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Toric Arrangements

Definitions

A toric arrangement A in the torus T ' (C∗)n is a finite collection of
(translates of) hypertori {De }e∈E . Let Λ ' Zn be the character group
of T and χe ∈ Λ a character defining De.
In coordinates: the characters are χ(t1, . . . , tn) = ta1

1 t
a2
2 · · · tan

n and
the hypertori are

D = { (t1, . . . , tn) ∈ (C∗)n | ta1
1 t

a2
2 · · · tan

n = b }
The equations χ(t) = b and (−χ)(t) = b−1 define the same
hypertorus.

Definition
We say that I ⊂ E is (in)dependent if the characters
{χe}e∈I ⊂ Λ ' Zn are linearly (in)dependent.

We want to studyM(A) = T \
∪

e∈E De.
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Toric Arrangements

Example

P Q R

Analogously to the case of hyperplane ar
rangements, we define

ωe = (be − χe)
∗ω = − d(ta1

1 t
a2
2 · · · tan

n )

be − ta1
1 t

a2
2 · · · tan

n
.

Observe that

ω1 · ω2 = ωP ;1,2 + ωQ;1,2 + ωR;1,2;

these twoforms are linearly independent.
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1 t
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2 · · · tan
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be − ta1
1 t

a2
2 · · · tan

n
.

Observe that

ω1 · ω2 = ωP ;1,2 + ωQ;1,2 + ωR;1,2;

these twoforms are linearly independent.

Choose fP = x2+x+1
3 and define the form:

ωP ;1,2 := fP · ω1 · ω2 =
x2 + x+ 1

3
dlog(1− y) · dlog(1− x3y)

The form ωP ;1,2 depends on fP , choosing f̃P = 1
3y (x

2 + x+ 1):

ω̃P ;1,2 := f̃P · ω1 · ω2 = ωP ;1,2 + ω2 · dlogx.
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Toric Arrangements

Example

P Q R

Analogously to the case of hyperplane ar
rangements, we define

ωe = (be − χe)
∗ω = − d(ta1

1 t
a2
2 · · · tan

n )

be − ta1
1 t

a2
2 · · · tan

n
.

Observe that

ω1 · ω2 = ωP ;1,2 + ωQ;1,2 + ωR;1,2;

these twoforms are linearly independent.

Remark
Because intersections of hypertori are, in general, not connected, the
cohomology algebra is not always generated in degree one.

We consider only forms ωW ;A whereW is a c.c. of ∩a∈ADa.

Roberto Pagaria OS algebra of toric arrangements September 5, 2019 2 / 13



Toric Arrangements

Consider the exponential map TP T → T and its pullback
H •(M(A)) ↠ H •(M(A[P ])).
The forms ωQ;1,2, ωR;1,2 and those in H •(T ) belong to the kernel.
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Toric Arrangements

The cohomology module

By the results about hyperplane we have:

ωP ;12 − ω13 + ω23 ≡ 0 (H1(T )).

and more generally for L c.c. of ∩c∈CDc

∂ωL,C :=

k∑
i=0

(−1)iωWi;C\ci ≡ 0 (H1(T )). (1)

Theorem (De Concini, Procesi 2005)
The graded ring gr(H1(T ))H

•(M(A)) is generated by ωW,Aψ, where ψ
is any element in H •(W ) with the relations of eq. (1) and
multiplication given by

ωW ;AωW ′;A′ = ±
∑

L c.c. W∩W ′

ωL;AA′ .

Analogous results are given by Bibby (’15) and Callegaro, Delucchi
(’15) by using spectral sequences.
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Unimodular case

Unimodular case

A toric arrangement is unimodular if all intersections ∩i∈ADa are
empty or connected.
We choose fW = 1, so ωW ;A = ωa1

· · ·ωaq
and define

ψe = χ∗
e(ω) ∈ H1(T ).

Theorem (De Concini, Procesi 2005)
If χ0 = χ1 + · · ·+ χq, then for the circuit C = (0, 1, . . . , q) the following
relation in cohomology holds:

∂ωC =
∑
0∈A
B ̸=∅

(−1)ϵ(A)ωAψB .

Proof.
Follows from the polynomial identity:

1−
q∏

i=1

xi =
∑
I⊊[q]

∏
i∈I

xi
∏
j ̸∈I

(1− xj).
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Unimodular case

When χ0 + χ1 + · · ·+ χq = 0 the following factorization holds:
q∏

i=1

(ωi − ωi−1 + ψi−1) = 0

If we use −χ to describe D, then we have the transformations:
ω′ = ω − ψ ψ′ = −ψ

Choose now the following canonical form for every hyperplane De:

ωe := ωe + ω′
e = 2ωe − ψe =

xe + 1

xe(xe − 1)
dxe

(a) Residues of ωe (b) Residues of ωe
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Unimodular case

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. 2017)
If A is unimodular, the relations in cohomology are:

q∏
i=1

(ωi + ciψi − ωi−1 + ci−1ψi−1) = 0,

where
∑

i ciχi = 0, ci = ±1 or, equivalently:
k∑

j=0

∑
A ̸∋j

(−1)|A≤j |cBωAψB = 0.

Notice that ciψi ∈ H1(T ) does not depend on the choice between χi

and −χi. A central arrangement is invariant for z 7→ z−1, hence:
q∑

j=0

∑
A̸∋j

|B| even

(−1)|A≤j |cBωAψB = 0. (2)
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Coverings

Coverings
Consider the covering U → T of the tori u = x,
v3 = y. The hypertori lift to:

1− y 7→ 1− v3

1− x3y 7→ 1− u3v3

A form in U is
ωU
P1;1,2 = ωU

1 ω
U
2 =

v + 1

v(v − 1)

uv + 1

uv(uv − 1)
vdudv,

its pushforward is:
ωP ;1,2 := ωU

P1;1,2 + ωU
P2;1,2 + ωU

P3;1,2 =

= 3
u3v6 + u3v3 + 4u2v3 + 4uv3 + v3 + 1

uv (v3 − 1) (u3v3 − 1)
dudv

=
x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dxdy

= fPω1ω2

U

V

P1 Q1 R1

P2 Q2 R2

P3 Q3 R3

P Q R
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Coverings

In general:

Lemma
The form ωW,A = fWωA does not depend on the covering.

Remember eq. (2)
k∑

j=0

∑
A ̸∋j

|B| even

(−1)|A≤j |cBωAψB = 0 (2)

whose pushfoward is
k∑

j=0

∑
A̸∋j

|B| even

(−1)|A≤j | m(A)

m(A tB)
cBωW,AψB = 0.

U

V

p1 q1 r1

p2 q2 r2

p3 q3 r3

p q r

Roberto Pagaria OS algebra of toric arrangements September 5, 2019 9 / 13



Coverings

In general:

Lemma
The form ωW,A = fWωA does not depend on the covering.

Remember eq. (2)
k∑

j=0

∑
A ̸∋j

|B| even

(−1)|A≤j |cBωAψB = 0 (2)

whose pushfoward is
k∑

j=0

∑
A̸∋j

|B| even

(−1)|A≤j | m(A)

m(A tB)
cBωW,AψB = 0.

U

V

p1 q1 r1

p2 q2 r2

p3 q3 r3

p q r

Roberto Pagaria OS algebra of toric arrangements September 5, 2019 9 / 13



Coverings

In general:

Lemma
The form ωW,A = fWωA does not depend on the covering.

Remember eq. (2)
k∑

j=0

∑
A ̸∋j

|B| even

(−1)|A≤j |cBωAψB = 0 (2)

whose pushfoward is
k∑

j=0

∑
A̸∋j

|B| even

(−1)|A≤j | m(A)

m(A tB)
cBωW,AψB = 0.

U

V

p1 q1 r1

p2 q2 r2

p3 q3 r3

p q r

Roberto Pagaria OS algebra of toric arrangements September 5, 2019 9 / 13



Coverings

In our example the formula is:

x3y2 + x3y + 4x2y + 4xy + y + 1

xy (y − 1) (x3y − 1)
dxdy − x+ 1

x(x− 1)

y + 1

y(y − 1)
dxdy+

+
x+ 1

x(x− 1)

x3y + 1

y(x3y − 1)
dxdy − 1

3
dlog y dlogx3y + dlog y dlogx+

− dlogx3y dlogx = 0.
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Coverings

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. 2018)
The ring H •(M(A);Q) is generated by ωW ;A, ψe with relations for
every circuit C and c.c. L of C:

k∑
j=0

∑
A ̸∋j

|B| even

(−1)|A≤j |cB
m(A)

m(A tB)
ωW ;AψB = 0

ωW,AωW ′;A′ = ±
∑

L c.c. W∩W ′

ωL;AA′ .

Remark
The rational cohomology ring depends only on the poset of layers
S(A) of the toric arrangement.
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Coverings

Example: The two toric arrangements described by

N1 =

 1 1 1 3
0 5 0 5
0 0 5 5

 and N2 =

 1 4 1 6
0 5 0 5
0 0 5 5

 ,

have different posets of layers and different rational cohomology
algebra. However, they describe the same arithmetic matroid and the
same matroid over Z.
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Coverings

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. 2018)
The integral cohomology ring H •(M(A);Z) is generated by the forms
ωW ;A and those in H1(T ;Z).

Example: The two toric arrangements described by

N3 =

(
1 1 2
0 7 7

)
and N4 =

(
1 2 3
0 7 7

)
,

have the same poset of layers but different integral cohomology ring.
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Thanks for listening!

roberto.pagaria@gmail.com
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