Roberto Pagaria

Università di Bologna

Chow ring of polymatroids

joint work with Gian Marco Pezzoli

MIT-Harvard-MSR Combinatorics Seminar

April 1, 2022

Covered topics:

Characteristic polynomial

Combinatorial Hodge theory

Polymatroids

Let G be a finite graph and $P_{G}(k)$ be the counting function of k-colouring of G.

Let G be a finite graph and $P_{G}(k)$ be the counting function of k-colouring of G.

Proposition

$P_{G}(k)$ is a polynomial in k.

Let G be a finite graph and $P_{G}(k)$ be the counting function of k-colouring of G.

Proposition

$P_{G}(k)$ is a polynomial in k.

Proof.

Idea: deletion and restriction

$$
P_{G}(k)=P_{G \backslash e}(k)-P_{G / e}(k)
$$

for any edge e and proceed by induction on the number of edges.

Let G be a finite graph and $P_{G}(k)$ be the counting function of k-colouring of G.

Proposition

$P_{G}(k)$ is a polynomial in k.

Proof.

Idea: deletion and restriction

$$
P_{G}(k)=P_{G \backslash e}(k)-P_{G / e}(k)
$$

for any edge e and proceed by induction on the number of edges.
Notation: the characteristic polynomial is $p_{G}(k)=P_{G}(k) / k^{\# c c} G$.

The characteristic polynomial of the graph G is:

$$
p_{G}(x)=\omega_{0} x^{r}+\omega_{2} x^{r-1}+\cdots+\omega_{r}
$$

Conjecture (Read '68)
The sequence ω_{i} is unimodular:

$$
\omega_{0} \leq \omega_{1} \leq \cdots \leq \omega_{k} \geq \cdots \geq \omega_{r-1} \geq \omega_{r} .
$$

The characteristic polynomial of the graph G is:

$$
p_{G}(x)=\omega_{0} x^{r}+\omega_{2} x^{r-1}+\cdots+\omega_{r}
$$

Conjecture (Read '68)
The sequence ω_{i} is unimodular:

$$
\omega_{0} \leq \omega_{1} \leq \cdots \leq \omega_{k} \geq \cdots \geq \omega_{r-1} \geq \omega_{r} .
$$

Conjecture (Hoggar '74)
The sequence ω_{i} is log-concave:

$$
\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}
$$

Matroids

A matroid is an object that codifies the combinatorics of:

1. hyperplanes arrangements,
2. cycles of a graph,
3. linear dependencies among vectors.

Matroids

A matroid is an object that codifies the combinatorics of:

1. hyperplanes arrangements,
2. cycles of a graph,
3. linear dependencies among vectors.

There are a lot of equivalent definition:

1. rank function,
2. bases, independent sets, circuits,
3. geometric lattices,
4. integral polytopes.

Definition

A matroid M is a pair $\left(E\right.$, rk: $\left.2^{E} \rightarrow \mathbb{N}\right)$ such that:

1. $\operatorname{rk}(A) \leq|A|$ for all $A \subseteq E$,
2. (increasing) $\operatorname{rk}(A) \leq \operatorname{rk}(B)$ for all $A \subseteq B \subseteq E$,
3. (submodular) $\operatorname{rk}(A)+\operatorname{rk}(B) \geq \operatorname{rk}(A \cup B)+\operatorname{rk}(A \cap B)$ for all $A, B \subseteq E$.

Definition

A matroid M is a pair $\left(E\right.$, rk: $\left.2^{E} \rightarrow \mathbb{N}\right)$ such that:

1. $\operatorname{rk}(A) \leq|A|$ for all $A \subseteq E$,
2. (increasing) $\operatorname{rk}(A) \leq \operatorname{rk}(B)$ for all $A \subseteq B \subseteq E$,
3. (submodular) $\operatorname{rk}(A)+\operatorname{rk}(B) \geq \operatorname{rk}(A \cup B)+\operatorname{rk}(A \cap B)$ for all $A, B \subseteq E$.

Definition

The characteristic polynomial of M is

$$
p_{M}(x)=\sum_{A \subseteq E}(-1)^{|A|} X^{\mathrm{rk}(E)-\operatorname{rk}(A)}
$$

Definition

A matroid M is a pair $\left(E\right.$, rk: $\left.2^{E} \rightarrow \mathbb{N}\right)$ such that:

1. $\operatorname{rk}(A) \leq|A|$ for all $A \subseteq E$,
2. (increasing) $\operatorname{rk}(A) \leq \operatorname{rk}(B)$ for all $A \subseteq B \subseteq E$,
3. (submodular) $\operatorname{rk}(A)+\operatorname{rk}(B) \geq \operatorname{rk}(A \cup B)+\operatorname{rk}(A \cap B)$ for all $A, B \subseteq E$.

Definition

The characteristic polynomial of M is

$$
p_{M}(x)=\sum_{A \subseteq E}(-1)^{|A|} x^{\mathrm{rk}(E)-\mathrm{rk}(A)}
$$

For $G=(V, E)$ we define the cycle matroid $M(G)=(E, \mathrm{rk})$ where $\operatorname{rk}(A)=\left|V_{A}\right|-\# c c A$. Moreover $p_{M(G)}=p_{G}$.

The characteristic polynomial of the matroid M is:

$$
p_{M}(x)=\omega_{0} x^{r}+\omega_{2} x^{r-1}+\cdots+\omega_{r}
$$

Conjecture (Rota '71, Heron '72)
The sequence ω_{i} is unimodular:

$$
\omega_{0} \leq \omega_{1} \leq \cdots \leq \omega_{k} \geq \cdots \geq \omega_{r-1} \geq \omega_{r} .
$$

The characteristic polynomial of the matroid M is:

$$
p_{M}(x)=\omega_{0} x^{r}+\omega_{2} x^{r-1}+\cdots+\omega_{r} .
$$

Conjecture (Rota '71, Heron '72)
The sequence ω_{i} is unimodular:

$$
\omega_{0} \leq \omega_{1} \leq \cdots \leq \omega_{k} \geq \cdots \geq \omega_{r-1} \geq \omega_{r} .
$$

Conjecture (Welsh '76)
The sequence ω_{i} is log-concave:

$$
\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}
$$

Definitions

Let A be an Artinian \mathbb{Q}-algebra with top degree n and $\operatorname{deg}: A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

Definitions

Let A be an Artinian \mathbb{Q}-algebra with top degree n and $\operatorname{deg}: A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

- the algebra A satisfies Poincaré duality if the bilinear pairing

$$
A^{k} \times A^{n-k} \rightarrow \mathbb{Q}
$$

defined by $(a, b) \mapsto \operatorname{deg}(a b)$ is non-degenerate.

Definitions

Let A be an Artinian \mathbb{Q}-algebra with top degree n and deg: $A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

- the algebra A satisfies Poincaré duality if the bilinear pairing

$$
A^{k} \times A^{n-k} \rightarrow \mathbb{Q}
$$

defined by $(a, b) \mapsto \operatorname{deg}(a b)$ is non-degenerate.

- the element $\ell \in A^{1}$ satisfies the Hard Lefschetz property if

$$
\cdot \ell^{n-2 k}: A^{k} \rightarrow A^{n-k}
$$

is an isomorphism for all $k \leq \frac{n}{2}$.

Definitions

Let A be an Artinian \mathbb{Q}-algebra with top degree n and deg: $A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

- the algebra A satisfies Poincaré duality if the bilinear pairing

$$
A^{k} \times A^{n-k} \rightarrow \mathbb{Q}
$$

defined by $(a, b) \mapsto \operatorname{deg}(a b)$ is non-degenerate.

- the element $\ell \in A^{1}$ satisfies the Hard Lefschetz property if

$$
\cdot \ell^{n-2 k}: A^{k} \rightarrow A^{n-k}
$$

is an isomorphism for all $k \leq \frac{n}{2}$.

- the element $\ell \in A^{1}$ satisfies the Hodge Riemann relations if

$$
Q_{\ell}^{k}: A^{k} \times A^{k} \rightarrow \mathbb{Q}
$$

defined by $Q_{\ell}^{k}(a, b)=(-1)^{k} \operatorname{deg}\left(a \ell^{n-2 k} b\right)\left(\right.$ for $\left.k \leq \frac{n}{2}\right)$ is positive defined on the subspace

$$
P_{k}=\operatorname{ker}\left(\cdot \ell^{n-2 k+1}: A^{k} \rightarrow A^{n-k+1}\right)
$$

Theorem
If X is a compact manifold then $H(X)$ satisfies Poincaré duality. Moreover if X is a compact Kahler manifold with Kahler class ω then ω satisfies Hard Lefschetz and Hodge Riemann.

More generally, any ample class $\ell \in H^{2}(X)$ satisfies Hard Lefschetz and Hodge Riemann.

Theorem (Adiprasito, Huh, Katz '18)
The coefficients ω_{i} of the characteristic polynomial $p_{M}(x)$ form a log-concave sequence, ie $\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}$.

Theorem (Adiprasito, Huh, Katz '18)
The coefficients ω_{i} of the characteristic polynomial $p_{M}(x)$ form a log-concave sequence, ie $\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}$.

Sketch of proof:

They define a Chow ring $A(M)$ and two classes $\alpha, \beta \in A^{1}(M)$ such that $\operatorname{deg}\left(\alpha^{r-k} \beta^{k}\right)=\omega_{k}$.

Theorem (Adiprasito, Huh, Katz '18)
The coefficients ω_{i} of the characteristic polynomial $p_{M}(x)$ form a log-concave sequence, ie $\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}$.

Sketch of proof:

They define a Chow ring $A(M)$ and two classes $\alpha, \beta \in A^{1}(M)$ such that $\operatorname{deg}\left(\alpha^{r-k} \beta^{k}\right)=\omega_{k}$.
They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β, in particular Q_{β} has signature $(N-1,1,0)$ on $A^{1}(M)$.

Theorem (Adiprasito, Huh, Katz '18)
The coefficients ω_{i} of the characteristic polynomial $p_{M}(x)$ form a log-concave sequence, ie $\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}$.

Sketch of proof:

They define a Chow ring $A(M)$ and two classes $\alpha, \beta \in A^{1}(M)$ such that $\operatorname{deg}\left(\alpha^{r-k} \beta^{k}\right)=\omega_{k}$.
They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β, in particular Q_{β} has signature $(N-1,1,0)$ on $A^{1}(M)$.
Case $i=r-1$: is equivalent to $\operatorname{deg}\left(\alpha \beta^{r-1}\right)^{2} \geq \operatorname{deg}\left(\alpha^{2} \beta^{r-2}\right) \operatorname{deg}\left(\beta^{r}\right)$

Theorem (Adiprasito, Huh, Katz '18)
The coefficients ω_{i} of the characteristic polynomial $p_{M}(x)$ form a log-concave sequence, ie $\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}$.

Sketch of proof:

They define a Chow ring $A(M)$ and two classes $\alpha, \beta \in A^{1}(M)$ such that $\operatorname{deg}\left(\alpha^{r-k} \beta^{k}\right)=\omega_{k}$.
They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β, in particular Q_{β} has signature $(N-1,1,0)$ on $A^{1}(M)$.
Case $i=r-1$: is equivalent to $\operatorname{deg}\left(\alpha \beta^{r-1}\right)^{2} \geq \operatorname{deg}\left(\alpha^{2} \beta^{r-2}\right) \operatorname{deg}\left(\beta^{r}\right)$ and to

$$
\operatorname{det}\left(\begin{array}{cc}
Q_{\beta}(\alpha, \alpha) & Q_{\beta}(\beta, \alpha) \\
Q_{\beta}(\alpha, \beta) & Q_{\beta}(\beta, \beta)
\end{array}\right) \leq 0 .
$$

Theorem (Adiprasito, Huh, Katz '18)
The coefficients ω_{i} of the characteristic polynomial $p_{M}(x)$ form a log-concave sequence, ie $\omega_{i}^{2} \geq \omega_{i-1} \omega_{i+1}$.

Sketch of proof:

They define a Chow ring $A(M)$ and two classes $\alpha, \beta \in A^{1}(M)$ such that $\operatorname{deg}\left(\alpha^{r-k} \beta^{k}\right)=\omega_{k}$.
They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β, in particular Q_{β} has signature $(N-1,1,0)$ on $A^{1}(M)$.
Case $i=r-1$: is equivalent to $\operatorname{deg}\left(\alpha \beta^{r-1}\right)^{2} \geq \operatorname{deg}\left(\alpha^{2} \beta^{r-2}\right) \operatorname{deg}\left(\beta^{r}\right)$ and to

$$
\operatorname{det}\left(\begin{array}{cc}
Q_{\beta}(\alpha, \alpha) & Q_{\beta}(\beta, \alpha) \\
Q_{\beta}(\alpha, \beta) & Q_{\beta}(\beta, \beta)
\end{array}\right) \leq 0 .
$$

But Q_{β} restricted to $\langle\alpha, \beta\rangle$ has signature $(1,1,0)$.

Polymatroids

A polymatroid P is a pair $\left(E, \mathrm{~cd}: 2^{E} \rightarrow \mathbb{N}\right)$ such that

1. $\operatorname{cd}(\emptyset)=0$,
2. (increasing) $\operatorname{cd}(A) \leq \operatorname{cd}(B)$ for all $A \subseteq B \subseteq E$,
3. (submodular) $\operatorname{cd}(A)+\operatorname{cd}(B) \geq \operatorname{cd}(A \cup B)+\operatorname{cd}(A \cap B)$ for all $A, B \subseteq E$.
There are equivalent definition in term of independent sets, bases, generalized permutahedra.

Polymatroids

A polymatroid P is a pair $\left(E, \mathrm{~cd}: 2^{E} \rightarrow \mathbb{N}\right)$ such that

1. $\operatorname{cd}(\emptyset)=0$,
2. (increasing) $\operatorname{cd}(A) \leq \operatorname{cd}(B)$ for all $A \subseteq B \subseteq E$,
3. (submodular) $\operatorname{cd}(A)+\operatorname{cd}(B) \geq \operatorname{cd}(A \cup B)+\operatorname{cd}(A \cap B)$ for all $A, B \subseteq E$.
There are equivalent definition in term of independent sets, bases, generalized permutahedra.
Polymatroids codify the combinatorics of:
4. subspace arrangements,
5. cycles in an hypergraph.

A k-flat $F \subseteq E$ is a maximal subset such that $\operatorname{cd}(F)=k$.

The poset of flats

Definition (Poset of flats)

Let $L(P)$ be the set of all flats of the polymatroid P ordered by reverse inclusion.

The poset of flats

Definition (Poset of flats)

Let $L(P)$ be the set of all flats of the polymatroid P ordered by reverse inclusion.

Example

In general $L(P)$ is not a geometric lattice and is not ranked.

Building sets

A subset $\mathcal{G} \subset L$ is a building set if for all $x \in L$

$$
[\hat{0}, x]=\prod_{y \in \max \left(\mathcal{G}_{\leq x}\right)}[\hat{0}, y]
$$

and

$$
\operatorname{cd}(x)=\sum_{y \in \max \left(\mathcal{G}_{\leq x}\right)} \operatorname{cd}(y) .
$$

Building sets

A subset $\mathcal{G} \subset L$ is a building set if for all $x \in L$

$$
[\hat{0}, x]=\prod_{y \in \max \left(\mathcal{G}_{\leq x}\right)}[\hat{0}, y]
$$

and

$$
\operatorname{cd}(x)=\sum_{y \in \max \left(\mathcal{G}_{\leq x}\right)} \operatorname{cd}(y) .
$$

Example

Previous works

- De Concini, Procesi '95 described the Chow ring $A\left(Y_{\mathcal{A}, \mathcal{G}}\right)$ (cohomology) of wonderful models.
- Feichtner, Yuzvinsky '03 described the Chow ring $A(L, \mathcal{G})$ of an atomic lattice with a building set.
- Huh, Adiprasito, Katz '18 proved the Kähler package for $A(L)$ of a geometric lattice with the maximal building set.

Chow ring

Define the algebra $A(P, \mathcal{G})$ is generated by x_{W} for $W \in \mathcal{G}$ with relations:

$$
\left(\sum_{Z \geq W} x_{Z}\right)^{b} \prod_{V \in S} x_{V}=0
$$

for $S \subset \mathcal{G}, W \in \mathcal{G}$ and $b=\operatorname{cd}(W)-\operatorname{cd}\left(\bigvee\left(S_{<W}\right)\right)$.

Simplicial generation

We perform an upper triangular base change by defining $\sigma_{W}=\sum_{Z \geq W} x_{Z}$.

Simplicial generation

We perform an upper triangular base change by defining $\sigma_{W}=\sum_{z \geq W} x_{Z}$.
The Chow ring $A(P, \mathcal{G})$ is generated by σ_{W} for $W \in \mathcal{G}$ with relations:

$$
\sigma_{W}^{b} \prod_{V \in S}\left(\sigma_{V}-\sigma_{W}\right)=0
$$

for $S \subset \mathcal{G}, W \in \mathcal{G}$ and $b=\operatorname{cd}(W)-\operatorname{cd}\left(\bigvee\left(S_{<} W\right)\right)$,

Let M be a matroid and $\mathcal{G}=L(M) \backslash\{\hat{0}\}$ be the maximal building set.

Theorem (Adiprasito, Huh, Katz '18)
The ring $A(M, L(M) \backslash\{\hat{0}\})$ is a Poincaré duality algebra and each $\ell=\sum_{W \neq \hat{1}} c_{W} x_{W} \in A^{1}(M, L(M) \backslash\{\hat{0}\})$ such that

$$
c_{W}+c_{Z}>c_{W \cup Z}+c_{W \cap Z}
$$

satisfies Hard Lefschetz and Hodge Riemann relations.

Let M be a matroid and $\mathcal{G}=L(M) \backslash\{\hat{0}\}$ be the maximal building set.

Theorem (Adiprasito, Huh, Katz '18)
The ring $A(M, L(M) \backslash\{\hat{0}\})$ is a Poincaré duality algebra and each $\ell=\sum_{W \neq \hat{1}} c_{W} x_{W} \in A^{1}(M, L(M) \backslash\{\hat{0}\})$ such that

$$
c_{W}+c_{Z}>c_{W \cup Z}+c_{W \cap Z}
$$

satisfies Hard Lefschetz and Hodge Riemann relations.
Theorem (P. Pezzoli '21)
The ring $A(P, \mathcal{G})$ is a Poincaré duality algebra and each $\ell=-\sum_{W \in \mathcal{G}} d_{W} \sigma_{W} \in A^{1}(P, \mathcal{G})$ such that

$$
d_{W}>0
$$

satisfies Hard Lefschetz and Hodge Riemann relations.

Let M be a matroid and $\mathcal{G}=L(M) \backslash\{\hat{0}\}$ be the maximal building set.

Theorem (Adiprasito, Huh, Katz '18)
The ring $A(M, L(M) \backslash\{\hat{0}\})$ is a Poincaré duality algebra and each $\ell=\sum_{W \neq \hat{1}} c_{W} x_{W} \in A^{1}(M, L(M) \backslash\{\hat{0}\})$ such that

$$
c_{W}+c_{Z}>c_{W \cup Z}+c_{W \cap Z}
$$

satisfies Hard Lefschetz and Hodge Riemann relations.
Theorem (P. Pezzoli '21)
The ring $A(P, \mathcal{G})$ is a Poincaré duality algebra and each $\ell=-\sum_{W \in \mathcal{G}} d_{W} \sigma_{W} \in A^{1}(P, \mathcal{G})$ such that

$$
d_{W}>0
$$

satisfies Hard Lefschetz and Hodge Riemann relations.
We call this orthant the σ-cone.

Remark

The σ-cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

Remark

The σ-cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

Example

Consider the polymatroid realized by three distinct lines in \mathbb{C}^{3}.
 $Y_{\mathcal{G}}$ is the blowup of \mathbb{P}^{2} in three points. If the three points are in general position then the ample cone coincides with the σ-cone.

Remark

The σ-cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

Example

Consider the polymatroid realized by three distinct lines in \mathbb{C}^{3}.

$Y_{\mathcal{G}}$ is the blowup of \mathbb{P}^{2} in three points. If the three points are in general position then the ample cone coincides with the σ-cone.Otherwise the three points are collinear and the ample cone is given by:

$$
\begin{aligned}
\left\{-d_{a b c} \sigma_{a b c}-d_{a} \sigma_{a}-d_{b} \sigma_{b}-d_{c} \sigma_{c} \mid\right. & d_{a}, d_{b}, d_{c}>0 \\
& \left.d_{a b c}>-\min \left(d_{a}, d_{b}, d_{c}\right)\right\}
\end{aligned}
$$

Remark

There are examples of polymatroids with (reduced) characteristic polynomial with negative coefficients and that do not form a log-concave sequence.

Main lemmas

We needed to compute $\operatorname{Ann}\left(x_{W}\right)$:
Lemma 1
For $W \neq \hat{1}$ there is an isomorphism

$$
A(P, \mathcal{G})^{\operatorname{Ann}\left(x_{W}\right)} \cong A\left(P_{W}, \mathcal{G}_{W}\right) \otimes A\left(P^{W}, \mathcal{G}^{W}\right)
$$

Main lemmas

We needed to compute $\operatorname{Ann}\left(x_{W}\right)$:

Lemma 1

For $W \neq \hat{1}$ there is an isomorphism

$$
A(P, \mathcal{G}) / \operatorname{Ann}\left(x_{W}\right) \cong A\left(P_{W}, \mathcal{G}_{W}\right) \otimes A\left(P^{W}, \mathcal{G}^{W}\right) .
$$

This looks like a Deletion-Restriction argument

Main lemmas

We needed to compute $\operatorname{Ann}\left(-\sigma_{W}\right)$:
Lemma 2
If $\mathrm{cd}(W)>1$ there is an isomorphism

$$
A(P, \mathcal{G}) / \operatorname{Ann}\left(-\sigma_{W}\right) \cong A\left(\operatorname{tr}_{W} P, \operatorname{tr}_{W} \mathcal{G}\right)
$$

Main lemmas

We needed to compute $\operatorname{Ann}\left(-\sigma_{W}\right)$:
Lemma 2
If $\mathrm{cd}(W)>1$ there is an isomorphism

$$
A(P, \mathcal{G}) / \operatorname{Ann}\left(-\sigma_{W}\right) \cong A\left(\operatorname{tr}_{W} P, \operatorname{tr}_{W} \mathcal{G}\right)
$$

Idea: truncation at a consists in cutting the subspace arrangement with a generic hyperplane containing the flat a.

$a b c$	
1/	
$a b$	
$2 / \backslash 1$	$\operatorname{tr}_{a} P$
$a \quad b$	
1 21	
\emptyset	

Main lemmas

We needed to compute $\left.\operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right)\right)$ for an atom a :
Lemma 3
There is an isomorphism

$$
A(P, \mathcal{G}) / \operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right) \cong A(P(a), \mathcal{G}(a))
$$

Main lemmas

We needed to compute $\left.\operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right)\right)$ for an atom a :
Lemma 3
There is an isomorphism

$$
A(P, \mathcal{G}) / \operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right) \cong A(P(a), \mathcal{G}(a))
$$

Idea: remove a but not the elements in $\mathcal{G} \backslash\{a\}$.

$P(a)$

Main lemmas

We needed to compute $\left.\operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right)\right)$ for an atom a :
Lemma 3
There is an isomorphism

$$
A(P, \mathcal{G}) / \operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right) \cong A(P(a), \mathcal{G}(a))
$$

Idea: remove a but not the elements in $\mathcal{G} \backslash\{a\}$.

Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.
Sketch of the proof:

1. Present a Gröbner basis for $A(P, \mathcal{G})$,

Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.
Sketch of the proof:

1. Present a Gröbner basis for $A(P, \mathcal{G})$,
2. Prove Poincaré duality constructing an explicit pairing,

Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof:

1. Present a Gröbner basis for $A(P, \mathcal{G})$,
2. Prove Poincaré duality constructing an explicit pairing,
3. Prove the previous lemmas using Poincare duality,

Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof:

1. Present a Gröbner basis for $A(P, \mathcal{G})$,
2. Prove Poincaré duality constructing an explicit pairing,
3. Prove the previous lemmas using Poincare duality,
4. Prove simultaneously Hard Lefschetz and Hodge Riemann by induction on $|\mathcal{G}|$.

1. Present a Gröbner basis for $A(P, \mathcal{G})$

Proposition (Feichtner Yuzvinsky '04, Bibby Denham Feichtner '20, P. Pezzoli '21)
The relations defining $A(P, \mathcal{G})$ form a Gröbner basis with respect the deg-lex order:

$$
\begin{gathered}
\left(\sum_{Z \geq W} x_{Z}\right)^{b} \prod_{V \in S} x_{V}=0 \\
\text { for } S \subset \mathcal{G}, W \in \mathcal{G} \text { and } b=\operatorname{cd}(W)-\operatorname{cd}\left(V\left(S_{<W}\right)\right) .
\end{gathered}
$$

1. Present a Gröbner basis for $A(P, \mathcal{G})$

Proposition (Feichtner Yuzvinsky '04, Bibby Denham Feichtner '20, P. Pezzoli '21)
The relations defining $A(P, \mathcal{G})$ form a Gröbner basis with respect the deg-lex order:

$$
\left(\sum_{Z \geq W} x_{Z}\right)^{b} \prod_{V \in S} x_{V}=0
$$

for $S \subset \mathcal{G}, W \in \mathcal{G}$ and $b=\operatorname{cd}(W)-\operatorname{cd}\left(\bigvee\left(S_{<W}\right)\right)$. Moreover, a additive basis of $A(P, \mathcal{G})$ is given by

$$
\prod_{W \in S} x_{W}^{m_{W}}
$$

where S is \mathcal{G}-nested and $m_{W}<\operatorname{cd}(W)-\operatorname{cd}\left(V\left(S_{<W}\right)\right)$.

2. Prove Poincaré duality constructing an explicit pairing

Define a bijection ϵ from a linear basis of A^{k} to a linear basis of A^{r-k} such that

- $x_{S}^{m} \epsilon\left(x_{S}^{m}\right)= \pm 1$,
- $x_{S}^{m} \epsilon\left(x_{T}^{n}\right)=0$ if $x_{S}^{m} \prec_{\text {rev-lex }} x_{T}^{n}$.

2. Prove Poincaré duality constructing an explicit pairing

Define a bijection ϵ from a linear basis of A^{k} to a linear basis of A^{r-k} such that

- $x_{S}^{m} \epsilon\left(x_{S}^{m}\right)= \pm 1$,
- $x_{S}^{m} \epsilon\left(x_{T}^{n}\right)=0$ if $x_{S}^{m} \prec_{\text {rev-lex }} x_{T}^{n}$.

Corollary (Bibby Denham Feichtner '20, P. Pezzoli '21)
The Poincaré pairing $A^{k} \times A^{r-k} \rightarrow \mathbb{Q}$ is non-degenerate.

2. Prove Poincaré duality constructing an explicit pairing

Define a bijection ϵ from a linear basis of A^{k} to a linear basis of A^{r-k} such that

- $x_{S}^{m} \epsilon\left(x_{S}^{m}\right)= \pm 1$,
- $x_{S}^{m} \epsilon\left(x_{T}^{n}\right)=0$ if $x_{S}^{m} \prec_{\text {rev-lex }} x_{T}^{n}$.

Corollary (Bibby Denham Feichtner '20, P. Pezzoli '21)

The Poincaré pairing $A^{k} \times A^{r-k} \rightarrow \mathbb{Q}$ is non-degenerate.

Proof

Indeed, the matrix representing the multiplication in the basis $\left\{x_{s}^{m}\right\}$ and $\left\{\epsilon\left(x_{S}^{m}\right)\right\}$ is upper triangular with diagonal entries ± 1.

3. Prove the previous lemmas using Poincaré duality

Proposition
Let A, B be two Poincaré duality algebra of dimension r and $f: A \rightarrow B$ a surjective morphism. Then f is an isomorphism.

3. Prove the previous lemmas using Poincaré duality

Proposition

Let A, B be two Poincaré duality algebra of dimension r and $f: A \rightarrow B$ a surjective morphism. Then f is an isomorphism.

$$
\begin{gathered}
A(P, \mathcal{G}) / \operatorname{Ann}\left(x_{W}\right) \cong A\left(P_{W}, \mathcal{G}_{W}\right) \otimes A\left(P^{W}, \mathcal{G}^{W}\right) \\
A(P, \mathcal{G}) / \operatorname{Ann}\left(-\sigma_{W}\right) \cong A\left(\operatorname{tr}_{W} P, \operatorname{tr}_{W} \mathcal{G}\right) \\
A(P, \mathcal{G}) / \operatorname{Ann}\left(\left(x_{a}-\sigma_{a}\right)^{\operatorname{cd}(a)}\right) \cong A(P(a), \mathcal{G}(a))
\end{gathered}
$$

4. Prove Hard Lefschetz and Hodge Riemann by induction

Proposition (Adiprasito Huh Katz '18)
If $\ell=-\sum_{W} c_{W} \sigma_{W} \in A^{1}$ with $c_{W}>0$ such that $\bar{\ell}$ satisfies $H R\left(A / \operatorname{Ann}\left(-\sigma_{W}\right)\right)$ for all W, then ℓ satisfies $H L(A)$.

4. Prove Hard Lefschetz and Hodge Riemann by induction

Proposition (Adiprasito Huh Katz '18)
If $\ell=-\sum_{W} c_{W} \sigma_{W} \in A^{1}$ with $c_{W}>0$ such that $\bar{\ell}$ satisfies $H R\left(A / \operatorname{Ann}\left(-\sigma_{W}\right)\right)$ for all W, then ℓ satisfies $H L(A)$.

Proposition (Adiprasito Huh Katz '18)

Let $\Sigma \subset A^{1}$ be a convex cone such that each $\ell \in \Sigma$ satisfies $H L$. If one element ℓ_{0} satisfies $\operatorname{HR}(A)$, then all elements in Σ satisfies $H R(A)$.

4. Prove Hard Lefschetz and Hodge Riemann by induction

Proposition (Adiprasito Huh Katz '18)

If $\ell=-\sum_{W} c_{W} \sigma_{W} \in A^{1}$ with $c_{W}>0$ such that $\bar{\ell}$ satisfies $H R\left(A / \operatorname{Ann}\left(-\sigma_{W}\right)\right)$ for all W, then ℓ satisfies $H L(A)$.

Proposition (Adiprasito Huh Katz '18)

Let $\Sigma \subset A^{1}$ be a convex cone such that each $\ell \in \Sigma$ satisfies $H L$. If one element ℓ_{0} satisfies $H R(A)$, then all elements in Σ satisfies $H R(A)$.

Proposition (Adiprasito Huh Katz '18)

Let C be a PD algebra, $p(x)=x^{d}+\mu_{d-1} x^{d-1}+\cdots+\mu_{0} \in C[x]$
be a polynomial with $\mu_{0} \neq 0, B=C / \operatorname{Ann}\left(\mu_{0}\right)$ and
$A=C[x] /\left(x A n n\left(\mu_{0}\right), p(x)\right)$. If $\ell \in C^{1}$ satisfies $H R(C)$ and $H R(B)$, then $\ell+\epsilon x$ satisfies $H R(A)$ for sufficiently small $\epsilon>0$.

Thanks for listening!

roberto.pagaria@unibo.it

