Roberto Pagaria

Università di Bologna

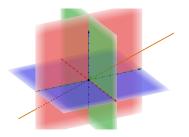
Cohomology Rings of Toric Wonderful Models

Tropical Days In Bristol

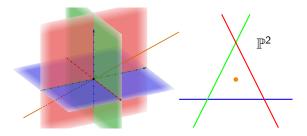
Work in progress with L. Giordani and V. Siconolfi

May 19th, 2023

A subspace arrangement in a complex vector space V is a finite collection $\mathcal{A} = \{S_1, \ldots, S_n\}$ of linear subspaces S_i of V. The *complement* is the open set $M_{\mathcal{A}} = V \setminus \bigcup \mathcal{A}$.



A subspace arrangement in a complex vector space V is a finite collection $\mathcal{A} = \{S_1, \ldots, S_n\}$ of linear subspaces S_i of V. The *complement* is the open set $M_{\mathcal{A}} = V \setminus \bigcup \mathcal{A}$.



Sometimes is useful to work with the projective version: the collection of $\mathbb{P}(S_i) \subset \mathbb{P}(V)$.

Goal

Understand the homotopy type of the complement M_A .

Roberto Pagaria

The poset of flats

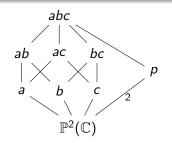
Definition (Poset of flats)

The combinatorial object associated with \mathcal{A} is the *poset of flats*

$$\mathcal{L}_{\mathcal{A}} = \{ \cap_{i \in I} S_i \mid I \subseteq [n] := \{1, 2, \dots, n\} \}$$

of intersections ordered by reverse inclusion, together with the codimension function

$$\mathsf{cd}\colon \mathcal{L}_{\mathcal{A}} \to \mathbb{N}.$$



The poset of flats

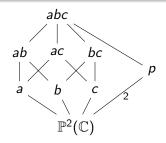
Definition (Poset of flats)

The combinatorial object associated with ${\mathcal A}$ is the poset of flats

$$\mathcal{L}_{\mathcal{A}} = \{ \cap_{i \in I} S_i \mid I \subseteq [n] := \{1, 2, \dots, n\} \}$$

of intersections ordered by reverse inclusion, together with the codimension function

$$\mathsf{cd}\colon \mathcal{L}_\mathcal{A} o \mathbb{N}.$$



Goal

Describe the homotopy type of the complement M_A in term of the combinatorics \mathcal{L}_A , cd.

The poset
$$\mathcal{L}_{\mathcal{A}}$$
 is a lattice.

Example (Rybnicov 1994)

There exist two hyperplane arrangements \mathcal{A} and \mathcal{A}' that have the same combinatorics $\mathcal{L}_{\mathcal{A}} \simeq \mathcal{L}_{\mathcal{A}'}$ but the two complement have different homotopy type $M_{\mathcal{A}} \not\sim M_{\mathcal{A}'}$.

However, the *rational* homotopy type is determine by the combinatorics.

Idea: Construct a nice compactification Y_A of M_A such that $D_A := Y_A \setminus M_A$ is a *simple normal crossing divisor*. The *Morgan model* for the pair (Y_A, D_A) is a cdga that codifies the rational homotopy type of the complement M_A .

We study the projectified version: regard $\{\mathbb{P}(S_i)\}_{i=,1...,n}$ as a projective arrangement in $\mathbb{P}(V)$. We choose some layers, i.e. a subset $\mathcal{G} \subseteq \mathcal{L}_{\mathcal{A}} \setminus \{\hat{0}\}$ and we totally order $\mathcal{G} = \{G_1, G_2, \ldots, G_m\}$. Blow-up the chosen intersection in the chosen order:

$$Y_{\mathcal{A},\mathcal{G}} := \mathsf{Bl}_{G_m}(\mathsf{Bl}_{G_{m-1}}(\dots(\mathsf{Bl}_{G_1}(\mathbb{P}(V))\dots)))$$

Remark

The variety $Y_{\mathcal{A},\mathcal{G}}$ is smooth, projective and contains $\mathbb{P}(M_{\mathcal{A}})$.

Definition

A subset
$$\mathcal{G} \subseteq \mathcal{L}_{\mathcal{A}} \setminus \{\hat{0}\}$$
 is a *building set* if for any $x \in \mathcal{L}$
$$[\hat{0}, x] = \prod_{y \in \mathsf{max}(\mathcal{G}_{\leq x})} [\hat{0}, y]$$

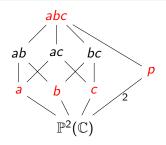
and

$$\mathsf{cd}(x) = \sum_{y \in \mathsf{max}(\mathcal{G}_{\leq x})} \mathsf{cd}(y).$$

A subset
$$\mathcal{G} \subseteq \mathcal{L}_{\mathcal{A}} \setminus \{\hat{0}\}$$
 is a *building set* if for any $x \in \mathcal{L}$
 $[\hat{0}, x] = \prod_{y \in \mathsf{max}(\mathcal{G}_{\leq x})} [\hat{0}, y]$

 and

$$\mathsf{cd}(x) = \sum_{y \in \mathsf{max}(\mathcal{G}_{\leq x})} \mathsf{cd}(y).$$



A *simple normal crossing divisor* is a divisor whose irreducible components are smooth and intersect locally as coordinate hyperplanes.

A *simple normal crossing divisor* is a divisor whose irreducible components are smooth and intersect locally as coordinate hyperplanes.

Theorem (De Concini, Procesi 1995)

If \mathcal{G} is a building set, then the divisor $D_{\mathcal{A},\mathcal{G}} := Y_{\mathcal{A},\mathcal{G}} \setminus \mathbb{P}(M_{\mathcal{A}})$ is simple normal crossing with irreducible components $\{K_G\}_{G \in \mathcal{G}}$ the exceptional divisors.

The variety $Y_{\mathcal{A},\mathcal{G}}$ is called *wonderful model* for the subspace arrangement \mathcal{A} .

The simple normal crossing divisor $Y_{\mathcal{G}} \setminus M$ has irreducible components $\{K_W\}_{W \in \mathcal{G}}$ in bijections with the building set \mathcal{G} .

The simple normal crossing divisor $Y_{\mathcal{G}} \setminus M$ has irreducible components $\{K_W\}_{W \in \mathcal{G}}$ in bijections with the building set \mathcal{G} .

Definition (Nested set)

A set $S \subseteq \mathcal{G}$ is \mathcal{G} -nested if for any non-trivial antichain $T \subseteq S$ we have $\bigvee T \notin \mathcal{G}$. The set $n(\mathcal{G})$ of all \mathcal{G} -nested sets is an abstract simplicial complex, called the *nested set complex*.

The simple normal crossing divisor $Y_{\mathcal{G}} \setminus M$ has irreducible components $\{K_W\}_{W \in \mathcal{G}}$ in bijections with the building set \mathcal{G} .

Definition (Nested set)

A set $S \subseteq \mathcal{G}$ is \mathcal{G} -nested if for any non-trivial antichain $T \subseteq S$ we have $\bigvee T \notin \mathcal{G}$. The set $n(\mathcal{G})$ of all \mathcal{G} -nested sets is an abstract simplicial complex, called the *nested set complex*.

The intersection $\cap_{G \in S} K_G$ is non-empty if and only if S is \mathcal{G} -nested.

Example $\begin{array}{cccc} abc \\ ab & ac & bc \\ ab & ac & bc \\ ab & b & c \\ \mathbb{P}^{2}(\mathbb{C}) \end{array}$

Theorem (De Concini, Procesi 1995)

The cohomology algebra $H^*(Y_{\mathcal{A},\mathcal{G}};\mathbb{Z})$ is $\mathbb{Z}[t_G]_{G\in\mathcal{G}}/I$ where I is generated by

$$\prod_{i=1}^{k} t_{F_{i}} \left(\sum_{H \geq G} t_{H} \right)^{\operatorname{cd}(G) - \operatorname{cd}(\lor_{i}F_{i})}$$

for any $k \in \mathbb{N}$, $F_1, \ldots, F_k \in \mathcal{G}$, and $G \in \mathcal{G}$ such that $G \geq \vee_i F_i$.

Consider the commutative differential graded algebra $\bigoplus_{S \subset G} H^* \Big(\bigcap_{G \in S} K_G; \mathbb{Q} \Big)$

with multiplication given by restriction and cup product and the differential given by the Gysin morphism.

Theorem (Morgan 1978)

This algebra is a rational model for $\mathbb{P}(M(\mathcal{A})) = Y_{\mathcal{A},\mathcal{G}} \setminus D_{\mathcal{A},\mathcal{G}}$. In particular, its cohomology is $H^*(\mathbb{P}(M(\mathcal{A}));\mathbb{Q})$.

Toric arrangements

Let $T \simeq (\mathbb{C}^*)^r$ be an algebraic torus with character group $\Lambda \simeq \mathbb{Z}^r$. A *layer* G is a connected subtorus, i.e. there exists a *split* direct summand $\Gamma \subseteq \Lambda$ such that

$$G = \{t \in T \mid \chi(t) = 1 \, \forall \chi \in \Gamma\}.$$

Definition (Toric arrangement)

A toric arrangement $\mathcal{A} = \{S_1, \ldots, S_n\}$ is a finite collection of layers $S_i \subsetneq T$. The *complement* is the open set $M_{\mathcal{A}} = T \setminus \cup \mathcal{A}$.

Definition (Poset of layers)

The combinatorial object associated with A is the *poset of layers*

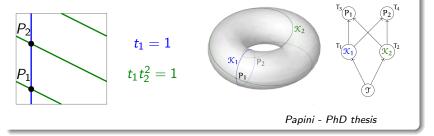
$$\mathcal{L}_{\mathcal{A}} = \bigcup_{I \subseteq [n]} \mathsf{c. c. of} \ \cap_{i \in I} S_i$$

given by connected components of intersections ordered by reverse inclusion, together with the codimension function

$$\mathsf{cd}\colon \mathcal{L}_\mathcal{A}\to\mathbb{N}.$$

Example

Consider the two hypertori in $T = (\mathbb{C}^*)^2$ defined by:



The main difference with subspace arrangements consist in the fact that intersections are not connected. In particular, $\mathcal{L}_{\mathcal{A}}$ is not a semilattice. Moreover, there is no projective version of the algebraic torus.

As a first step we compactify the algebraic torus T. Let Σ in the cocharacter group of T be a smooth projective fan and X_{Σ} be the associated toric variety containing T as open orbit.

Definition (Good toric variety)

The toric variety X_{Σ} is *good* with respect to \mathcal{A} if for every maximal cone C and any layer G_{Γ} we have $\Gamma \subseteq C^* \cup -C^*$.

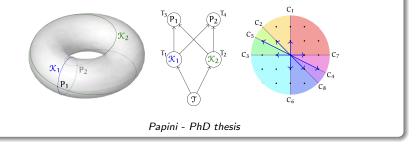
We see the complement M_A as $X_{\Sigma} \setminus (\bigcup A \cup B)$ where $B = X_{\Sigma} \setminus T$ is the boundary.

Theorem (De Concini Gaiffi 2017)

If X_{Σ} is a good toric variety then for every layer $G \in A$ the closure \overline{G} in X_{Σ} is smooth and \overline{G} intersects transversally every orbit closure $\overline{\mathcal{O}} \subset X_{\Sigma}$.

Example

A fan Σ whose toric variety X_{Σ} is good for the arrangement $t_1 = 1$, $t_1 t_2^2 = 1$.



Now, we need to blowup the intersections inside the torus T. We choose some layers, i.e. a subset $\mathcal{G} \subseteq \mathcal{L}_{\mathcal{A}} \setminus \{\hat{0}\}$ and we totally order $\mathcal{G} = \{G_1, G_2, \ldots, G_m\}$. Blow-up the chosen intersection in the chosen order:

$$Y_{\mathcal{A},\mathcal{G},\Sigma} := \mathsf{Bl}_{\overline{G}_m}(\mathsf{Bl}_{\overline{G}_{m-1}}(\dots(\mathsf{Bl}_{\overline{G}_1}(X_{\Sigma})\dots)))$$

Definition

A subset $\mathcal{G} \subseteq \mathcal{L}_{\mathcal{A}} \setminus \{\hat{0}\}$ is a *building set* if for any $x \in \mathcal{L}$ the set $\mathcal{G}_{\leq x} := \{ \mathcal{G} \in \mathcal{G} \mid \mathcal{G} \leq x \}$ is a building set in the lattice $\mathcal{L}_{\leq x}$.

Theorem (De Concini, Gaiffi 2017)

If \mathcal{G} is a building set, then the divisor $D_{\mathcal{A},\mathcal{G}} := Y_{\mathcal{A},\mathcal{G},\Sigma} \setminus M_{\mathcal{A}}$ is simple normal crossing with irreducible components $\{K_G\}_{G \in \mathcal{G}}$ the exceptional divisors and the strict transform of orbit closure $\tilde{\mathcal{O}}_r$ for each ray $r \in \Sigma$.

The variety $Y_{\mathcal{A},\mathcal{G},\Sigma}$ is called *toric wonderful model* for the arrangement \mathcal{A} .

Roberto Pagaria

Toric Wonderful Models

For $S \subseteq \mathcal{L}_{\mathcal{A}}$ define the join $\forall S$ as the set of all least upper bound of S in $\mathcal{L}_{\mathcal{A}}$. In particular $\forall S$ is the set of connected components of $\cap_{G \in S} G$.

Definition

A building set \mathcal{G} is *well connected* if for any $S \subseteq \mathcal{G}$ either $|\lor S| \leq 1$ or $\lor S \subseteq \mathcal{G}$.

For well connected building set \mathcal{G} they define the \mathcal{G} -nested set as $S \subset \mathcal{G}$ such that for any (or for all) $x \in \lor S$ the set S is $\mathcal{G}_{\leq x}$ -nested in $\mathcal{L}_{\leq x}$.

Example

The previous toric arrangement with two possible building sets \mathcal{G} :

Let B_{Σ} be the ring $\mathbb{Q}[c_r \mid r \in \Sigma]$ with relations

- $c_{r_1}c_{r_2}\ldots c_{r_l} = 0$ if r_1, r_2, \ldots, r_l do not form a cone of Σ (Stanley-Reisner relations).
- $\sum_{r \in \Sigma} m(u_r)c_r = 0$ for any character m and u_r the primitive vector in the ray r.

Theorem (Jurkiewicz-Danilov 1978)

Let X_{Σ} be smooth and projective. Then $H^*(X_{\Sigma}; \mathbb{Q}) \simeq B_{\Sigma}$.

Theorem (De Concini Gaiffi 2019)

Let \mathcal{G} be well connected, then $H^*(Y_{\mathcal{A},\mathcal{G},\Sigma};\mathbb{Q}) = B_{\Sigma}[t_G]_{G\in\mathcal{G}}/I$ where I is generated by

- $t_G c_r$ if $r \notin Ann(\Lambda_G)$ (equiv. $\tilde{\mathcal{O}}_r \cap K_G = \emptyset$),
- $\prod_{i=1}^{k} t_{F_i} P_G^{\vee_i F_i}(\sum_{H \ge G} t_H)$ for any $k \in \mathbb{N}$, $F_1, \ldots, F_k \in \mathcal{G}$, and $G \in \mathcal{G}$ such that $G \ge \vee_i F_i$.

Our approach is more general.

Definition (Blowup of posets)

$$\mathsf{Bl}_p \mathcal{L} = \{x \mid x \not\geq p\} \sqcup \{(p, x, y) \mid x \not\geq p, y \in p \lor x\}$$

with the ordering given by

$$x \ge x' \text{ if } x \ge x',$$

2
$$(p,x,y) \ge (p,x',y')$$
 if $x \ge x'$ and $y \ge y'$,

3
$$(p, x, y) \ge x'$$
 if $x \ge x'$.

Example

A poset \mathcal{L} and its blowup $\mathsf{Bl}_{P_1}(\mathcal{L})$ at P_1 :

$$\begin{array}{cccc}
P_1 & P_2 & (P_1, a, P_1) & (P_1, b, P_1) & P_2 \\
| \times | & | & | & | \\
a & b & (P_1, T, P_1) & a & b \\
 \land / & & | & \\
T & & T
\end{array}$$

Our approach is more general.

Definition (Blowup of posets)

$$\mathsf{Bl}_p \mathcal{L} = \{x \mid x \not\geq p\} \sqcup \{(p, x, y) \mid x \not\geq p, y \in p \lor x\}$$

with the ordering given by

$$x \ge x' \text{ if } x \ge x',$$

2
$$(p,x,y) \ge (p,x',y')$$
 if $x \ge x'$ and $y \ge y'$,

3
$$(p, x, y) \ge x'$$
 if $x \ge x'$.

Example

A poset \mathcal{L} and its blowup $\mathsf{Bl}_{P_1}(\mathcal{L})$ at P_1 :

Wonderful models for toric arrangements

Let us consider a building set $\mathcal{G} = \{G_1, \dots, G_m\}$ in \mathcal{L} , define : Bl_{\mathcal{G}}(\mathcal{L}) := Bl_{G_m}(Bl_{G_{m-1}}(...(Bl_{G_1}(\mathcal{L})...))

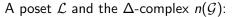
Definition

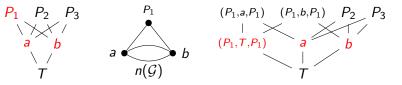
A pair (S, x) is *G*-nested if $x \in \forall S$ and *S* is $\mathcal{G}_{\leq x}$ -nested in $\mathcal{L}_{\leq x}$. The nested set complex $n(\mathcal{G})$ is the Δ -complex of all *G*-nested sets.

Lemma (Giordani, P., Siconolfi 2023)

The poset $Bl_{\mathcal{G}}(\mathcal{L})$ is the face poset of the Δ -complex $n(\mathcal{G})$. In particular, it is locally boolean poset.

Example





There exists a projection map π : $\mathsf{Bl}_{\mathcal{G}}(\mathcal{L}) \to \mathcal{L}$ induced by $(x, p, y) \mapsto y$.

Theorem (Giordani, P., Siconolfi 2023)

Let \mathcal{G} be a building set, then $H^*(Y_{\mathcal{A},\mathcal{G},\Sigma};\mathbb{Q}) = B_{\Sigma}[t_a]_{a \in Bl_{\mathcal{G}}(\mathcal{L})}/I$ with deg $(t_a) = 2|a| = 2 \operatorname{rk}(a)$ and I is generated by

• $t_{\pi(a)}c_r$ if $r \notin Ann(\Lambda_{\pi(a)})$ (equiv. $\tilde{\mathcal{O}}_r \cap K_a = \emptyset$),

•
$$t_a \mathcal{P}_{\mathcal{G}}^{\pi(a)}(\sum_{H \geq G} t_{\{H\}})$$
 for any $a \in \mathsf{Bl}_{\mathcal{G}}(\mathcal{L})$, and $\mathcal{G} \geq \pi(a)$.

•
$$t_a t_b = t_{a \wedge b} \sum_{c \in a \vee b} t_c$$
 for any $a, b \in Bl_{\mathcal{G}}(\mathcal{L})$.

Thanks for listening!

roberto.pagaria@unibo.it