Roberto Pagaria

Università di Bologna

Chow ring of polymatroids

joint work with Gian Marco Pezzoli

MIT-Harvard-MSR Combinatorics Seminar

April 1, 2022

Covered topics:

Characteristic polynomial

Combinatorial Hodge theory

Polymatroids

Proposition

 $P_G(k)$ is a polynomial in k.

Proposition

 $P_G(k)$ is a polynomial in k.

Proof.

Idea: deletion and restriction

$$P_G(k) = P_{G \setminus e}(k) - P_{G/e}(k)$$

for any edge e and proceed by induction on the number of edges.

Proposition

 $P_G(k)$ is a polynomial in k.

Proof.

Idea: deletion and restriction

$$P_G(k) = P_{G \setminus e}(k) - P_{G/e}(k)$$

for any edge *e* and proceed by induction on the number of edges.

Notation: the characteristic polynomial is $p_G(k) = P_G(k)/k^{\# cc G}$.

The characteristic polynomial of the graph G is: $p_G(x) = \omega_0 x^r + \omega_2 x^{r-1} + \dots + \omega_r$

Conjecture (Read '68)

The sequence ω_i is *unimodular*:

$$\omega_0 \leq \omega_1 \leq \cdots \leq \omega_k \geq \cdots \geq \omega_{r-1} \geq \omega_r.$$

The characteristic polynomial of the graph G is: $p_G(x) = \omega_0 x^r + \omega_2 x^{r-1} + \dots + \omega_r$

Conjecture (Read '68)

The sequence ω_i is *unimodular*:

$$\omega_0 \leq \omega_1 \leq \cdots \leq \omega_k \geq \cdots \geq \omega_{r-1} \geq \omega_r.$$

Conjecture (Hoggar '74)

The sequence ω_i is *log-concave*:

$$\omega_i^2 \ge \omega_{i-1} \omega_{i+1}.$$

Matroids

A matroid is an object that codifies the combinatorics of:

- 1. hyperplanes arrangements,
- 2. cycles of a graph,
- 3. linear dependencies among vectors.

Matroids

A matroid is an object that codifies the combinatorics of:

- 1. hyperplanes arrangements,
- 2. cycles of a graph,
- 3. linear dependencies among vectors.

There are a lot of equivalent definition:

- 1. rank function,
- 2. bases, independent sets, circuits,
- 3. geometric lattices,
- 4. integral polytopes.

- A matroid M is a pair $(E, \mathrm{rk}: 2^E \to \mathbb{N})$ such that:
 - 1. $\operatorname{rk}(A) \leq |A|$ for all $A \subseteq E$,
 - 2. (increasing) $\operatorname{rk}(A) \leq \operatorname{rk}(B)$ for all $A \subseteq B \subseteq E$,
 - 3. (submodular) $\operatorname{rk}(A) + \operatorname{rk}(B) \ge \operatorname{rk}(A \cup B) + \operatorname{rk}(A \cap B)$ for all $A, B \subseteq E$.

A matroid M is a pair $(E, \mathrm{rk}: 2^E \to \mathbb{N})$ such that:

- 1. $\operatorname{rk}(A) \leq |A|$ for all $A \subseteq E$,
- 2. (increasing) $\operatorname{rk}(A) \leq \operatorname{rk}(B)$ for all $A \subseteq B \subseteq E$,
- 3. (submodular) $\operatorname{rk}(A) + \operatorname{rk}(B) \ge \operatorname{rk}(A \cup B) + \operatorname{rk}(A \cap B)$ for all $A, B \subseteq E$.

Definition

The characteristic polynomial of M is

$$p_M(x) = \sum_{A \subseteq E} (-1)^{|A|} x^{\operatorname{rk}(E) - \operatorname{rk}(A)}$$

A matroid M is a pair $(E, \operatorname{rk}: 2^E \to \mathbb{N})$ such that:

- 1. $\operatorname{rk}(A) \leq |A|$ for all $A \subseteq E$,
- 2. (increasing) $\operatorname{rk}(A) \leq \operatorname{rk}(B)$ for all $A \subseteq B \subseteq E$,
- 3. (submodular) $\operatorname{rk}(A) + \operatorname{rk}(B) \ge \operatorname{rk}(A \cup B) + \operatorname{rk}(A \cap B)$ for all $A, B \subseteq E$.

Definition

The characteristic polynomial of M is

$$p_M(x) = \sum_{A \subseteq E} (-1)^{|A|} x^{\operatorname{rk}(E) - \operatorname{rk}(A)}$$

For G = (V, E) we define the *cycle matroid* M(G) = (E, rk) where $\text{rk}(A) = |V_A| - \# \operatorname{cc} A$. Moreover $p_{M(G)} = p_G$.

The characteristic polynomial of the matroid M is: $p_M(x) = \omega_0 x^r + \omega_2 x^{r-1} + \dots + \omega_r.$

Conjecture (Rota '71, Heron '72)

The sequence ω_i is *unimodular*:

$$\omega_0 \leq \omega_1 \leq \cdots \leq \omega_k \geq \cdots \geq \omega_{r-1} \geq \omega_r.$$

The characteristic polynomial of the matroid M is: $p_M(x) = \omega_0 x^r + \omega_2 x^{r-1} + \dots + \omega_r.$

Conjecture (Rota '71, Heron '72)

The sequence ω_i is *unimodular*:

$$\omega_0 \leq \omega_1 \leq \cdots \leq \omega_k \geq \cdots \geq \omega_{r-1} \geq \omega_r.$$

Conjecture (Welsh '76)

The sequence ω_i is *log-concave*:

$$\omega_i^2 \ge \omega_{i-1}\omega_{i+1}.$$

Let A be an Artinian \mathbb{Q} -algebra with top degree n and deg: $A^n \to \mathbb{Q}$ an isomorphism.

Let A be an Artinian \mathbb{Q} -algebra with top degree n and deg: $A^n \to \mathbb{Q}$ an isomorphism.

▶ the algebra A satisfies *Poincaré duality* if the bilinear pairing $A^k \times A^{n-k} \to \mathbb{Q}$

defined by $(a, b) \mapsto \deg(ab)$ is non-degenerate.

Let A be an Artinian \mathbb{Q} -algebra with top degree n and deg : $A^n \to \mathbb{Q}$ an isomorphism.

▶ the algebra A satisfies *Poincaré duality* if the bilinear pairing $A^k \times A^{n-k} \to \mathbb{Q}$

defined by $(a, b) \mapsto \deg(ab)$ is non-degenerate.

▶ the element $\ell \in A^1$ satisfies the *Hard Lefschetz property* if $\cdot \ell^{n-2k} : A^k \to A^{n-k}$

is an isomorphism for all $k \leq \frac{n}{2}$.

Let A be an Artinian \mathbb{Q} -algebra with top degree n and deg : $A^n \to \mathbb{Q}$ an isomorphism.

▶ the algebra A satisfies *Poincaré duality* if the bilinear pairing $A^k \times A^{n-k} \to \mathbb{Q}$

defined by $(a, b) \mapsto \deg(ab)$ is non-degenerate.

▶ the element $\ell \in A^1$ satisfies the *Hard Lefschetz property* if $\cdot \ell^{n-2k} : A^k \to A^{n-k}$

is an isomorphism for all $k \leq \frac{n}{2}$.

▶ the element $\ell \in A^1$ satisfies the Hodge Riemann relations if $Q_{\ell}^k : A^k \times A^k \to \mathbb{Q}$

defined by $Q_{\ell}^k(a,b) = (-1)^k \deg(a\ell^{n-2k}b)$ (for $k \leq \frac{n}{2}$) is positive defined on the subspace

$$P_k = \ker(\cdot \ell^{n-2k+1} \colon A^k \to A^{n-k+1}).$$

Theorem

If X is a compact manifold then H(X) satisfies Poincaré duality. Moreover if X is a compact Kahler manifold with Kahler class ω then ω satisfies Hard Lefschetz and Hodge Riemann.

More generally, any ample class $\ell \in H^2(X)$ satisfies Hard Lefschetz and Hodge Riemann.

The coefficients ω_i of the characteristic polynomial $p_M(x)$ form a log-concave sequence, ie $\omega_i^2 \ge \omega_{i-1}\omega_{i+1}$.

The coefficients ω_i of the characteristic polynomial $p_M(x)$ form a log-concave sequence, ie $\omega_i^2 \ge \omega_{i-1}\omega_{i+1}$.

Sketch of proof:

They define a Chow ring A(M) and two classes $\alpha, \beta \in A^1(M)$ such that $\deg(\alpha^{r-k}\beta^k) = \omega_k$.

The coefficients ω_i of the characteristic polynomial $p_M(x)$ form a log-concave sequence, ie $\omega_i^2 \ge \omega_{i-1}\omega_{i+1}$.

Sketch of proof:

They define a Chow ring A(M) and two classes $\alpha, \beta \in A^1(M)$ such that $\deg(\alpha^{r-k}\beta^k) = \omega_k$.

They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β , in particular Q_{β} has signature (N - 1, 1, 0) on $A^{1}(M)$.

The coefficients ω_i of the characteristic polynomial $p_M(x)$ form a log-concave sequence, ie $\omega_i^2 \ge \omega_{i-1}\omega_{i+1}$.

Sketch of proof:

They define a Chow ring A(M) and two classes $\alpha, \beta \in A^1(M)$ such that $\deg(\alpha^{r-k}\beta^k) = \omega_k$. They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β , in particular Q_β has signature (N - 1, 1, 0) on $A^1(M)$. **Case** i = r - 1: is equivalent to $\deg(\alpha\beta^{r-1})^2 \ge \deg(\alpha^2\beta^{r-2})\deg(\beta^r)$

The coefficients ω_i of the characteristic polynomial $p_M(x)$ form a log-concave sequence, ie $\omega_i^2 \ge \omega_{i-1}\omega_{i+1}$.

Sketch of proof:

They define a Chow ring A(M) and two classes $\alpha, \beta \in A^1(M)$ such that deg $(\alpha^{r-k}\beta^k) = \omega_k$. They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β , in particular Q_β has signature (N - 1, 1, 0) on $A^1(M)$. **Case** i = r - 1: is equivalent to deg $(\alpha\beta^{r-1})^2 \ge deg(\alpha^2\beta^{r-2}) deg(\beta^r)$ and to $det \begin{pmatrix} Q_\beta(\alpha, \alpha) & Q_\beta(\beta, \alpha) \\ Q_\beta(\alpha, \beta) & Q_\beta(\beta, \beta) \end{pmatrix} \le 0.$

The coefficients ω_i of the characteristic polynomial $p_M(x)$ form a log-concave sequence, ie $\omega_i^2 \ge \omega_{i-1}\omega_{i+1}$.

Sketch of proof:

They define a Chow ring A(M) and two classes $\alpha, \beta \in A^1(M)$ such that deg $(\alpha^{r-k}\beta^k) = \omega_k$. They proved Poincaré duality, Hard-Lefschetz and Hodge Riemann for β , in particular Q_β has signature (N - 1, 1, 0) on $A^1(M)$. **Case** i = r - 1: is equivalent to deg $(\alpha\beta^{r-1})^2 \ge deg(\alpha^2\beta^{r-2}) deg(\beta^r)$ and to det $\begin{pmatrix} Q_\beta(\alpha, \alpha) & Q_\beta(\beta, \alpha) \\ Q_\beta(\alpha, \beta) & Q_\beta(\beta, \beta) \end{pmatrix} \le 0$. But Q_β restricted to $\langle \alpha, \beta \rangle$ has signature (1, 1, 0).

Polymatroids

Polymatroids

A polymatroid P is a pair $(E, cd: 2^E \to \mathbb{N})$ such that

- 1. $cd(\emptyset) = 0$,
- 2. (increasing) $cd(A) \leq cd(B)$ for all $A \subseteq B \subseteq E$,
- 3. (submodular) $cd(A) + cd(B) \ge cd(A \cup B) + cd(A \cap B)$ for all $A, B \subseteq E$.

There are equivalent definition in term of independent sets, bases, generalized permutahedra.

Polymatroids

Polymatroids

A polymatroid P is a pair $(E, cd: 2^E \to \mathbb{N})$ such that

- 1. $cd(\emptyset) = 0$,
- 2. (increasing) $cd(A) \leq cd(B)$ for all $A \subseteq B \subseteq E$,
- 3. (submodular) $cd(A) + cd(B) \ge cd(A \cup B) + cd(A \cap B)$ for all $A, B \subseteq E$.

There are equivalent definition in term of independent sets, bases, generalized permutahedra.

Polymatroids codify the combinatorics of:

- 1. subspace arrangements,
- 2. cycles in an hypergraph.

A k-flat $F \subseteq E$ is a maximal subset such that cd(F) = k.

The poset of flats

Definition (Poset of flats)

Let L(P) be the set of all flats of the polymatroid P ordered by reverse inclusion.

The poset of flats

Definition (Poset of flats)

Let L(P) be the set of all flats of the polymatroid P ordered by reverse inclusion.

Example

In general L(P) is not a geometric lattice and is not ranked.

Building sets

A subset $\mathcal{G} \subset L$ is a *building set* if for all $x \in L$ $[\hat{0}, x] = \prod_{y \in \max(\mathcal{G}_{\leq x})} [\hat{0}, y]$

and

$$\mathsf{cd}(x) = \sum_{y \in \mathsf{max}(\mathcal{G}_{\leq x})} \mathsf{cd}(y).$$

Building sets

A subset $\mathcal{G} \subset L$ is a *building set* if for all $x \in L$ $[\hat{0}, x] = \prod_{y \in \max(\mathcal{G}_{\leq x})} [\hat{0}, y]$

and

$$\mathsf{cd}(x) = \sum_{y \in \mathsf{max}(\mathcal{G}_{\leq x})} \mathsf{cd}(y).$$

Example

- De Concini, Procesi '95 described the Chow ring A(Y_{A,G}) (cohomology) of wonderful models.
- ► Feichtner, Yuzvinsky '03 described the Chow ring A(L, G) of an atomic lattice with a building set.
- Huh, Adiprasito, Katz '18 proved the Kähler package for A(L) of a geometric lattice with the maximal building set.

Define the algebra $A(P, \mathcal{G})$ is generated by x_W for $W \in \mathcal{G}$ with relations:

$$\left(\sum_{Z\geq W} x_Z\right)^b \prod_{V\in S} x_V = 0$$

for $S \subset \mathcal{G}$, $W \in \mathcal{G}$ and $b = \operatorname{cd}(W) - \operatorname{cd}(\bigvee(S_{\leq W}))$.

Simplicial generation

We perform an upper triangular base change by defining $\sigma_W = \sum_{Z \ge W} x_Z$.

Simplicial generation

We perform an upper triangular base change by defining $\sigma_W = \sum_{Z \ge W} x_Z$. The Chow ring A(P, G) is generated by σ_W for $W \in G$ with relations:

$$\sigma_W^b \prod_{V \in S} (\sigma_V - \sigma_W) = 0$$

for $S \subset \mathcal{G}$, $W \in \mathcal{G}$ and $b = \mathsf{cd}(W) - \mathsf{cd}(igvee(S_{< W}))$,

Let *M* be a matroid and $\mathcal{G} = L(M) \setminus \{\hat{0}\}$ be the maximal building set.

Theorem (Adiprasito, Huh, Katz '18)

The ring $A(M, L(M) \setminus \{\hat{0}\})$ is a Poincaré duality algebra and each $\ell = \sum_{W \neq \hat{1}} c_W x_W \in A^1(M, L(M) \setminus \{\hat{0}\})$ such that $c_W + c_Z > c_{W \cup Z} + c_{W \cap Z}$ satisfies Hard Lefschetz and Hodge Riemann relations. Let *M* be a matroid and $\mathcal{G} = L(M) \setminus \{\hat{0}\}$ be the maximal building set.

Theorem (Adiprasito, Huh, Katz '18)

The ring $A(M, L(M) \setminus \{\hat{0}\})$ is a Poincaré duality algebra and each $\ell = \sum_{W \neq \hat{1}} c_W x_W \in A^1(M, L(M) \setminus \{\hat{0}\})$ such that $c_W + c_Z > c_{W \cup Z} + c_{W \cap Z}$ satisfies Hard Lefschetz and Hodge Riemann relations.

Theorem (P. Pezzoli '21)

The ring A(P, G) is a Poincaré duality algebra and each $\ell = -\sum_{W \in G} d_W \sigma_W \in A^1(P, G)$ such that $d_W > 0$

satisfies Hard Lefschetz and Hodge Riemann relations.

Let *M* be a matroid and $\mathcal{G} = L(M) \setminus \{\hat{0}\}$ be the maximal building set.

Theorem (Adiprasito, Huh, Katz '18)

The ring $A(M, L(M) \setminus \{\hat{0}\})$ is a Poincaré duality algebra and each $\ell = \sum_{W \neq \hat{1}} c_W x_W \in A^1(M, L(M) \setminus \{\hat{0}\})$ such that $c_W + c_Z > c_{W \cup Z} + c_{W \cap Z}$ satisfies Hard Lefschetz and Hodge Riemann relations.

Theorem (P. Pezzoli '21)

The ring $A(P, \mathcal{G})$ is a Poincaré duality algebra and each $\ell = -\sum_{W \in \mathcal{G}} d_W \sigma_W \in A^1(P, \mathcal{G})$ such that $d_W > 0$

satisfies Hard Lefschetz and Hodge Riemann relations.

We call this orthant the σ -cone.

The σ -cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

The σ -cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

Example

Consider the polymatroid realized by three distinct lines in \mathbb{C}^3 .

 $Y_{\mathcal{G}}$ is the blowup of \mathbb{P}^2 in three points. If the three points are in general position then the ample cone coincides with the σ -cone.

The σ -cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

Example

Consider the polymatroid realized by three distinct lines in \mathbb{C}^3 .

 $Y_{\mathcal{G}}$ is the blowup of \mathbb{P}^2 in three points. If the three points are in general position then the ample cone coincides with the σ -cone.Otherwise the three points are collinear and the ample cone is given by:

$$\{-d_{abc}\sigma_{abc} - d_{a}\sigma_{a} - d_{b}\sigma_{b} - d_{c}\sigma_{c} \mid d_{a}, d_{b}, d_{c} > 0, \\ d_{abc} > -\min(d_{a}, d_{b}, d_{c})\}$$

There are examples of polymatroids with (reduced) characteristic polynomial with negative coefficients and that do not form a log-concave sequence.

We needed to compute $Ann(x_W)$:

Lemma 1

For
$$W \neq \hat{1}$$
 there is an isomorphism
 $A(P, \mathcal{G}) \not_{Ann(x_W)} \cong A(P_W, \mathcal{G}_W) \otimes A(P^W, \mathcal{G}^W).$

We needed to compute $Ann(x_W)$:

Lemma 1

For
$$W \neq \hat{1}$$
 there is an isomorphism
 $A(P, \mathcal{G}) \not_{Ann(x_W)} \cong A(P_W, \mathcal{G}_W) \otimes A(P^W, \mathcal{G}^W).$

This looks like a Deletion-Restriction argument

We needed to compute Ann $(-\sigma_W)$: Lemma 2 If cd(W) > 1 there is an isomorphism $A(P, \mathcal{G}) \not_{Ann}(-\sigma_W) \cong A(\operatorname{tr}_W P, \operatorname{tr}_W \mathcal{G}).$

We needed to compute Ann $(-\sigma_W)$: Lemma 2 If cd(W) > 1 there is an isomorphism $A(P, \mathcal{G}) \not/_{Ann}(-\sigma_W) \cong A(\operatorname{tr}_W P, \operatorname{tr}_W \mathcal{G}).$

Idea: truncation at a consists in cutting the subspace arrangement with a generic hyperplane containing the flat a.

We needed to compute Ann $((x_a - \sigma_a)^{cd(a)}))$ for an atom *a*:

Lemma 3

There is an isomorphism $A(P, \mathcal{G})/Ann((x_a - \sigma_a)^{cd(a)}) \cong A(P(a), \mathcal{G}(a)).$

We needed to compute Ann $((x_a - \sigma_a)^{cd(a)}))$ for an atom *a*:

Lemma 3

7

There is an isomorphism

$$A(P, \mathcal{G}) \not Ann((x_a - \sigma_a)^{cd(a)}) \cong A(P(a), \mathcal{G}(a)).$$

Idea: remove *a* but not the elements in $\mathcal{G} \setminus \{a\}$.

We needed to compute Ann $((x_a - \sigma_a)^{cd(a)}))$ for an atom *a*:

Lemma 3

There is an isomorphism

$$A(P, \mathcal{G})/Ann((x_a - \sigma_a)^{cd(a)}) \cong A(P(a), \mathcal{G}(a)).$$

Idea: remove *a* but not the elements in $\mathcal{G} \setminus \{a\}$.

Theorem (P. Pezzoli '21)

The Chow ring of a polymatroid satisfies the Kähler package.

Theorem (P. Pezzoli '21)

The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof:

1. Present a Gröbner basis for $A(P, \mathcal{G})$,

Theorem (P. Pezzoli '21)

The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof:

- 1. Present a Gröbner basis for $A(P, \mathcal{G})$,
- 2. Prove Poincaré duality constructing an explicit pairing,

Theorem (P. Pezzoli '21)

The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof:

- 1. Present a Gröbner basis for $A(P, \mathcal{G})$,
- 2. Prove Poincaré duality constructing an explicit pairing,
- 3. Prove the previous lemmas using Poincaré duality,

Theorem (P. Pezzoli '21)

The Chow ring of a polymatroid satisfies the Kähler package.

Sketch of the proof:

- 1. Present a Gröbner basis for $A(P, \mathcal{G})$,
- 2. Prove Poincaré duality constructing an explicit pairing,
- 3. Prove the previous lemmas using Poincaré duality,
- 4. Prove simultaneously Hard Lefschetz and Hodge Riemann by induction on $|\mathcal{G}|$.

1. Present a Gröbner basis for $A(P, \mathcal{G})$

Proposition (Feichtner Yuzvinsky '04, Bibby Denham Feichtner '20, P. Pezzoli '21)

The relations defining A(P, G) form a Gröbner basis with respect the *deg-lex order*:

$$\left(\sum_{Z\geq W} x_Z\right)^b \prod_{V\in S} x_V = 0$$

for $S \subset \mathcal{G}$, $W \in \mathcal{G}$ and $b = \operatorname{cd}(W) - \operatorname{cd}(\bigvee(S_{\leq W}))$.

1. Present a Gröbner basis for $A(P, \mathcal{G})$

Proposition (Feichtner Yuzvinsky '04, Bibby Denham Feichtner '20, P. Pezzoli '21)

The relations defining A(P, G) form a Gröbner basis with respect the *deg-lex order*:

$$\left(\sum_{Z\geq W} x_Z\right)^b \prod_{V\in S} x_V = 0$$

for $S \subset G$, $W \in G$ and $b = cd(W) - cd(\bigvee(S_{\leq W}))$. Moreover, a additive basis of A(P, G) is given by

$$\prod_{W \in S} x_W^{m_W}$$

where S is G-nested and $m_W < cd(W) - cd(\bigvee(S_{\leq W}))$.

2. Prove Poincaré duality constructing an explicit pairing

Define a bijection ϵ from a linear basis of A^k to a linear basis of A^{r-k} such that

$$x_S^m \epsilon(x_S^m) = \pm 1,$$

$$x_S^m \epsilon(x_T^n) = 0 \text{ if } x_S^m \prec_{rev-lex} x_T^n.$$

2. Prove Poincaré duality constructing an explicit pairing

Define a bijection ϵ from a linear basis of A^k to a linear basis of A^{r-k} such that

$$x_S^m \epsilon(x_S^m) = \pm 1,$$

$$x_S^m \epsilon(x_T^n) = 0 \text{ if } x_S^m \prec_{rev-lex} x_T^n.$$

Corollary (Bibby Denham Feichtner '20, P. Pezzoli '21) The Poincaré pairing $A^k \times A^{r-k} \to \mathbb{Q}$ is non-degenerate.

2. Prove Poincaré duality constructing an explicit pairing

Define a bijection ϵ from a linear basis of A^k to a linear basis of A^{r-k} such that

►
$$x_S^m \epsilon(x_S^m) = \pm 1$$
,
► $x_S^m \epsilon(x_T^n) = 0$ if $x_S^m \prec_{rev-lex} x_T^n$.

Corollary (Bibby Denham Feichtner '20, P. Pezzoli '21)

The Poincaré pairing $A^k \times A^{r-k} \to \mathbb{Q}$ is non-degenerate.

Proof.

Indeed, the matrix representing the multiplication in the basis $\{x_S^m\}$ and $\{\epsilon(x_S^m)\}$ is upper triangular with diagonal entries ± 1 .

3. Prove the previous lemmas using Poincaré duality

Proposition

Let A, B be two Poincaré duality algebra of dimension r and $f: A \rightarrow B$ a surjective morphism. Then f is an isomorphism.

3. Prove the previous lemmas using Poincaré duality

Proposition

Let A, B be two Poincaré duality algebra of dimension r and $f: A \rightarrow B$ a surjective morphism. Then f is an isomorphism.

$$A(P,\mathcal{G})_{Ann(x_W)} \cong A(P_W,\mathcal{G}_W) \otimes A(P^W,\mathcal{G}^W)$$
$$A(P,\mathcal{G})_{Ann(-\sigma_W)} \cong A(\operatorname{tr}_W P, \operatorname{tr}_W \mathcal{G})$$
$$A(P,\mathcal{G})_{Ann((x_a - \sigma_a)^{\operatorname{cd}(a)})} \cong A(P(a),\mathcal{G}(a))$$

4. Prove Hard Lefschetz and Hodge Riemann by induction

Proposition (Adiprasito Huh Katz '18)

If $\ell = -\sum_W c_W \sigma_W \in A^1$ with $c_W > 0$ such that $\overline{\ell}$ satisfies $HR(A/Ann(-\sigma_W))$ for all W, then ℓ satisfies HL(A).

4. Prove Hard Lefschetz and Hodge Riemann by induction

Proposition (Adiprasito Huh Katz '18)

If $\ell = -\sum_W c_W \sigma_W \in A^1$ with $c_W > 0$ such that $\overline{\ell}$ satisfies $HR(A/Ann(-\sigma_W))$ for all W, then ℓ satisfies HL(A).

Proposition (Adiprasito Huh Katz '18)

Let $\Sigma \subset A^1$ be a convex cone such that each $\ell \in \Sigma$ satisfies *HL*. If one element ℓ_0 satisfies *HR*(*A*), then all elements in Σ satisfies *HR*(*A*).

4. Prove Hard Lefschetz and Hodge Riemann by induction

Proposition (Adiprasito Huh Katz '18)

If $\ell = -\sum_W c_W \sigma_W \in A^1$ with $c_W > 0$ such that $\overline{\ell}$ satisfies $HR(A/Ann(-\sigma_W))$ for all W, then ℓ satisfies HL(A).

Proposition (Adiprasito Huh Katz '18)

Let $\Sigma \subset A^1$ be a convex cone such that each $\ell \in \Sigma$ satisfies *HL*. If one element ℓ_0 satisfies *HR*(*A*), then all elements in Σ satisfies *HR*(*A*).

Proposition (Adiprasito Huh Katz '18)

Let C be a PD algebra, $p(x) = x^d + \mu_{d-1}x^{d-1} + \cdots + \mu_0 \in C[x]$ be a polynomial with $\mu_0 \neq 0$, $B = C/Ann(\mu_0)$ and $A = C[x]/(xAnn(\mu_0), p(x))$. If $\ell \in C^1$ satisfies HR(C) and HR(B), then $\ell + \epsilon x$ satisfies HR(A) for sufficiently small $\epsilon > 0$.

Thanks for listening!

roberto.pagaria@unibo.it