Roberto Pagaria

Università di Bologna

Decomposition theorem for Hitchin fibrations and poset of non-integral flats

Geometry, Algebra and Combinatorics of Moduli Spaces and Configurations V

Work in progress with M. Mauri and L. Migliorini

February 21, 2023

• Algebraic geometry

- The Hitchin fibration
- 2 Spectral curve
- 3 The Decomposition theorem

• Combinatorics

- Oual graph and graphic matroids
- Shellability
- Integral points in zonotopes
- Permutation representations

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_C > 1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_C > 1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Definition

An *Higgs bundle* over *C* is a pair (\mathcal{E}, ϕ) where $\phi \colon \mathcal{E} \to \mathcal{E} \otimes \omega_C$.

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_C > 1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where $\phi \colon \mathcal{E} \to \mathcal{E} \otimes \omega_C$.

A Higgs bundle is *semistable* if for every sub-Higgs bundle $(\mathcal{F}, \phi_{|\mathcal{F}})$ we have

$$rac{d(\mathcal{F})}{n(\mathcal{F})} \leq rac{d(\mathcal{E})}{n(\mathcal{E})} = rac{d}{n}.$$

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_C > 1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where $\phi \colon \mathcal{E} \to \mathcal{E} \otimes \omega_C$.

A Higgs bundle is *semistable* if for every sub-Higgs bundle $(\mathcal{F}, \phi_{|\mathcal{F}})$ we have

$$rac{d(\mathcal{F})}{n(\mathcal{F})} \leq rac{d(\mathcal{E})}{n(\mathcal{E})} = rac{d}{n}.$$

Definition

The Dolbeault moduli space is $M(n, d) = \{\text{semistable Higgs bundle}\} / S$ -equivalence

Hitchin fibration

Every endomorphisms has a characteristic polynomial. For an Higgs bundle (\mathcal{E}, ϕ) we consider the characteristic polynomial

$$\chi_{\phi}(t) = t^{n} + a_{1}t^{n-1} + \dots + a_{n}$$
$$= t^{n} - \operatorname{tr}(\phi)t^{n-1} + \dots + (-1)^{n}\operatorname{det}(\phi)$$
where $a_{i} \in H^{0}(C, \omega_{C}^{\otimes i})$. Define $A_{n} = \bigoplus_{i=1}^{n} H^{0}(C, \omega_{C}^{\otimes i}) \simeq \mathbb{A}^{N}$.

Hitchin fibration

Every endomorphisms has a characteristic polynomial. For an Higgs bundle (\mathcal{E}, ϕ) we consider the characteristic polynomial

$$\chi_{\phi}(t) = t^{n} + a_{1}t^{n-1} + \dots + a_{n}$$
$$= t^{n} - \operatorname{tr}(\phi)t^{n-1} + \dots + (-1)^{n}\operatorname{det}(\phi)$$

where $a_i \in H^0(\mathcal{C}, \omega_{\mathcal{C}}^{\otimes i})$. Define $A_n = \bigoplus_{i=1}^n H^0(\mathcal{C}, \omega_{\mathcal{C}}^{\otimes i}) \simeq \mathbb{A}^N$.

Definition

The Hitchin fibration is the map $\chi: M(n, d) \rightarrow A_n$ sending (\mathcal{E}, ϕ) to (a_1, a_2, \dots, a_n) .

The base of the fibration does not depend on d!

Spectral curve

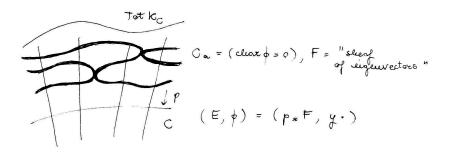
For any point $a \in A_n$ the associated characteristic polynomial $p_a(t) = t^n + a_1 t^{n-1} + \cdots + a_n$ describes a curve in the cotangent bundle $T^*C \to C$.

Spectral curve

For any point $a \in A_n$ the associated characteristic polynomial $p_a(t) = t^n + a_1 t^{n-1} + \cdots + a_n$ describes a curve in the cotangent bundle $T^*C \to C$.

Definition

This zero locus is called spectral curve C_a .



Beauville Narasimhan Ramanan correspondence

Lemma

The BNR correspondence is $\chi^{-1}(a) = \{(\mathcal{E}, \phi) \mid \chi_{\phi} = p_a\} \longleftrightarrow \begin{cases} \text{semistable rank one torsion} \\ \text{free sheaves on } C_a \end{cases} \end{cases}$ obtained by pushforward along $C_a \to C$.

The dimension of M(n, d) is $2(g_C - 1)n^2 + 2$.

Beauville Narasimhan Ramanan correspondence

Lemma

The BNR correspondence is $\chi^{-1}(a) = \{(\mathcal{E}, \phi) \mid \chi_{\phi} = p_a\} \longleftrightarrow \begin{cases} \text{semistable rank one torsion} \\ \text{free sheaves on } C_a \end{cases} \\ \text{obtained by pushforward along } C_a \to C. \end{cases}$

The dimension of M(n, d) is $2(g_C - 1)n^2 + 2$.

We study the behaviour only on the *reduced locus* $A_{n,red} \subset A_n$ where the corresponding polynomial $p_a(t)$ has distinct irreducible factors.

Beauville Narasimhan Ramanan correspondence

Lemma

The BNR correspondence is $\chi^{-1}(a) = \{(\mathcal{E}, \phi) \mid \chi_{\phi} = p_a\} \longleftrightarrow \begin{cases} \text{semistable rank one torsion} \\ \text{free sheaves on } C_a \end{cases} \\ \text{obtained by pushforward along } C_a \to C. \end{cases}$

The dimension of M(n, d) is $2(g_C - 1)n^2 + 2$.

We study the behaviour only on the *reduced locus* $A_{n,red} \subset A_n$ where the corresponding polynomial $p_a(t)$ has distinct irreducible factors. For any partition $\underline{n} = (n_1, n_2, \ldots, n_r) \vdash n$ we define $S_{\underline{n}} \subset A_{n,red}$ the set of points *a* such that the irreducible factors of $p_a(t)$ have degree (n_1, n_2, \ldots, n_r) .

The strata $S_{\underline{n}}$ form a Whitney stratification of $A_{n,red}$.

Decomposition theorem

The space M(n, d) is singular with a map to the affine space A_n . The cohomology does not work well on singular spaces, it is much better to consider the *intersection cohomology* IH(M(n, d)).

 $\mathsf{IH}(M(n,d)) = H(M(n,d),\mathsf{IC}_{M(n,d)}) \simeq H(A_n, R\chi_* \mathsf{IC}_{M(n,d)})$ where IC is the *perverse intersection complex*.

Decomposition theorem

The space M(n, d) is singular with a map to the affine space A_n . The cohomology does not work well on singular spaces, it is much better to consider the *intersection cohomology* IH(M(n, d)).

 $\mathsf{IH}(M(n,d)) = H(M(n,d),\mathsf{IC}_{M(n,d)}) \simeq H(A_n, R\chi_* \mathsf{IC}_{M(n,d)})$ where IC is the *perverse intersection complex*.

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$R\chi_*\operatorname{\mathsf{IC}}_{M(n,d)}|_{\mathcal{A}_{\operatorname{red}}}=igoplus \operatorname{\mathsf{IC}}_{\mathcal{S}_{\underline{n}}}(\mathcal{L}_{\underline{n},d}\otimes \Lambda_{\underline{n}})$$

 $n \vdash n$

for some local systems $\mathcal{L}_{\underline{n},d}$ on $S_{\underline{n}}$ and for $\Lambda_{\underline{n}}$ the cohomology sheaf of the relative Picard group $\operatorname{Pic}^{0}(\overline{C}_{\underline{n}})$ of the normalization of the spectral curve.

Main problem

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- **2** determine the rank $r(\underline{n}, d) := \dim(\mathcal{L}_{\underline{n}, d})_a$.
- **③** determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$.

Main problem

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- **2** determine the rank $r(\underline{n}, d) := \dim(\mathcal{L}_{\underline{n}, d})_a$.
- **③** determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$.

Remark

For the trivial partition $(n) \vdash n$

$$\mathcal{L}_{(n),d} = \mathbb{Q}$$

The dual graph

For $a \in A_{n,red}$ the spectral curve is reduced. If $a \in S_{\underline{n}}$ the spectral curve has $r = \ell(\underline{n})$ irreducible components of degree n_i . The number of intersection points of two irreducible components is $n_i n_i (2g_C - 2)$.

The dual graph

For $a \in A_{n,red}$ the spectral curve is reduced. If $a \in S_n$ the spectral curve has $r = \ell(\underline{n})$ irreducible components of degree n_i . The number of intersection points of two irreducible components is $n_i n_j (2g_C - 2)$.

Let $\Gamma_{\underline{n}} = \Gamma_a$ be the *dual graph* of the spectral curve C_a , i.e. the graph on *r* vertices and $y_{i,j} := n_i n_j (2g_C - 2)$ edges between the vertices *i* and *j*.

Define the vector $\omega = (\frac{dn_1}{n}, \frac{dn_2}{n}, \dots, \frac{dn_r}{n}) \in \mathbb{Q}^r$.

The dual graph

For $a \in A_{n,red}$ the spectral curve is reduced. If $a \in S_{\underline{n}}$ the spectral curve has $r = \ell(\underline{n})$ irreducible components of degree n_i . The number of intersection points of two irreducible components is $n_i n_j (2g_C - 2)$.

Let $\Gamma_{\underline{n}} = \Gamma_a$ be the *dual graph* of the spectral curve C_a , i.e. the graph on *r* vertices and $y_{i,j} := n_i n_j (2g_C - 2)$ edges between the vertices *i* and *j*.

Define the vector $\omega = (\frac{dn_1}{n}, \frac{dn_2}{n}, \dots, \frac{dn_r}{n}) \in \mathbb{Q}^r$.

Example

Let
$$n = 4$$
, $d = 2$, $g = 2$, and $\underline{n} = (1, 1, 2)$.
The dual graph is :

 $\omega = \left(rac{1}{2},rac{1}{2},1
ight)$

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$Z_{\Gamma} := \sum_{(i,j)\in \Gamma} y_{i,j}[0, e_i - e_j] \subset \mathbb{R}^{V(\Gamma)}$$

where $y_{i,j}$ is the number of edges between *i* and *j*.

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

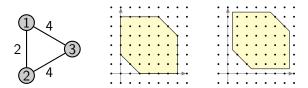
$$Z_{\mathsf{\Gamma}} := \sum_{(i,j)\in\mathsf{\Gamma}} y_{i,j}[0,e_i-e_j] \subset \mathbb{R}^{V(\mathsf{\Gamma})}$$

where $y_{i,j}$ is the number of edges between *i* and *j*.

For any polytope Z let C(Z) be the number of integral points in the interior of Z.

Example

Let n = 4, g = 2, and $\underline{n} = (1, 1, 2)$. The graphical zonotope is



so $C(Z_{\Gamma}) = 23$ and $C(Z_{\Gamma} + \omega) = 30$.

Proposition

For any $a \in S_{\underline{n}}$ we have $\dim \mathcal{H}^{top}(R\chi_* \operatorname{IC}_{M(n,d)})_a = C(Z_{\Gamma_n} + \omega)$

Proposition

For any
$$a \in S_{\underline{n}}$$
 we have
$$\dim \mathcal{H}^{top}(R\chi_* \operatorname{IC}_{M(n,d)})_a = C(Z_{\Gamma_n} + \omega)$$

Sketch of proof

$$\dim \mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{M(n,d)})_{a} = \dim \mathcal{H}^{\mathrm{top}}(R\chi_* \mathbb{Q}_{M(n,d)})_{a} = \#i.c.\chi^{-1}(a)$$

Proposition

For any
$$a \in S_{\underline{n}}$$
 we have
$$\dim \mathcal{H}^{top}(R\chi_* \operatorname{IC}_{M(n,d)})_a = C(Z_{\Gamma_{\underline{n}}} + \omega)$$

Sketch of proof

$$\dim \mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(n,d)})_{a} = \dim \mathcal{H}^{\mathrm{top}}(R\chi_* \mathbb{Q}_{\mathcal{M}(n,d)})_{a} = \#i.c.\chi^{-1}(a)$$

Recall the BNR correspondence and that the multidegree function has irreducible fiber:

$$\{\text{semistable line bundles on } C_a\} \xrightarrow{\text{multdeg}} \mathbb{Z}^{\ell(\underline{n})}$$

Proposition

For any
$$a \in S_{\underline{n}}$$
 we have
$$\dim \mathcal{H}^{top}(R\chi_* \operatorname{IC}_{M(n,d)})_a = C(Z_{\Gamma_{\underline{n}}} + \omega)$$

Sketch of proof

$$\dim \mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(n,d)})_{\mathfrak{a}} = \dim \mathcal{H}^{\mathrm{top}}(R\chi_* \mathbb{Q}_{\mathcal{M}(n,d)})_{\mathfrak{a}} = \#i.c.\chi^{-1}(\mathfrak{a})$$

Recall the BNR correspondence and that the multidegree function has irreducible fiber:

 $\{\text{semistable line bundles on } C_a\} \xrightarrow{\text{multdeg}} \mathbb{Z}^{\ell(\underline{n})}$ The stability condition imposes inequalities that are equal to the ones describing the interior of $Z_{\Gamma_n} + \omega$.

Proposition

For any
$$a \in S_{\underline{n}}$$
 we have
$$\dim \mathcal{H}^{top}(R\chi_* \operatorname{IC}_{M(n,d)})_a = C(Z_{\Gamma_{\underline{n}}} + \omega)$$

Sketch of proof

$$\dim \mathcal{H}^{\operatorname{top}}(R\chi_* \operatorname{IC}_{M(n,d)})_a = \dim \mathcal{H}^{\operatorname{top}}(R\chi_* \mathbb{Q}_{M(n,d)})_a = \#i.c.\chi^{-1}(a)$$
$$= C(Z_{\Gamma_n} + \omega)$$

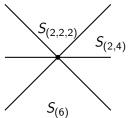
Recall the BNR correspondence and that the multidegree function has irreducible fiber:

 ${\text{semistable line bundles on } C_a} \xrightarrow{\text{multdeg}} \mathbb{Z}^{\ell(\underline{n})}$

The stability condition imposes inequalities that are equal to the ones describing the interior of $Z_{\Gamma_n} + \omega$.

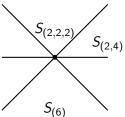
Example

The strata $S_{(2,2,2)}$ is contained in the strata $S_{(2,4)}$, however there are three branching of $S_{(2,4)}$ concurring at $S_{(2,2,2)}$. Let $a \in S_{(2,2,2)}$, then $p_a(t) = p_1(t)p_2(t)p_3(t)$ is the product of three distinct polynomials of degree two. So the branching are in correspondence with the *set partitions* of [3], i.e. the ways to multiply some of its factors.



Example

The strata $S_{(2,2,2)}$ is contained in the strata $S_{(2,4)}$, however there are three branching of $S_{(2,4)}$ concurring at $S_{(2,2,2)}$. Let $a \in S_{(2,2,2)}$, then $p_a(t) = p_1(t)p_2(t)p_3(t)$ is the product of three distinct polynomials of degree two. So the branching are in correspondence with the *set partitions* of [3], i.e. the ways to multiply some of its factors.



Definition

Let $\underline{n} \vdash n$ and $\underline{S} \vdash [\ell(\underline{n})]$. Define the partition $\underline{n}_{\underline{S}} \vdash n$ as $(\sum_{j \in S_i} n_j)_i$.

Roberto Pagaria

Decomposition theorem for Hitchin fibrations

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$\mathsf{R}\chi_*\operatorname{\mathsf{IC}}_{M(n,d)}|_{\mathsf{A}_{\operatorname{red}}}=\bigoplus_{\underline{n}\vdash n}\operatorname{\mathsf{IC}}_{\mathcal{S}_{\underline{n}}}(\mathcal{L}_{\underline{n},d}\otimes\Lambda_{\underline{n}}).$$

For $a \in S_{\underline{n}}$ we have

$$\mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(n,d)})_{\mathfrak{a}} = \bigoplus_{\underline{S} \vdash [\ell(\underline{n})]} (\mathcal{L}_{\underline{n}_{\underline{S}},d})_{\mathfrak{a}} \otimes \bigotimes_{i=1}^{\ell(\underline{S})} \mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(|S_i|,0)})_{\mathfrak{a}}$$

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to $R\chi_* \operatorname{IC}_{\mathcal{M}(n,d)}|_{\mathcal{A}_{\operatorname{red}}} = \bigoplus \operatorname{IC}_{S_{\underline{n}}}(\mathcal{L}_{\underline{n},d} \otimes \Lambda_{\underline{n}}).$

<u>n</u>⊢n

0(C)

For $a \in S_{\underline{n}}$ we have

$$\mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(n,d)})_{\mathfrak{a}} = \bigoplus_{\underline{S} \vdash [\ell(\underline{n})]} (\mathcal{L}_{\underline{n}_{\underline{S}},d})_{\mathfrak{a}} \otimes \bigotimes_{i=1}^{\ell(\underline{S})} \mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(|S_i|,0)})_{\mathfrak{a}}$$

and so

$$C(Z_{\Gamma_{\underline{n}}} + \omega) = \sum_{\underline{S} \vdash [\ell(\underline{n})]} r(\underline{n}_{\underline{S}}, d) \prod_{i=1}^{\ell(\underline{S})} C(Z_{\Gamma_{S_i}})$$

where Γ_S is the induced subgraph of Γ on the vertices $S \subseteq V$.

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to $R\chi_* \operatorname{IC}_{\mathcal{M}(n,d)}|_{\mathcal{A}_{red}} = \bigoplus \operatorname{IC}_{\mathcal{S}_{\underline{n}}}(\mathcal{L}_{\underline{n},d} \otimes \Lambda_{\underline{n}}).$

<u>n</u>⊢n

a(C)

For $a \in S_{\underline{n}}$ we have

$$\mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(n,d)})_{\mathfrak{a}} = \bigoplus_{\underline{S} \vdash [\ell(\underline{n})]} (\mathcal{L}_{\underline{n}_{\underline{S}},d})_{\mathfrak{a}} \otimes \bigotimes_{i=1}^{\ell(\underline{S})} \mathcal{H}^{\mathrm{top}}(R\chi_* \operatorname{\mathsf{IC}}_{\mathcal{M}(|S_i|,0)})_{\mathfrak{a}}$$

and so

$$C(Z_{\Gamma_{\underline{n}}} + \omega) = \sum_{\underline{S} \vdash [\ell(\underline{n})]} r(\underline{n}_{\underline{S}}, d) \prod_{i=1}^{\ell(\underline{S})} C(Z_{\Gamma_{S_i}})$$

where Γ_S is the induced subgraph of Γ on the vertices $S \subseteq V$. Notice that each face of Z_{Γ} is of the type $Z_{\Gamma_{S_1}} \times Z_{\Gamma_{S_2}} \times \cdots \times Z_{\Gamma_{S_l}}$ for some set partition of the vertices of Γ .

Graphic matroids

We consider graphs $\Gamma = (V, E)$ possibly with multiple edges and the associated *cycle matroid*.

Cycle matroid	Graph
Groundset	Set of edges
Independent	Forest
Closure	Induced subgraph
Flat	Partition of V with connected blocks

Graphic matroids

We consider graphs $\Gamma = (V, E)$ possibly with multiple edges and the associated *cycle matroid*.

Cycle matroid	Graph
Groundset	Set of edges
Independent	Forest
Closure	Induced subgraph
Flat	Partition of V with connected blocks

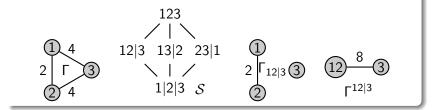
Define the *poset of flats* S.

Definition

Let $\underline{S} \in S$ be a flat, the *deleted* graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S} . The *contracted* graph $\Gamma^{\underline{S}}$ is obtained from Γ by contracting all the edges in the flat \underline{S} .

Example

Consider the graph Γ with poset of flats S and the flat 12|3.



Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then
 $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then
 $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Example

Let
$$Z = [0, e_1] + [0, e_1 + e_2] + [0, e_1 - e_2]$$
 and $\omega = (\frac{1}{2}, \frac{1}{2})$.

 $C(Z + \omega) = \operatorname{Vol}(v_2 v_3) + \operatorname{Vol}(v_1 v_2) + \operatorname{Vol}(v_1 v_3) - \operatorname{Vol}(v_2) - \operatorname{Vol}(v_3)$ = 2 + 1 + 1 - 1 - 1 = 2.

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z = \sum_{i \in E} [0, v_i]$ be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

$$C(Z + \omega) = \sum_{W \text{ flat}} (-1)^{r - \dim W} \delta_{(W + \omega) \cap \mathbb{Z}^r \neq \emptyset} \sum_{\substack{I \text{ independent set} \\ \langle I \rangle = W}} \operatorname{Vol}(I).$$

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z = \sum_{i \in E} [0, v_i]$ be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

$$C(Z + \omega) = \sum_{W \text{ flat}} (-1)^{r - \dim W} \delta_{(W + \omega) \cap \mathbb{Z}^r \neq \emptyset} \sum_{\substack{I \text{ independent set} \\ \langle I \rangle = W}} \operatorname{Vol}(I).$$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_j are ω -integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z = \sum_{i \in E} [0, v_i]$ be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

$$C(Z + \omega) = \sum_{W \text{ flat}} (-1)^{r - \dim W} \delta_{(W + \omega) \cap \mathbb{Z}^r \neq \emptyset} \sum_{\substack{I \text{ independent set} \\ \langle I \rangle = W}} \text{Vol}(I).$$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_j are ω -integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in S$ we have $\delta_{(\langle \underline{S} \rangle + \omega) \cap \mathbb{Z}^r \neq \emptyset} = 1$ if and only if \underline{S} is ω -integral.

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \left(\sum_{\underline{T} \ge \underline{S} \atop \underline{T} \ \omega - integral} \mu(\underline{S}, \underline{T})\right) C(Z_{\Gamma_{\underline{S}}}).$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)
If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \left(\sum_{\underline{T} \ge \underline{S} \\ \underline{T} \ \omega \text{-integral}} \mu(\underline{S}, \underline{T})\right) C(Z_{\Gamma_{\underline{S}}}).$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats S.

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \left(\sum_{\underline{T} \ge \underline{S} \\ \underline{T} \ \omega \text{-integral}} \mu(\underline{S}, \underline{T})\right) C(Z_{\Gamma_{\underline{S}}}).$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats S.

Corollary

In the case of the complete graph Γ_a and $\omega = (\frac{dn_i}{n})$ we have $r(\underline{n}, d) = \dim(\mathcal{L}_{\underline{n}, d})_a = \sum_{\substack{\underline{S} \vdash [r] \\ \underline{S} \ \omega \text{-integral}}} (-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})} (|S_i| - 1)!$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \left(\sum_{\underline{T} \ge \underline{S} \\ \underline{T} \ \omega \text{-integral}} \mu(\underline{S}, \underline{T})\right) C(Z_{\Gamma_{\underline{S}}}).$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats S.

Corollary

In the case of the complete graph Γ_a and $\omega = \left(\frac{dn_i}{n}\right)$ we have $r(\underline{n}, d) = \dim(\mathcal{L}_{\underline{n}, d})_a = \sum_{\substack{\underline{S} \vdash [r] \\ \underline{S} \ \omega \text{-integral}}} (-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})} (|S_i| - 1)!$ Moreover, $\mathcal{L}_{\underline{n}, d} = 0$ if $\omega \in \mathbb{Z}^r$, i.e. $\frac{dn_i}{n} \in \mathbb{Z}$ for all i.

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset S_{ω} .

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset S_{ω} .

Theorem/Conjecture (Mauri, Migliorini, P. '23)

The poset
$$S_{\omega}$$
 is EL-shellable. Therefore,
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(Z_{\Gamma_{\underline{S}}}).$

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset S_{ω} .

Theorem/Conjecture (Mauri, Migliorini, P. '23)

The poset
$$S_{\omega}$$
 is EL-shellable. Therefore,
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(Z_{\Gamma_{\underline{S}}}).$

Corollary

If
$$\omega \notin \mathbb{Z}^r$$
, i.e. exists i such that $\frac{dn_i}{n} \notin \mathbb{Z}$, then $\mathcal{L}_{\underline{n},d} \neq 0$.

This solves Problem 1.

Theorem/Conjecture (Mauri, Migliorini, P. '23)

The poset S_{ω} is EL-shellable. Therefore, $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(\Gamma_{\underline{S}})$

Example

Let
$$n = 4$$
, $g = 2$, and $\underline{n} = (1, 1, 2)$. Then $\omega = (\frac{1}{2}, \frac{1}{2}, 1)$ and

Theorem/Conjecture (Mauri, Migliorini, P. '23)

The poset S_{ω} is EL-shellable. Therefore, $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(\Gamma_{\underline{S}})$

Example

Let
$$n = 4$$
, $g = 2$, and $\underline{n} = (1, 1, 2)$. Then $\omega = (\frac{1}{2}, \frac{1}{2}, 1)$ and

$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + C(Z_{\Gamma_{13|2}}) + C(Z_{\Gamma_{23|1}}) + C(Z_{\Gamma_{1|2|3}})$$

30 = 23 + 3 + 3 + 1.

Orientation character

Let $O\Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of Aut(Γ) defined by $a_{\Gamma}(\sigma) = \operatorname{sgn}(\sigma \colon V(\Gamma) \to V(\Gamma)) \operatorname{sgn}(\sigma \colon E(O\Gamma) \to E(O\Gamma))$

Orientation character

Let $O\Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of Aut(Γ) defined by $a_{\Gamma}(\sigma) = \operatorname{sgn}(\sigma \colon V(\Gamma) \to V(\Gamma)) \operatorname{sgn}(\sigma \colon E(O\Gamma) \to E(O\Gamma))$

Example

Consider the graph:

with $a \neq b$. Then Aut(Γ) = $\mathbb{Z}/2\mathbb{Z} = \langle (12) \rangle$ and $a_{\Gamma}(\sigma) = (-1)^{a+1}$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma) < \mathfrak{S}_r$ and suppose that ω is a $\operatorname{Aut}(\Gamma)$ -invariant vector. Let $\mathcal{C}(Z_{\Gamma} + \omega)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma} + \omega$ (dim $\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma} + \omega)$).

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma) < \mathfrak{S}_r$ and suppose that ω is a $\operatorname{Aut}(\Gamma)$ -invariant vector. Let $\mathcal{C}(Z_{\Gamma} + \omega)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma} + \omega$ (dim $\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma} + \omega)$).

Theorem (Mauri, Migliorini, P. 2023)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{\underline{S}}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}}).$$

Theorem (Mauri, Migliorini, P. 2023)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus$$

$$\bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}})$$

Example

Let
$$n = 4$$
, $g = 2$, and $\underline{n} = (1, 1, 2)$. Then $\omega = (\frac{1}{2}, \frac{1}{2}, 1)$ and
 $13|2 \ 23|1 \qquad 1 \qquad 4 \qquad 1 \qquad 1 \qquad 2 \qquad \Gamma \qquad 3 \qquad 1|2|3 \ S_{\omega} \qquad 2 \qquad 4 \qquad 2 \qquad 4$

The automorphism group is Aut(Γ) = $\mathbb{Z}/2\mathbb{Z} = \langle (1,2) \rangle$. Then: $\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \mathsf{Reg}^{\oplus 3} \oplus (\mathsf{sgn} \otimes \mathsf{sgn} \otimes 1).$

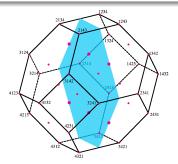
$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) \oplus \\ \bigoplus_{\underline{S} \in S_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}})) \otimes C(\Gamma_{\underline{S}}).$

Sketch of proof: We compute the character on both sides:

Theorem (Mauri, Migliorini, P. '23)

$$\begin{aligned} \mathcal{C}(Z_{\Gamma}+\omega) = & \mathcal{C}(Z_{\Gamma}) \oplus \\ \bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}}). \end{aligned}$$

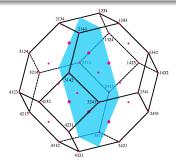
Sketch of proof: We compute the character on both sides: $\chi_{\mathcal{C}(Z_{\Gamma}+\omega)}(\sigma) = C((Z_{\Gamma}+\omega)^{\sigma})$ Moreover for $\underline{S} \in S^{\sigma}$: $\chi_{\widetilde{H}^{top}(\Delta(S_{\omega,\geq \underline{S}}))}(\sigma) = \pm \mu_{S_{\omega,\geq \underline{S}}^{\sigma}}(\hat{0}, \hat{1})$



Theorem (Mauri, Migliorini, P. '23)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}}).$$

Sketch of proof: We compute the character on both sides: $\chi_{\mathcal{C}(Z_{\Gamma}+\omega)}(\sigma) = C((Z_{\Gamma}+\omega)^{\sigma})$ Moreover for $\underline{S} \in S^{\sigma}$: $\chi_{\widetilde{H}^{top}(\Delta(S_{\omega,\geq \underline{S}}))}(\sigma) = \pm \mu_{S_{\omega,\geq \underline{S}}^{\sigma}}(\hat{0}, \hat{1})$



The result follows from

$$C((Z_{\Gamma} + \omega)^{\sigma}) = C(Z_{\Gamma}^{\sigma}) + \sum_{\underline{S} \in S_{\omega}^{\sigma}} \pm \mu_{S_{\omega, \geq \underline{S}}^{\sigma}}(\hat{0}, \hat{1})C(Z_{\Gamma_{\underline{S}}}^{\sigma}) \quad \Box$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Conclusions

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- ${f 0}$ determine the rank $r(\underline{n}, d) := \dim(\mathcal{L}_{\underline{n}, d})_a$.
- **③** determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$.

Conclusions

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- ${f Q}$ determine the rank $r(\underline{n}, d) := \dim(\mathcal{L}_{\underline{n}, d})_a$.

(a) determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$. Solution:

•
$$\mathcal{L}_{\underline{n},d} \neq 0$$
 if and only if $\underline{n} = (n)$ or $\omega = (\frac{dn_i}{n}) \notin \mathbb{Z}^r$.

Conclusions

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- ${f Q}$ determine the rank $r(\underline{n}, d) := \dim(\mathcal{L}_{\underline{n}, d})_a$.

(a) determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$. Solution:

•
$$\mathcal{L}_{\underline{n},d} \neq 0$$
 if and only if $\underline{n} = (n)$ or $\omega = (\frac{dn_i}{n}) \notin \mathbb{Z}^r$.

$$egin{aligned} r(\underline{n},d) &= \sum_{\underline{S}\,\omega ext{-integral}} (-1)^{\ell(\underline{S})-1} \prod_i (|S_i|-1)! \ &= \dim \widetilde{H}^{ ext{top}}(\Delta(\mathcal{S}_\omega)). \end{aligned}$$

Conclusions

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- ${f O}$ determine the rank $r(\underline{n},d) := \dim(\mathcal{L}_{\underline{n},d})_a$.

(a) determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$. Solution:

•
$$\mathcal{L}_{\underline{n},d} \neq 0$$
 if and only if $\underline{n} = (n)$ or $\omega = (\frac{dn_i}{n}) \notin \mathbb{Z}^r$.

$$egin{aligned} r(\underline{n},d) &= \sum_{\underline{S}\,\omega ext{-integral}} (-1)^{\ell(\underline{S})-1} \prod_i (|S_i|-1)! \ &= \dim \widetilde{H}^{ ext{top}}(\Delta(\mathcal{S}_\omega)). \end{aligned}$$

• The monodromy is given by the representation of $\operatorname{Aut}(\Gamma_{\underline{n}})$ $\operatorname{sgn} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega})).$

Thanks for listening!

roberto.pagaria@unibo.it