Roberto Pagaria

Università di Bologna

Integral points in graphical zonotopes an application to the Hitchin fibrations

89th Séminaire Lotharingien de Combinatoire
Work in progress with M. Mauri and L. Migliorini

March 27, 2023

Covered topics:

(1) Zonotopes
(2) Matroids and poset of flats
(3) Integral points

4 Application to the Hitchin fibration
(5) Representation theory

Let $\Gamma=(V, E)$ be a graph without loops (possible with multiple edges).

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$
Z_{\Gamma}:=\sum_{(i, j) \in \Gamma} y_{i, j}\left[0, e_{i}-e_{j}\right] \subset \mathbb{R}^{V(\Gamma)}
$$

where $y_{i, j}$ is the number of edges between i and j.
Z_{Γ} is a Minkowski sum of segments.

Let $\Gamma=(V, E)$ be a graph without loops (possible with multiple edges).

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$
Z_{\Gamma}:=\sum_{(i, j) \in \Gamma} y_{i, j}\left[0, e_{i}-e_{j}\right] \subset \mathbb{R}^{V(\Gamma)}
$$

where $y_{i, j}$ is the number of edges between i and j.
Z_{Γ} is a Minkowski sum of segments.

Definition (Ehrhart polynomial)

Define $C(Z)=(-1)^{d} L(Z,-1)$ as the number of integral points in the relative interior of Z.

Consider a translation vector $\omega \in \mathbb{R}^{r}$.

Example

Let Γ be the graph in the picture and $\omega=(1 / 2,1 / 2,0)$. The graphical zonotope is

so $C\left(Z_{\Gamma}\right)=23$ and $C\left(Z_{\Gamma}+\omega\right)=30$.

Graphic matroids

We consider graphs $\Gamma=(V, E)$ possibly with multiple edges and the associated cycle matroid.

Cycle matroid	Graph
Groundset	Set of edges
Independent	Forest
Dependent	Containing a cycle
Closure oper.	Adding all dependent edges
Flat	Partition of V with connected blocks

Graphic matroids

We consider graphs $\Gamma=(V, E)$ possibly with multiple edges and the associated cycle matroid.

Cycle matroid	Graph
Groundset	Set of edges
Independent	Forest
Dependent	Containing a cycle
Closure oper.	Adding all dependent edges
Flat	Partition of V with connected blocks

Definition

Define the poset of flats $\mathcal{S} \subseteq \Pi_{V}$ as the collection of all flats ordered by refinement.

Deletion and contraction

Definition

Let $S \in \mathcal{S}$ be a flat, the deleted graph Γ_{S} is the graph with only edges in the flat S. The contracted graph Γ^{S} is obtained from Γ by contracting all the edges in the flat S.

Deletion and contraction

Definition

Let $S \in \mathcal{S}$ be a flat, the deleted graph Γ_{S} is the graph with only edges in the flat S. The contracted graph Γ^{S} is obtained from Γ by contracting all the edges in the flat S.

Example

Consider the graph Γ with poset of flats \mathcal{S} and the flat $12 \mid 3$.

Faces of zonotopes

Proposition

Each face of Z_{Γ} is a translate of $Z_{\Gamma_{S}}$ for some flat $S \in \mathcal{S}$.

Faces of zonotopes

Proposition

Each face of Z_{Γ} is a translate of $Z_{\Gamma_{S}}$ for some flat $S \in \mathcal{S}$.

Goal: write $C\left(Z_{\Gamma}+\omega\right)$ in term of the numbers $C\left(Z_{\Gamma_{S}}\right)$ for $S \in \mathcal{S}$.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{I \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I) .
$$

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{I \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in I}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I) .
$$

Example

$$
\text { Let } Z=\left[0, e_{1}\right]+\left[0, e_{1}+e_{2}\right]+\left[0, e_{1}-e_{2}\right] \text { and } \omega=\left(\frac{1}{2}, \frac{1}{2}\right) \text {. }
$$

$$
\begin{aligned}
C(Z+\omega) & =\operatorname{Vol}\left(v_{2} v_{3}\right)+\operatorname{Vol}\left(v_{1} v_{2}\right)+\operatorname{Vol}\left(v_{1} v_{3}\right)-\operatorname{Vol}\left(v_{2}\right)-\operatorname{Vol}\left(v_{3}\right) \\
& =2+1+1-1-1=2 .
\end{aligned}
$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{I \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in I}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I)
$$

$$
\begin{aligned}
& \langle I\rangle=S
\end{aligned}
$$

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\quad \sum \quad(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z} \neq \emptyset} \operatorname{Vol}(I) .
$$

I independent set

$$
\begin{aligned}
& C(Z+\omega)=\sum_{S \text { flat }}(-1)^{r-\operatorname{dim} S} \delta_{(S+\omega) \cap \mathbb{Z} \neq \emptyset} \sum_{I \text { independent set }} \operatorname{Vol}(I) . \\
& \langle I\rangle=S
\end{aligned}
$$

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\quad \sum \quad(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I) .
$$

I independent set

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

For a graphical zonotope Z_{Γ} and a flat $S \in \mathcal{S}$ we have $\delta_{(\langle S\rangle+\omega) \cap \mathbb{Z}^{r} \neq \emptyset}=1$ if and only if S is ω-integral.

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}}\left(\sum_{\substack{T \geq \geq \\ T \omega \text {-integral }}} \mu_{\mathcal{S}}(S, T)\right) C\left(Z_{\Gamma_{S}}\right)
$$

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}}\left(\sum_{\substack{T \geq S \\ T \omega \text {-integral }}} \mu_{\mathcal{S}}(S, T)\right) C\left(Z_{\Gamma_{S}}\right)
$$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats \mathcal{S}.

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}}\left(\sum_{\substack{T \geq S \\ T \omega \text {-integral }}} \mu_{\mathcal{S}}(S, T)\right) C\left(Z_{\Gamma_{S}}\right)
$$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats \mathcal{S}.

Example

Consider $\omega=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ and Γ as below

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}}\left(\sum_{\substack{T \geq S \\ T \omega \text {-integral }}} \mu_{\mathcal{S}}(S, T)\right) C\left(Z_{\Gamma_{S}}\right)
$$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats \mathcal{S}.

Example

Consider $\omega=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ and Γ as below

$$
\begin{aligned}
C\left(Z_{\Gamma}+\omega\right) & =C\left(Z_{\Gamma}\right)+C\left(Z_{\Gamma_{13 \mid 2}}\right)+C\left(Z_{\Gamma_{23 \mid 1}}\right)+C\left(Z_{\Gamma_{1|2| 3}}\right) \\
30 & =23+3+3+1 .
\end{aligned}
$$

Motivation

The Dolbeault moduli space is
$M(n, d)=\{$ ss Higgs bundle over C of rank n degree $d\}$
S-equivalence•
The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology $\mathrm{IH}(M(n, d))$.

$$
\mathrm{IH}(M(n, d)) \simeq H\left(A_{n}, R \chi_{*} \mathrm{IC}_{M(n, d)}\right)
$$

where IC is the perverse intersection complex.

Motivation

The Dolbeault moduli space is
$M(n, d)=\{$ ss Higgs bundle over C of rank n degree $d\}$
S-equivalence•
The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology $\mathrm{IH}(M(n, d))$.

$$
\mathrm{IH}(M(n, d)) \simeq H\left(A_{n}, R \chi_{*} \mathrm{IC}(n, d)\right)
$$

where IC is the perverse intersection complex.

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$
\left.R \chi_{*} I C_{M(n, d)}\right|_{A_{\text {red }}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right)
$$

for some local systems $\mathcal{L}_{\underline{n}, d}$ and for $\Lambda_{\underline{n}}$ the cohomology sheaf of the relative Picard group $\operatorname{Pic}^{0}\left(\bar{C}_{\underline{n}}\right)$ of the normalization of the spectral curve.

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$
R \chi_{*}\left|C_{M(n, d)}\right|_{A_{\text {red }}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right) .
$$

We have
$\mathcal{H}^{\text {top }}\left(R \chi_{*} \mathrm{IC}_{M(n, d)}\right)_{a}=\bigoplus_{S \vdash[\ell(\underline{n})]}\left(\mathcal{L}_{\underline{n}_{S}, d}\right)_{a} \otimes \bigotimes_{i=1}^{\ell(S)} \mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \mathrm{IC}_{M\left(\left|S_{i}\right|, 0\right)}\right)_{a}$

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$
R \chi_{*}\left|C_{M(n, d)}\right|_{A_{\text {red }}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right) .
$$

We have

$$
\mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \operatorname{IC}_{M(n, d)}\right)_{a}=\bigoplus_{S \vdash[\ell(\underline{n})]}\left(\mathcal{L}_{\underline{n}_{S}, d}\right)_{a} \otimes \bigotimes_{i=1}^{\ell(S)} \mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \operatorname{IC}_{M\left(\left|S_{i}\right|, 0\right)}\right)_{a}
$$

which dimension is

$$
C\left(Z_{\Gamma_{\underline{\underline{n}}}}+\omega\right)=\sum_{S \vdash[\ell(\underline{n})]} \operatorname{rk}\left(\mathcal{L}_{\underline{n}_{S}, d}\right) C\left(Z_{\Gamma_{S}}\right)
$$

where $\omega=\left(\frac{d n_{i}}{n}\right)$.

Main problem

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) for which partitions \underline{n} the local system $\mathcal{L}_{\underline{n}, d}$ is zero?
(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}}\left(\sum_{\substack{T \geq \geq \\ T \omega \text {-integral }}} \mu_{\mathcal{S}}(S, T)\right) C\left(Z_{\Gamma_{S}}\right)
$$

Corollary

In the case of the complete graph $\Gamma=K_{r}$ and $\omega=\left(\frac{d n_{i}}{n}\right)$ we have

$$
\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)=\sum_{\substack{S \vdash[r] \\ S \omega \text {-integral }}}(-1)^{\ell(S)-1} \prod_{i=1}^{\ell(S)}\left(\left|S_{i}\right|-1\right)!
$$

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}}\left(\sum_{\substack{T \geq S \\ T \omega \text {-integral }}} \mu_{\mathcal{S}}(S, T)\right) C\left(Z_{\Gamma_{S}}\right)
$$

Corollary

In the case of the complete graph $\Gamma=K_{r}$ and $\omega=\left(\frac{d n_{i}}{n}\right)$ we have

$$
\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)=\sum_{\substack{S \vdash[r] \\ S \omega \text {-integral }}}(-1)^{\ell(S)-1} \prod_{i=1}^{\ell(S)}\left(\left|S_{i}\right|-1\right)!
$$

Moreover, $\mathcal{L}_{\underline{n}, d}=0$ if $\omega \in \mathbb{Z}^{r}$, i.e. $\frac{d n_{i}}{n} \in \mathbb{Z}$ for all i.
This answers to Problem 2.

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset $\mathcal{S}_{\omega} \backslash\{\hat{0}\}$.

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset $\mathcal{S}_{\omega} \backslash\{\hat{0}\}$.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is LEX-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}_{\omega}} \operatorname{rk} \tilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq s}\right)\right) C\left(Z_{\Gamma_{s}}\right)
$$

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset $\mathcal{S}_{\omega} \backslash\{\hat{0}\}$.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is LEX-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{S \in \mathcal{S}_{\omega}} \operatorname{rk} \tilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq S}\right)\right) C\left(Z_{\Gamma_{s}}\right)
$$

Corollary

If $\omega \notin \mathbb{Z}^{r}$, i.e. exists i such that $\frac{d n_{i}}{n} \notin \mathbb{Z}$, then $\mathcal{L}_{\underline{n}, d} \neq 0$.
This solves Problem 1.

Orientation character

Let $O \Gamma$ be the oriented graph obtained by replacing every unoriented edge in 「 with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $\operatorname{Aut}(\Gamma)$ defined by

$$
a_{\Gamma}(\sigma)=\operatorname{sgn}(\sigma: V(\Gamma) \rightarrow V(\Gamma)) \operatorname{sgn}(\sigma: E(O \Gamma) \rightarrow E(O\ulcorner))
$$

Orientation character

Let $O \Gamma$ be the oriented graph obtained by replacing every unoriented edge in 「 with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $\operatorname{Aut}(\Gamma)$ defined by

$$
a_{\Gamma}(\sigma)=\operatorname{sgn}(\sigma: V(\Gamma) \rightarrow V(\Gamma)) \operatorname{sgn}(\sigma: E(O\ulcorner) \rightarrow E(O \Gamma))
$$

Example

Consider the graph:

with $a \neq b$. Then $\operatorname{Aut}(\Gamma)=\mathbb{Z} / 2 \mathbb{Z}=\langle(12)\rangle$ and $a_{\Gamma}(\sigma)=(-1)^{a+1}$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma)<\mathfrak{S}_{r}$ and suppose that ω is a Aut (Γ)-invariant vector. Let $\mathcal{C}\left(Z_{\Gamma}+\omega\right)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma}+\omega\left(\operatorname{dim} \mathcal{C}\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}+\omega\right)\right)$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma)<\mathfrak{S}_{r}$ and suppose that ω is a Aut (Γ)-invariant vector. Let $\mathcal{C}\left(Z_{\Gamma}+\omega\right)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma}+\omega\left(\operatorname{dim} \mathcal{C}\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}+\omega\right)\right)$.

Theorem (Mauri, Migliorini, P. 2023)

$\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus$
$\bigoplus \quad \operatorname{Ind}_{\operatorname{Stab}(S)}^{\mathrm{Aut}(\Gamma)} a_{\Gamma} \otimes \widetilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq S}\right)\right) \otimes \mathcal{C}\left(\Gamma_{S}\right)$.

$$
S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)
$$

Theorem (Mauri, Migliorini, P. 2023)

$$
\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus \bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma} s \otimes \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq s}\right)\right) \otimes \mathcal{C}\left(\Gamma_{S}\right)
$$

Example

Let $\omega=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$,

The automorphism group is $\operatorname{Aut}(\Gamma)=\mathbb{Z} / 2 \mathbb{Z}=\langle(1,2)\rangle$. Then:

$$
\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus \operatorname{Reg}^{\oplus 3} \oplus(\operatorname{sgn} \otimes \operatorname{sgn} \otimes 1)
$$

Theorem (Mauri, Migliorini, P. '23)

$\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus$

$$
\bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma} s \otimes \tilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq s}\right)\right) \otimes \mathcal{C}\left(\Gamma_{S}\right)
$$

Sketch of proof: We compute the character on both sides:

Theorem (Mauri, Migliorini, P. '23)

$\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus$

$$
\bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind} \mathrm{Stab}(S)_{\operatorname{Aut}(\Gamma)}^{\operatorname{Sta}} a_{\Gamma} \otimes \tilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq S}\right)\right) \otimes \mathcal{C}\left(\Gamma_{S}\right)
$$

Sketch of proof: We compute the character on both sides:

$$
\chi_{\mathcal{C}\left(Z_{\Gamma}+\omega\right)}(\sigma)=C\left(\left(Z_{\Gamma}+\omega\right)^{\sigma}\right)
$$

Moreover for $S \in \mathcal{S}^{\sigma}$:
$\chi_{\tilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq s}\right)\right.}(\sigma)= \pm \mu_{\mathcal{S}_{\omega}^{\sigma}}(S, \hat{1})$

Theorem (Mauri, Migliorini, P. '23)

$\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus$

$$
\bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma} s \otimes \tilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq s}\right)\right) \otimes \mathcal{C}\left(\Gamma_{S}\right)
$$

Sketch of proof: We compute the character on both sides:

$$
\chi_{\mathcal{C}\left(Z_{\Gamma}+\omega\right)}(\sigma)=C\left(\left(Z_{\Gamma}+\omega\right)^{\sigma}\right)
$$

Moreover for $S \in \mathcal{S}^{\sigma}$:
$\chi_{\tilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq S}\right)\right.}(\sigma)= \pm \mu_{\mathcal{S}_{\omega}^{\sigma}}(S, \hat{1})$

The result follows from

$$
C\left(\left(Z_{\Gamma}+\omega\right)^{\sigma}\right)=C\left(Z_{\Gamma}^{\sigma}\right)+\sum_{S \in \mathcal{S}_{\omega}^{\sigma}} \pm \mu_{\mathcal{S}_{\omega}^{\sigma}}(S, \hat{1}) C\left(Z_{\Gamma_{S}}^{\sigma}\right)
$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) for which partitions \underline{n} the local system $\mathcal{L}_{\underline{n}, d}$ is zero?
(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) for which partitions \underline{n} the local system $\mathcal{L}_{n, d}$ is zero?
(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d}=0$ if and only if $\omega=\left(\frac{d n_{i}}{n}\right) \in \mathbb{Z}^{r}$ and $r>1$.

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) for which partitions \underline{n} the local system $\mathcal{L}_{\underline{n}, d}$ is zero?
(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d}=0$ if and only if $\omega=\left(\frac{d n_{i}}{n}\right) \in \mathbb{Z}^{r}$ and $r>1$.
(2)

$$
\begin{aligned}
\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right) & =\sum_{S \omega \text {-integral }}(-1)^{\ell(S)-1} \prod_{i}\left(\left|S_{i}\right|-1\right)! \\
& =\operatorname{dim} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
\end{aligned}
$$

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) for which partitions \underline{n} the local system $\mathcal{L}_{\underline{n}, d}$ is zero?
(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d}=0$ if and only if $\omega=\left(\frac{d n_{i}}{n}\right) \in \mathbb{Z}^{r}$ and $r>1$.
(2)

$$
\begin{aligned}
\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right) & =\sum_{S \omega \text {-integral }}(-1)^{\ell(S)-1} \prod_{i}\left(\left|S_{i}\right|-1\right)! \\
& =\operatorname{dim} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
\end{aligned}
$$

(3) The monodromy is given by the representation of $\operatorname{Aut}\left(\Gamma_{\underline{n}}\right)$

$$
\operatorname{sgn} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
$$

Thanks for listening!

roberto.pagaria@unibo.it

