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Wonderful Model for subspace arrangements

Definition

A subspace arrangement in a complex vector space V is a finite
collection A = {S1, . . . ,Sn} of linear subspaces Si of V .
The complement is the open set MA = V \ ∪A.

P2

Sometimes is useful to work with the projective version: the
collection of P(Si ) ⊂ P(V ).

Goal

Understand the homotopy type of the complement MA.
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Wonderful Model for subspace arrangements

The poset of flats

Definition (Poset of flats)

The combinatorial object associated with A is the poset of flats

LA = {∩i∈ISi | I ⊆ [n] := {1, 2, . . . , n}}
of intersections ordered by reverse inclusion, together with the
codimension function

cd: LA → N.

abc

P2(C)

a b c

ab ac bc
p

2

Goal

Describe the homotopy type of
the complement MA in term of
the combinatorics LA, cd.

The poset LA is a lattice.
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Wonderful Model for subspace arrangements

Example (Rybnicov 1994)

There exist two hyperplane arrangements A and A′ that have the
same combinatorics LA ' LA′ but the two complement have
different homotopy type MA 6∼ MA′ .

However, the rational homotopy type is determine by the
combinatorics.
Idea: Construct a nice compactification YA of MA such that
DA := YA \MA is a simple normal crossing divisor. The Morgan
model for the pair (YA,DA) is a cdga that codifies the rational
homotopy type of the complement MA.
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Wonderful Model for subspace arrangements

We study the projectified version: regard {P(Si )}i=,1...,n as a
projective arrangement in P(V ).
We choose some layers, i.e. a subset G ⊆ LA \ {0̂} and we totally
order G = {G1,G2, . . . ,Gm}. Blow-up the chosen intersection in
the chosen order:

YA,G := BlGm(BlGm−1(. . . (BlG1(P(V )) . . . )

Remark

The variety YA,G is smooth, projective and contains P(MA).

Definition

A subset G ⊆ LA \ {0̂} is a building set if for any x ∈ L
[0̂, x ] =

∏
y∈max(G≤x )

[0̂, y ]

and
cd(x) =

∑
y∈max(G≤x )

cd(y).
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Wonderful Model for subspace arrangements

Definition

A simple normal crossing divisor is a divisor whose irreducible
components are smooth and intersect locally as coordinate
hyperplanes.

Theorem (De Concini, Procesi 1995)

If G is a building set, then the divisor DA,G := YA,G \ P(MA) is
simple normal crossing with irreducible components {KG}G∈G the
exceptional divisors.

The variety YA,G is called wonderful model for the subspace
arrangement A.
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Wonderful Model for subspace arrangements

The simple normal crossing divisor YG \M has irreducible
components {KW }W∈G in bijections with the building set G.

Definition (Nested set)

A set S ⊆ G is G-nested if for any non-trivial antichain T ⊆ S we
have

∨
T 6∈ G. The set n(G) of all G-nested sets is an abstract

simplicial complex, called the nested set complex.

The intersection ∩G∈SKG is non-empty if and only if S is G-nested.

Example
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Wonderful Model for subspace arrangements

Theorem (De Concini, Procesi 1995)

The cohomology algebra H∗(YA,G ;Z) is Z[tG ]G∈G/I where I is
generated by

k∏
i=1

tFi

(∑
H≥G

tH

)cd(G)−cd(∨iFi )

for any k ∈ N, F1, . . . ,Fk ∈ G, and G ∈ G such that G ≥ ∨iFi .

Consider the commutative differential graded algebra⊕
S⊂G

H∗
(⋂
G∈S

KG ;Q
)

with multiplication given by restriction and cup product and the
differential given by the Gysin morphism.

Theorem (Morgan 1978)

This algebra is a rational model for P(M(A)) = YA,G \ DA,G . In
particular, its cohomology is H∗(P(M(A));Q).

Roberto Pagaria Toric Wonderful Models May 2023 8 / 18



Wonderful models for toric arrangements

Toric arrangements

Let T ' (C∗)r be an algebraic torus with character group Λ ' Zr .
A layer G is a connected subtorus, i.e. there exists a split direct
summand Γ ⊆ Λ such that

G = {t ∈ T | χ(t) = 1∀χ ∈ Γ}.

Definition (Toric arrangement)

A toric arrangement A = {S1, . . . ,Sn} is a finite collection of
layers Si ( T . The complement is the open set MA = T \ ∪A.

Definition (Poset of layers)

The combinatorial object associated with A is the poset of layers

LA =
⋃

I⊆[n]
c. c. of ∩i∈I Si

given by connected components of intersections ordered by reverse
inclusion, together with the codimension function

cd: LA → N.
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Wonderful models for toric arrangements

Example

Consider the two hypertori in T = (C∗)2 defined by:

P1

P2

t1t
2
2 = 1

t1 = 1

Papini - PhD thesis

The main difference with subspace arrangements consist in the fact
that intersections are not connected. In particular, LA is not a
semilattice. Moreover, there is no projective version of the
algebraic torus.
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Wonderful models for toric arrangements

As a first step we compactify the algebraic torus T .
Let Σ in the cocharacter group of T be a smooth projective fan
and XΣ be the associated toric variety containing T as open orbit.

Definition (Good toric variety)

The toric variety XΣ is good with respect to A if for every maximal
cone C and any layer GΓ we have Γ ⊆ C ∗ ∪ −C ∗.

We see the complement MA as XΣ \ (
⋃
A∪ B) where B = XΣ \T

is the boundary.

Theorem (De Concini Gaiffi 2017)

If XΣ is a good toric variety then for every layer G ∈ A the closure
G in XΣ is smooth and G intersects transversally every orbit
closure O ⊂ XΣ.
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Wonderful models for toric arrangements

Example

A fan Σ whose toric variety XΣ is good for the arrangement
t1 = 1, t1t

2
2 = 1.

Papini - PhD thesis
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Wonderful models for toric arrangements

Now, we need to blowup the intersections inside the torus T .
We choose some layers, i.e. a subset G ⊆ LA \ {0̂} and we totally
order G = {G1,G2, . . . ,Gm}. Blow-up the chosen intersection in
the chosen order:

YA,G,Σ := BlGm
(BlGm−1

(. . . (BlG1
(XΣ) . . . ))

Definition

A subset G ⊆ LA \ {0̂} is a building set if for any x ∈ L the set
G≤x := {G ∈ G | G ≤ x} is a building set in the lattice L≤x .

Theorem (De Concini, Gaiffi 2017)

If G is a building set, then the divisor DA,G := YA,G,Σ \MA is
simple normal crossing with irreducible components {KG}G∈G the
exceptional divisors and the strict transform of orbit closure Õr for
each ray r ∈ Σ.

The variety YA,G,Σ is called toric wonderful model for the
arrangement A.
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Wonderful models for toric arrangements

For S ⊆ LA define the join ∨S as the set of all least upper bound
of S in LA. In particular ∨S is the set of connected components of
∩G∈SG .

Definition

A building set G is well connected if for any S ⊆ G either |∨S | ≤ 1
or ∨S ⊆ G.

For well connected building set G they define the G-nested set as
S ⊂ G such that for any (or for all) x ∈ ∨S the set S is
G≤x -nested in L≤x .

Example

The previous toric arrangement with two possible building sets G:

T

a b

P1 P2

T

a b

P1 P2
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Wonderful models for toric arrangements

Let BΣ be the ring Q[cr | r ∈ Σ] with relations

cr1cr2 . . . crl = 0 if r1, r2, . . . , rl do not form a cone of Σ
(Stanley-Reisner relations).∑

r∈Σ m(ur )cr = 0 for any character m and ur the primitive
vector in the ray r .

Theorem (Jurkiewicz-Danilov 1978)

Let XΣ be smooth and projective. Then H∗(XΣ;Q) ' BΣ.

Theorem (De Concini Gaiffi 2019)

Let G be well connected, then H∗(YA,G,Σ;Q) = BΣ[tG ]G∈G/I
where I is generated by

tGcr if r 6∈ Ann(ΛG ) (equiv. Õr ∩ KG = ∅),∏k
i=1 tFi

P∨iFi
G (

∑
H≥G tH) for any k ∈ N, F1, . . . ,Fk ∈ G, and

G ∈ G such that G ≥ ∨iFi .
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Wonderful models for toric arrangements

Our approach is more general.

Definition (Blowup of posets)

Blp L = {x | x 6≥ p} t {(p, x , y) | x 6≥ p, y ∈ p ∨ x}

with the ordering given by

1 x ≥ x ′ if x ≥ x ′,

2 (p, x , y) ≥ (p, x ′, y ′) if x ≥ x ′ and y ≥ y ′,

3 (p, x , y) ≥ x ′ if x ≥ x ′.

Example

A poset L and its blowup BlP1(L) at P1:

T

a b

P1 P2

(P1,T ,P1)

T

a b

(P1,a,P1) (P1,b,P1) P2
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Wonderful models for toric arrangements

Let us consider a building set G = {G1, . . . ,Gm} in L, define :

BlG(L) := BlGm(BlGm−1(. . . (BlG1(L) . . . ))

Definition

A pair (S , x) is G-nested if x ∈ ∨S and S is G≤x -nested in L≤x .
The nested set complex n(G) is the ∆-complex of all G-nested sets.

Lemma (Giordani, P., Siconolfi 2023)

The poset BlG(L) is the face poset of the ∆-complex n(G). In
particular, it is locally boolean poset.

Example

A poset L and the ∆-complex n(G):

T

a b

P1 P2 P3

a b

P1

n(G)

(P1,T ,P1)

T

a b

(P1,a,P1) (P1,b,P1) P2 P3
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Wonderful models for toric arrangements

There exists a projection map π : BlG(L)→ L induced by
(x , p, y) 7→ y .

Theorem (Giordani, P., Siconolfi 2023)

Let G be a building set, then H∗(YA,G,Σ;Q) = BΣ[ta]a∈BlG(L)/I
with deg(ta) = 2|a| = 2 rk(a) and I is generated by

tπ(a)cr if r 6∈ Ann(Λπ(a)) (equiv. Õr ∩ Ka = ∅),

taP
π(a)
G (

∑
H≥G t{H}) for any a ∈ BlG(L), and G ≥ π(a).

tatb = ta∧b
∑

c∈a∨b tc for any a, b ∈ BlG(L).
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Thanks for listening!
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