2} V$.
The module $\Lambda^{\bullet} V$ as $S p(2 g)$-representation splits as:

The multiplication by η moves "two on the right".

The dga $\left(\Lambda^{\bullet} V \otimes S^{\bullet} V, d\right)$

We need to compute kerd: in degree (j, i) it is isomorphic to $W_{i \omega_{1}+\omega_{j}}$ as representation of $\mathfrak{s l}(2 g)$.

Theorem (Branching rule)

For $j \leq g$,

$$
\begin{aligned}
W_{i \omega_{1}+\omega_{j}} & =\bigoplus_{0 \leq 2 k<j} V_{i \omega_{1}+\omega_{j-2 k}} \oplus \bigoplus_{0 \leq 2 k<j-1} V_{(i-1) \omega_{1}+\omega_{j-2 k-1}}, \\
\text { and } W_{i \omega_{1}+\omega_{j}} & =W_{i \omega_{1}+\omega_{2 g-j}} \text { as representation of } \mathfrak{s p}(2 g) .
\end{aligned}
$$

Mixed Hodge Theory

Let X be an algebraic variety, possibly non-projective and singular.

Theorem (Deligne 1974)

There exists a increasing filtration W_{k} of $H^{i}(X ; \mathbb{Q})$ such that

$$
\operatorname{gr}_{k} H^{i}(X ; \mathbb{Q}):=W_{k} / W_{k-1}
$$

admits a pure Hodge Structure of weight k.
This Mixed Hodge Structure is functorial and it is preserved by all canonical maps.

Mixed Hodge Theory

Let X be an algebraic variety, possibly non-projective and singular.

Theorem (Deligne 1974)

There exists a increasing filtration W_{k} of $H^{i}(X ; \mathbb{Q})$ such that

$$
\operatorname{gr}_{k} H^{i}(X ; \mathbb{Q}):=W_{k} / W_{k-1}
$$

admits a pure Hodge Structure of weight k.
This Mixed Hodge Structure is functorial and it is preserved by all canonical maps.

Example

The cohomology of the model $\left(A_{g}, \mathrm{~d}\right)$ in degree (p, q) contributes to $\operatorname{gr}_{p+2 q} H^{p+q}\left(C\left(\Sigma_{g}\right)\right)$.

The representation ring

The representation ring of a group G is $R(G)$, the \mathbb{Z}-module generated by all finite-dimensional representations V and relations

$$
[V]+[W]=[V \oplus W] .
$$

The multiplication given is by:

$$
[V] \cdot[W]=[V \otimes W]
$$

The representation ring

The representation ring of a group G is $R(G)$, the \mathbb{Z}-module generated by all finite-dimensional representations V and relations

$$
[V]+[W]=[V \oplus W] .
$$

The multiplication given is by:

$$
[V] \cdot[W]=[V \otimes W] .
$$

Example

$\operatorname{dim}: R(G) \rightarrow \mathbb{Z}$ is a morphism of ring.

Let

$$
P_{g}(t, s, u)=\sum_{i, n, k}\left[\operatorname{gr}_{i+2 k}^{W} H^{i+k}\left(C_{n}\left(\Sigma_{g}\right)\right)\right] t^{i} s^{k} u^{n}
$$

in the representation ring $R(S p(2 g))[[t, s, u]]$.

Let

$$
P_{g}(t, s, u)=\sum_{i, n, k}\left[\operatorname{gr}_{i+2 k}^{W} H^{i+k}\left(C_{n}\left(\Sigma_{g}\right)\right)\right] t^{i} s^{k} u^{n}
$$

in the representation ring $R(S p(2 g))[[t, s, u]]$.

Theorem (P. 2019)

The series P_{g} is

$$
\begin{aligned}
& \frac{1}{1-u}\left(\left(1+t^{2} s u^{3}\right)\left(1+t^{2} u\right)+\left(1+t^{2} s u^{2}\right) t^{2 g} s u^{2(g+1)}+\left(1+t^{2} s u^{2}\right) .\right. \\
& \left.\cdot\left(1+t^{2} s u^{3}\right) \sum_{\substack{1 \leq j \leq g \\
i \geq 0}}\left[\mathbb{V}_{i \omega_{1}+\omega_{j}}\right] t^{j+i} s^{i} u^{j+2 i}\left(1+t^{2(g-j)} s u^{2(g-j+1)}\right)\right)
\end{aligned}
$$

Thanks for listening!

roberto.pagaria@gmail.com

