Roberto Pagaria Scuola Normale Superiore

Orlik-Solomon Relations for Toric Arrangements

Dobbiaco February 21, 2018

Covered topics:

- Hyperplane Arrangements
- 2 Toric Arrangements
- 3 Unimodular case

An hyperplane arrangement \mathcal{A}^{H} in a vector space V is a finite collection of (affine) hyperplanes $\{H_e\}_{e \in E}$.

The *complement* of the arrangement \mathcal{A}^H is $M(\mathcal{A}^H) = V \setminus \bigcup_{e \in E} H_e$.

Problem: describe $H^{\bullet}(M(\mathcal{A}^H); \mathbb{Q})$.

An hyperplane arrangement \mathcal{A}^{H} in a vector space V is a finite collection of (affine) hyperplanes $\{H_e\}_{e \in E}$.

The *complement* of the arrangement \mathcal{A}^H is $M(\mathcal{A}^H) = V \setminus \bigcup_{e \in E} H_e$.

Problem: describe $H^{\bullet}(M(\mathcal{A}^H); \mathbb{Q})$.

Each hyperplane H_e can be defined as the zero locus of an element $\alpha_e \in V^*$ or equivalently of $-\alpha_e$. Consider the logarithmic form $\omega = \frac{dz}{z}$ on \mathbb{C}^* and $\omega_e = \frac{d\alpha_e}{\alpha_e} = \alpha_e^*(\omega)$ on V.

Remark

The form ω_e does not depend on the sign of α_e .

An hyperplane arrangement \mathcal{A}^{H} in a vector space V is a finite collection of (affine) hyperplanes $\{H_e\}_{e \in E}$.

The *complement* of the arrangement \mathcal{A}^H is $M(\mathcal{A}^H) = V \setminus \bigcup_{e \in E} H_e$.

Problem: describe $H^{\bullet}(M(\mathcal{A}^H); \mathbb{Q})$.

Each hyperplane H_e can be defined as the zero locus of an element $\alpha_e \in V^*$ or equivalently of $-\alpha_e$. Consider the logarithmic form $\omega = \frac{dz}{z}$ on \mathbb{C}^* and $\omega_e = \frac{d\alpha_e}{\alpha_e} = \alpha_e^*(\omega)$ on V.

Remark

The form ω_e does not depend on the sign of α_e .

Define $\omega_I = \omega_{i_1} \omega_{i_2} \cdots \omega_{i_k}$ for every list $I = (i_1, \dots, i_k) \subseteq E$. If $\alpha_{I_1}, \alpha_{I_2}, \dots, \alpha_{I_k}$ are linearly dependent, then $\omega_I = 0$.

OS algebra

OS-relations: If $C \subset E$ is a minimal dependent set, then $\partial \omega_C := \sum_{i=0}^k (-1)^i \omega_{C \setminus c_i} = 0$

or equivalently

$$\prod_{i=1}^k (\omega_{c_i} - \omega_{c_{i-1}}) = 0.$$

OS algebra

OS-relations: If $C \subset E$ is a minimal dependent set, then

$$\partial \omega_C := \sum_{i=0}^k (-1)^i \omega_{C \setminus c_i} = 0$$

or equivalently

$$\prod_{i=1}^k (\omega_{c_i} - \omega_{c_{i-1}}) = 0.$$

Theorem (Orlik-Solomon 1980)

The algebra $H^{\bullet}(\mathcal{M}(\mathcal{A}))$ is isomorphic to the external algebra on the set $\{\omega_e\}_{e\in E}$ with relations: $\omega_I = 0$ for any I dependent and $\partial \omega_C = 0$ for any C circuit.

A toric arrangement \mathcal{A} in the torus $\mathcal{T} \simeq (\mathbb{C}^*)^n$ is a finite collection of (translates of) hypertori $\{D_e\}_{e \in E}$. Let $\Lambda \simeq \mathbb{Z}^n$ be the character group of \mathcal{T} and $\chi_e \in \Lambda$ a character defining D_e .

In coordinates: the characters are $\chi(t_1, \ldots, t_n) = t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n}$ and the hypertori are

$$\{(t_1,\ldots,t_n)\in (\mathbb{C}^*)^n \mid t_1^{a_1}t_2^{a_2}\cdots t_n^{a_n}=b\}$$

The equations $\chi(\mathbf{t}) = b$ and $(-\chi)(\mathbf{t}) = b^{-1}$ define the same hypertorus.

A toric arrangement \mathcal{A} in the torus $\mathcal{T} \simeq (\mathbb{C}^*)^n$ is a finite collection of (translates of) hypertori $\{D_e\}_{e \in E}$. Let $\Lambda \simeq \mathbb{Z}^n$ be the character group of \mathcal{T} and $\chi_e \in \Lambda$ a character defining D_e .

In coordinates: the characters are $\chi(t_1, \ldots, t_n) = t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n}$ and the hypertori are

$$\{(t_1, \dots, t_n) \in (\mathbb{C}^*)^n \mid t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n} = b\}$$

The equations $\chi(\mathbf{t}) = b$ and $(-\chi)(\mathbf{t}) = b^{-1}$ define the same hypertorus.

Definition

We say that $I \subset E$ is (in)dependent if the characters $\{\chi_e\}_{e \in I} \subset \Lambda \simeq \mathbb{Z}^n$ are linearly (in)dependent.

We want to study $M(\mathcal{A}) = T \setminus \bigcup_{e \in E} D_e$.

Example

Analogously to the case of hyperplane arrangements, we define $\omega_e = (1 - \chi_e)^* \omega = -\frac{\mathrm{d}(t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n})}{1 - t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n}}.$ Observe that

$$\omega_1 \cdot \omega_2 = \omega_{p,1,2} + \omega_{q,1,2} + \omega_{r,1,2};$$

these two-forms are linearly independent.

Example

Analogously to the case of hyperplane arrangements, we define $\omega_e = (1 - \chi_e)^* \omega = -\frac{\mathrm{d}(t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n})}{1 - t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n}}.$ Observe that

$$\omega_1 \cdot \omega_2 = \omega_{p,1,2} + \omega_{q,1,2} + \omega_{r,1,2};$$

these two-forms are linearly independent.

Choose $f_p = x^2 + x + 1$ and define the form:

 $\omega_{p,1,2} := f_p \cdot \omega_1 \cdot \omega_2 = (x^2 + x + 1) d \log(1 - x^3 y) \wedge d \log(1 - y)$ The form $\omega_{p,1,2}$ depends on f_p , choosing $\tilde{f}_p = \frac{1}{v}(x^2 + x + 1)$ instead:

$$\tilde{\omega}_{p} := \tilde{f}_{p} \cdot \boldsymbol{\omega}_{1} \cdot \boldsymbol{\omega}_{2} = \boldsymbol{\omega}_{p,1,2} + \boldsymbol{\omega}_{2} \cdot \mathrm{d} \log y$$

Example

Analogously to the case of hyperplane arrangements, we define $\omega_e = (1 - \chi_e)^* \omega = -\frac{\mathrm{d}(t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n})}{1 - t_1^{a_1} t_2^{a_2} \cdots t_n^{a_n}}.$ Observe that

$$\omega_1 \cdot \omega_2 = \omega_{p,1,2} + \omega_{q,1,2} + \omega_{r,1,2};$$

these two-forms are linearly independent.

Observation

Because intersections of hypertori are, in general, not connected, the cohomology algebra is not always generated in degree one.

We consider only forms $\omega_{W,A}$ where W is a c.c. of $\bigcap_{a \in A} D_a$.

Consider the exponential map $T_P T \to T$ and its pullback $H^{\bullet}(\mathcal{M}(\mathcal{A})) \twoheadrightarrow H^{\bullet}(\mathcal{M}(\mathcal{A}[P]))$. The forms $\omega_{Q,1,2}, \omega_{R,1,2}$ and those in $H^{\bullet}(T)$ belong to the kernel.

The cohomology module

By the results about hyperplane we have:

$$\omega_{P,12} - \omega_{13} + \omega_{23} \equiv 0$$
 ($H^1(T)$)

and more generally for W c.c. of $\bigcap_{c \in C} D_c$

$$\partial \omega_C := \sum_{i=0}^{k} (-1)^i \omega_{W,C \setminus c_i} \equiv 0 \quad (H^1(T)) \tag{1}$$

The cohomology module

By the results about hyperplane we have:

$$\omega_{P,12} - \omega_{13} + \omega_{23} \equiv 0 \quad (H^1(T))$$

and more generally for W c.c. of $\bigcap_{c \in C} D_c$

$$\partial \omega_C := \sum_{i=0}^{\kappa} (-1)^i \omega_{W,C \setminus c_i} \equiv 0 \quad (H^1(T))$$
(1)

Theorem (De Concini, Procesi 2005)

The graded ring $\operatorname{gr}_{(H^1(T))} H^{\bullet}(M(\mathcal{A}))$ is generated by $\omega_{W,A}\psi$, where ψ is any element in $H^{\bullet}(W)$ with the relations of eq. (1) and multiplication given by

$$\omega_{W,\mathcal{A}}\omega_{W',\mathcal{A}'} = \pm \sum_{L \text{ c.c. } W \cap W'} \omega_{L,\mathcal{A}\mathcal{A}'}$$

Analogous results are given by Bibby ('15) and Callegaro, Delucchi ('15).

A hypertori arrangement is *unimodular* if all intersections $\bigcap_{i \in A} D_a$ are empty or connected.

We choose $f_W = 1$, so $\omega_{W,A} = \omega_{a_1} \cdots \omega_{a_q}$ and define $\psi_e = \chi_e^*(\omega) \in H^1(T)$.

A hypertori arrangement is *unimodular* if all intersections $\bigcap_{i \in A} D_a$ are empty or connected.

We choose $f_W = 1$, so $\omega_{W,A} = \omega_{a_1} \cdots \omega_{a_q}$ and define $\psi_e = \chi_e^*(\omega) \in H^1(T)$.

Theorem (De Concini, Procesi 2005)

If $\chi_0 = \chi_1 + \dots + \chi_q$, then for the circuit $C = (0, 1, \dots, q)$ the following relation in cohomology holds. $\partial \omega_C = \sum_{\substack{0 \in A \\ B \neq \emptyset}} (-1)^{\epsilon(A)} \omega_A \psi_B$

A hypertori arrangement is *unimodular* if all intersections $\bigcap_{i \in A} D_a$ are empty or connected.

We choose $f_W = 1$, so $\omega_{W,A} = \omega_{a_1} \cdots \omega_{a_q}$ and define $\psi_e = \chi_e^*(\omega) \in H^1(T)$.

Theorem (De Concini, Procesi 2005)

If $\chi_0 = \chi_1 + \dots + \chi_q$, then for the circuit $C = (0, 1, \dots, q)$ the following relation in cohomology holds. $\partial \omega_C = \sum_{\substack{0 \in A \\ B \neq \emptyset}} (-1)^{\epsilon(A)} \omega_A \psi_B$

Proof.

Follows from the polynomial identity:

$$1 - \prod_{i=1}^{q} x_i = \sum_{l \subsetneq [q]} \prod_{i \in I} x_i \prod_{j \notin I} (1 - x_j)$$

When $\chi_0 + \chi_1 + \dots + \chi_q = 0$ the following factorization holds: $\prod_{i=1}^q (\omega_i - \omega_{i-1} + \psi_{i-1}) = 0$

When $\chi_0 + \chi_1 + \dots + \chi_q = 0$ the following factorization holds: $\prod_{i=1}^q (\omega_i - \omega_{i-1} + \psi_{i-1}) = 0$

If we use $-\chi$ to describe *D*, then we have the transformations:

$$egin{aligned} &\omega'=\omega-\psi\ &\psi'=-\psi \end{aligned}$$

When $\chi_0 + \chi_1 + \dots + \chi_q = 0$ the following factorization holds: $\prod_{i=1}^q (\omega_i - \omega_{i-1} + \psi_{i-1}) = 0$

If we use $-\chi$ to describe D, then we have the transformations:

$$egin{aligned} &\omega'=\omega-\psi\ &\psi'=-\psi \end{aligned}$$

Choose now the following canonical form for every hyperplane D_e :

$$\overline{\omega}_e := \omega_e + \omega'_e = 2\omega_e - \psi_e = \frac{x_e + 1}{x_e(x_e - 1)} \mathrm{d}x_e$$

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. 2017)

If
$$\mathcal{A}$$
 is unimodular, the relations in cohomology are:

$$\prod_{i=1}^{q} (\overline{\omega}_{i} + c_{i}\psi_{i} - \overline{\omega}_{i-1} + c_{i-1}\psi_{i-1}) = 0$$
where $\sum_{i} c_{i}\chi_{i} = 0$, $c_{i} = \pm 1$ or, equivalently:

$$\sum_{j=0}^{k} \sum_{A \not \ni j} (-1)^{|A_{\leq j}|} c_{B}\overline{\omega}_{A}\psi_{B} = 0$$

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. 2017)

If
$$\mathcal{A}$$
 is unimodular, the relations in cohomology are:

$$\prod_{i=1}^{q} (\overline{\omega}_{i} + c_{i}\psi_{i} - \overline{\omega}_{i-1} + c_{i-1}\psi_{i-1}) = 0$$
where $\sum_{i} c_{i}\chi_{i} = 0$, $c_{i} = \pm 1$ or, equivalently:

$$\sum_{j=0}^{k} \sum_{A \not\ni j} (-1)^{|A_{\leq j}|} c_{B}\overline{\omega}_{A}\psi_{B} = 0$$

Notice that $c_i\psi_i \in H^1(\mathcal{T})$ does not depend on the choice between χ_i and $-\chi_i$. A central arrangement is invariant for $z \mapsto z^{-1}$, hence:

$$\sum_{j=0}^{k} \sum_{\substack{A \not\ni j \\ |B| \text{ even}}} (-1)^{|A_{\leq j}|} c_B \overline{\omega}_A \psi_B = 0$$
(2)

Coverings

Consider the covering $U \to T$ of the tori u = x, $v^3 = y$. The hypertori lift to: $\begin{array}{cccc} 1-y & \mapsto & 1-v^3 \\ 1-x^3y & \mapsto & 1-u^3v^3 \end{array}$ p

Coverings

Consider the covering $U \to T$ of the tori u = x, $v^3 = y$. The hypertori lift to: $\begin{array}{cccc} 1-y & \mapsto & 1-v^3 \\ 1-x^3y & \mapsto & 1-u^3v^3 \end{array}$

A form in U is

$$\overline{\omega}_{p_{1},1,2}^{U} = \overline{\omega}_{1}^{U}\overline{\omega}_{2}^{U} = \frac{v+1}{v(v-1)}\frac{uv+1}{uv(uv-1)}v\mathrm{d}u\mathrm{d}v,$$

Coverings

Consider the covering $U \to T$ of the tori u = x, $v^3 = y$. The hypertori lift to: $1 - y \mapsto 1 - v^3$ $1 - x^3 y \mapsto 1 - u^3 v^3$ A form in U is $\overline{\omega}_{p_{1,1,2}}^U = \overline{\omega}_1^U \overline{\omega}_2^U = \frac{v+1}{v(v-1)} \frac{uv+1}{uv(uv-1)} v du dv$, its pushforward is: $\overline{\omega}_{p,1,2} := \overline{\omega}_{p_{1,1,2}}^U + \overline{\omega}_{p_{2,1,2}}^U + \overline{\omega}_{p_{3,1,2}}^U =$ $= 3 \frac{u^3 v^6 + u^3 v^3 + 4u^2 v^3 + 4uv^3 + v^3 + 1}{u^4 u^4 v^4} du dv$

$$= 3 \frac{uv + uv + 4uv + 4uv + v + 1}{uv (v^3 - 1) (u^3 v^3 - 1)} du dv$$

Coverings

Consider the covering $U \to T$ of the tori u = x, $v^3 = v$. The hypertori lift to: $1-y \qquad \mapsto \qquad 1-v^3$ $1 - x^3 v \qquad \mapsto \qquad 1 - u^3 v^3$ A form in U is $\overline{\omega}_{p_{1},1,2}^{U} = \overline{\omega}_{1}^{U}\overline{\omega}_{2}^{U} = \frac{v+1}{v(v-1)}\frac{uv+1}{uv(uv-1)}v\mathrm{d}u\mathrm{d}v,$ its pushforward is: $\overline{\omega}_{p,1,2} := \overline{\omega}_{p,1,2}^U + \overline{\omega}_{p,1,2}^U + \overline{\omega}_{p,1,2}^U =$ $=3\frac{u^{3}v^{6}+u^{3}v^{3}+4u^{2}v^{3}+4uv^{3}+v^{3}+1}{uv(v^{3}-1)(u^{3}v^{3}-1)}\mathrm{d}u\mathrm{d}v$ $=\frac{x^{3}y^{2} + x^{3}y + 4x^{2}y + 4xy + y + 1}{xy(y-1)(x^{3}y - 1)}dxdy$ $= f_{\rho}\overline{\omega}_{1}\overline{\omega}_{2}$

In general:

Lemma

The form $\overline{\omega}_{W,A} = f_W \omega_A$ does not depend on the covering.

In general:

Lemma

The form $\overline{\omega}_{W,A} = f_W \omega_A$ does not depend on the covering.

Remember eq. (2)

$$\sum_{\substack{j=0\\|B| \text{ even}}}^{k} \sum_{\substack{A \not\supseteq j \\ |B| \text{ even}}} (-1)^{|A_{\leq j}|} c_B \overline{\omega}_A \psi_B = 0 \qquad (2)$$

In general:

Lemma

The form $\overline{\omega}_{W,A} = f_W \omega_A$ does not depend on the covering.

Remember eq. (2)

$$\sum_{\substack{j=0\\|B| \text{ even}}}^{k} \sum_{\substack{A \not\ni j \\ |B| \text{ even}}} (-1)^{|A_{\leq j}|} c_B \overline{\omega}_A \psi_B = 0$$

whose pushfoward is

$$\sum_{j=0}^{k} \sum_{\substack{A \not \ge j \\ |B| \text{ even}}} (-1)^{|A_{\leq j}|} \frac{m(A)}{m(A \sqcup B)} c_B \overline{\omega}_{W,A} \psi_B = 0.$$

In our example the formula is:

$$\frac{x^{3}y^{2} + x^{3}y + 4x^{2}y + 4xy + y + 1}{xy(y-1)(x^{3}y-1)}dxdy - \frac{x+1}{x(x-1)}\frac{y+1}{y(y-1)}dxdy + \frac{x+1}{x(x-1)}\frac{x^{3}y+1}{y(x^{3}y-1)}dxdy - \frac{1}{3}d\log yd\log x^{3}y + d\log yd\log x + -d\log x^{3}yd\log x = 0.$$

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. 2017)

The algebra $H^{\bullet}(M(\mathcal{A}); \mathbb{Q})$ is generated by $\overline{\omega}_{W,A}$, ψ_e with relations for every circuit *C*

$$\sum_{j=0}^{\kappa} \sum_{\substack{A \not\ni j \\ |B| \text{ even}}} (-1)^{|A_{\leq j}|} c_B \frac{m(A)}{m(A \sqcup B)} \overline{\omega}_{W,A} \psi_B = 0$$
$$\overline{\omega}_{W,A} \overline{\omega}_{W',A'} = \pm \sum_{\substack{L \text{ c.c. } W \cap W'}} \overline{\omega}_{L,AA'}.$$

Thanks for listening!