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Ordered configuration spaces

Ordered configuration spaces

Let X be a topological space. Define:
Confn(X ) := {(p1, . . . , pn) ∈ X n | pi 6= pj}

Example
Confn(S1) = S1 ×Sn−1 × Rn−1.

Example
Confn(R2) is the complement of the hyperplane arrangement of
type An−1.
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Ordered configuration spaces

Delete a point

Theorem (Fadell, Neuwirth 1962)
If M is a manifold without boundary, then
p : Confn(M)→ Confn−1(M) is a fibration with fibre
M \ {n − 1 points}.

Recall the long exact sequence of homotopy groups:
· · · → πn(F )→ πn(E )→ πn(B)→ πn−1(F )→ . . .

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S2 and P2(R), then Confn(S) is a
K (π, 1).
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Ordered configuration spaces

Add a point

Theorem (Fadell, Neuwirth 1962)
If M is a non-compact manifold without boundary then the
fibration p : Confn(M)→ Confn−1(M) has a section.
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Ordered configuration spaces

The Euler characteristic

Theorem (Felix, Thomas 2000)
Let M be an even-dimensional manifold. Then

∞∑
n=0

χ(Confn(M))

n!
un = (1 + u)χ(M)
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Ordered configuration spaces

Theorem (Ellenberg, Wiltshire-Gordon 2015)
If M is a manifold that admits a non-zero vector field (i.e.
χ(M) = 0) then dimH i (Confn(M);Q) is polynomial in n, for
n > 0.

The map f : [4]→ [3] is
defined by f (1) = 1,
f (2) = f (3) = f (4) = 2.

Ellenberg, Wiltshire-Gordon 2015
https://arxiv.org/abs/1508.02430
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The algebraic model

The Kriz model

Theorem (Kriz ’94, Totaro ’96)
Let M be a smooth projective variety. There exists a dga (E (M), d)
such that H•(En(M), d) ' H•(Confn(M);Q).

Let En(M) be the exterior algebra on generators
I xi for x in a basis of H•(M) and i ≤ n with degree (deg x , 0),
I Gi ,j for i < j with degree (0, d − 1),

and relations
I (xi − xj)Gi ,j = 0,
I Gi ,jGj ,k − Gi ,jGi ,k + Gj ,kGi ,k = 0.

The differential of degree (d , 1− d) is given by
I d(xi ) = 0,
I d(Gi ,j) = [∆]i ,j .
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The algebraic model

Representation theory of the Kriz model

Let E = S1 × S1 be an elliptic curve.

Theorem (Stanley ’82, Lehrer, Solomon ’86, Ashraf, Azam,
Berceanu ’12)
The action of Sn on the Kriz model is

Ep,q
n (E) ∼=

⊕
λ`n

`(λ)=n−q
w(λ)=p

IndSn

Z(λ) ζλ � αλ

where the sum is taken over all labelled partitions λ with blocks
label by {1, x , y , xy}. The number w(λ) is the sum of the degree
of the labels.
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The algebraic model

An additive basis for E •,•n (E) is given by descending forests on [n]
with connected components labels by 1, x , y , or xy .

Example

2

3
x

1 4

xy

5
1

6
1

This labelled forest F corresponds to the monomial
m(F ) = G1,3G2,3x3x4y4.

The monomial is in bidegree
(3, 2) = (w(F ), n − c .c.(F )), where w(F ) is the sum of degrees of
labels of F . We want to define
k(F ) = n − |{single vertices labelled with 1}| = 4, it coincides with
the number of different indices in m(F ).
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The algebraic model

Main claim

We want to filter the dga (E
•,•
n (E), d) with the subspaces generated

by monomials m(F ) with k(F ) ≤ k .

Claim
The differential is strict with respect to this filtration.

This would simplify the computation of H•,•(E •,•n (E), d).

Q: How to prove the claim formally?
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The category of finite sets

The category FA

Let FA be the category whose objects are the finite sets
[n] = {1, 2, . . . , n} for n ∈ N and morphisms al the maps
f : [n]→ [m].

Definition
A representation of FA is a functor V : FA→ VecQ, the category
of (finite dimensional) Q-vector spaces.

Equivalently, a representation is a collection of (finite dimensional)
vector spaces (V [n])n∈N and linear maps f∗ : V [n]→ V [m] for each
map f ∈ Map([n], [m]) such that (g ◦ f )∗ = g∗ ◦ f∗.

Example
Let D0 be the representation given by D0[0] = Q and D0[n] = 0 for
n > 0. This is a representation because Map([n], [0]) = ∅ for n > 0.
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The category of finite sets

Lemma (P. ’20)
If χ(M) = 0, the Kriz model E (M) =

⊕
n∈N En(M) is a

representation of FA with the action of f : [n]→ [m] given by:

f∗(xi ) = xf (i) f∗(Gi ,j) =

{
0 if f (i) = f (j)

Gf (i),f (j) otherwise

Proof.
If f (i) = f (j) we have d(f∗(Gi ,j)) = 0 and

f∗(d(Gi ,j)) = f∗([∆]i ,j) = χ(M)[M]f (i),

that vanishes if and only if χ(M) = 0 or [M] = 0.
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The category of finite sets

Classical representation theory

For each representation V and n ∈ N, the vector space V [n] is a
representation of Sn, i.e. the group of bijections [n]→ [n].

Theorem (Schur-Weyl duality)
Let W be a finite dimensional vector space, then there exists an
isomorphism of GL(W )×Sn-representations:

W⊗n =
⊕
λ`n

l(λ)≤dimW

Sλ(W )� Vλ

where Vλ is an irreducible representation of Sn indexed by a
partition λ = (λ1, λ2, . . . , λl(λ)) of n (i.e. λ1 + · · ·+ λl(λ) = n) and
Sλ is the Schur functor.

Example
For n = 2 we have W ⊗W = S2W ⊕ Λ2W .

Roberto Pagaria Betti numbers of configuration spaces Feb 22, 2022 12 / 25



The category of finite sets

Classical representation theory

For each representation V and n ∈ N, the vector space V [n] is a
representation of Sn, i.e. the group of bijections [n]→ [n].

Theorem (Schur-Weyl duality)
Let W be a finite dimensional vector space, then there exists an
isomorphism of GL(W )×Sn-representations:

W⊗n =
⊕
λ`n

l(λ)≤dimW

Sλ(W )� Vλ

where Vλ is an irreducible representation of Sn indexed by a
partition λ = (λ1, λ2, . . . , λl(λ)) of n (i.e. λ1 + · · ·+ λl(λ) = n) and
Sλ is the Schur functor.

Example
For n = 2 we have W ⊗W = S2W ⊕ Λ2W .

Roberto Pagaria Betti numbers of configuration spaces Feb 22, 2022 12 / 25



The category of finite sets

Classical representation theory

For each representation V and n ∈ N, the vector space V [n] is a
representation of Sn, i.e. the group of bijections [n]→ [n].

Theorem (Schur-Weyl duality)
Let W be a finite dimensional vector space, then there exists an
isomorphism of GL(W )×Sn-representations:

W⊗n =
⊕
λ`n

l(λ)≤dimW

Sλ(W )� Vλ

where Vλ is an irreducible representation of Sn indexed by a
partition λ = (λ1, λ2, . . . , λl(λ)) of n (i.e. λ1 + · · ·+ λl(λ) = n) and
Sλ is the Schur functor.

Example
For n = 2 we have W ⊗W = S2W ⊕ Λ2W .

Roberto Pagaria Betti numbers of configuration spaces Feb 22, 2022 12 / 25



The category of finite sets

The indecomposable projective representations

Definition
A Schur projective representation of weight k is Pλ for λ ` k
defined by

Pλ[n] = Sλ(Qn)

and each f : [n]→ [m] induces f̃ : Qn → Qm and the linear map
Sλ(f̃ ) : Pλ[n]→ Pλ[m].

The dimension of Pλ[n] is given by the Schur polynomial sλ(1n).

Example
The exact sequence of representations

· · · → P13 → P12 → P1 → P0 → 0
specialize on the object [n] to the Koszul complex

· · · → Λ3Qn → Λ2Qn → Qn → Q→ 0.
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The category of finite sets

The representations Dk

Definition
Let Dk be the kernel ker(P1k−1 → P1k−2)

The dimension of Dk [n] = V(n−k+1,1k−1) is
(n−1
k−1

)
(for k > 0).

Example
The representation P1 has D2 as a subrepresentation:

0→ D2 → P1 → D1 → 0.
On the object [n] (for n > 0) is

0→ V → Qn → Q→ 0
where V = 〈ei − ej〉. The sequence of FA-representation does not
split.

Roberto Pagaria Betti numbers of configuration spaces Feb 22, 2022 14 / 25



The category of finite sets

The representations Dk

Definition
Let Dk be the kernel ker(P1k−1 → P1k−2)

The dimension of Dk [n] = V(n−k+1,1k−1) is
(n−1
k−1

)
(for k > 0).

Example
The representation P1 has D2 as a subrepresentation:

0→ D2 → P1 → D1 → 0.
On the object [n] (for n > 0) is

0→ V → Qn → Q→ 0
where V = 〈ei − ej〉. The sequence of FA-representation does not
split.

Roberto Pagaria Betti numbers of configuration spaces Feb 22, 2022 14 / 25



The category of finite sets

The representations Cλ

Definition
Let λ ` k with λ1 > 1, the representation Cλ is defined by
Cλ[n] = 0 for n < k and Cλ[n] = IndSn

Sk×Sn−k
(Vλ � 1n−k).

The dimension of Cλ[n] is
(n
k

)
dimVλ =

(n
k

)
〈sλ, p1k 〉.

We say that Cλ is of weight k = |λ|.
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The category of finite sets

Some facts

Definition
A representation V is finitely generated if there is a finite set
{vi}i=1,...,N of elements vi ∈ V [ni ] such that 〈vi 〉i=1,...,N = V .

Theorem (Wiltshire-Gordon ’14)
I HomFA(Pλ,V ) ∼= HomSk

(Vλ,V [k]).
I The category of f.g. representations has the Jordan-Hölder

property.
I The indecomposable projective are {Pλ}λ.
I The irreducible representations are {Dk}k∈N and {Cλ}λ1>1.
I Let V be f.g., the sequence dimV [n] is polynomial in n for

n > 0.
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The category of finite sets

Definition
The skeleton filtration of V is the filtration {skk V }k defined by
skk V = 〈V [i ]〉i≤k .

Example
Recall that P1[n] = Qn, we have skk P1 = P1 for k ≥ 1 and
skk P1 = 0 otherwise. Therefore, gr1sk P1 = P1 is not semisimple.
Moreover the inclusion i : D2 ↪→ P1 induces the zero map
grsk(i) = 0 (indeed gr2skD2 = D2).

Lemma (P. ’20)
Let f : V →W be a morphism of FA-representations. Suppose
that V does not have composition factors of type D. Then
I grsk V is semisimple,
I the map f and grsk f have the same rank.
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The category of finite sets

Computing resolutions

Theorem (Assaf, Speyer ’18, Ryba ’18)
The minimal projective resolution of Cλ, λ ` k , is given by

0→ P1 → · · · → Pk−1 → Pλ → Cλ → 0,

where Pn =
⊕

µ`n P
cµλ
µ and the coefficients are

cµλ = 〈sλ′ , sµ′ [L]〉,
where L is the Lyndon symmetric function (i.e., the character of the
free Lie algebra).

Example
We have

0→ P(1,1) → P(2,1) ⊕ P(3) → P(4) → C(4) → 0,

and so Ext1(C(4),C(2)) = Q.
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The category of finite sets

Lemma (P. ’20)

The sign representation appears only in the first row E •,0n (M) (M
even dimensional).

Theorem (P. ’20)
For q > 0 the composition factors are

Ep,q(E) ∼
⊕

|λ|−`(λ)=q
w(λ)=p
k(λ)=|λ|

C
Ind

S|λ|
Z(λ)

ζλ
,

where the sum is taken over all partitions λ without blocks of size
one and label 1. Moreover

grnsk E
p,q(E) =

⊕
|λ|−`(λ)=q
w(λ)=p

k(λ)=|λ|=n

C
IndSn

Z(λ)
ζλ
.
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The category of finite sets

We have
gr•skH(E •,•(E), d) ∼= H(gr•sk E

•,•(E), gr d)

Example
The differential is d(Gi ,j) = xiyi − xiyj − xjyi + xjyj and the graded
differential is gr d(Gi ,j) = −xiyj − xjyi

We have grn Ep,q(E) = 0 for n ≤ q or 2(n − q) < p or n > 2q + p.

Corollary (P. ’20)
For q > 0 we have as Sn-representation
Hp,q(E •,•n (E), d) =

⊕
k

IndSn
Sk×Sn−k

Hp,q(grksk E
•,•
k (E), gr d)� 1n−k .

For q = 0 we have
Hp,0(E •,•(E), d) = P1p � Vp ⊕ P1p−1 � Vp−2
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The category of finite sets

Positivity of the coefficients

Lemma
Let f : N0 → N be a polynomial function, i.e. f ∈ C[x ]. Then
f (n) =

∑deg f
i=0 ai

(n
i

)
for some unique integer coefficients ai ∈ Z.

Example
For M = S3 we have H2(Confn(S3)) = H0,2(E •,•n (S3), d) and
H2(Conf•(S

3)) = D3 as FA-module. Therefore
dimH2(Confn(S3)) =

(n
2

)
−
(n
1

)
+
(n
0

)
.

Corollary (P. ’20)
For all n we have

dimHp,q(E •,•n (E), d) =
∑
k

(
n

k

)
dimHp,q(grksk E

•,•
n (E), gr d).
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The category of finite sets

We have
I gr2ksk Hk(E•(E)) = 0 for k > 0,
I gr2k−1

sk Hk(E•(E)) = 0 for k > 2,
I gr2k−2

sk Hk(E•(E)) = gr2k−2
sk H2,k−2(E•(E)) for k > 3.

Definition
A (k, a)-oyster partition is a partition of the type:

• • •
• • •
• • •
• •
• •

A (3, 2)-oyster partition (9, 8, 8, 7, 7, 1) of 40.
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The category of finite sets

Lower bound

Proposition (P. ’20)

The module grp+2q
sk Hp,q(E•(E)) contains:⊕

λ

C⊕k+1
Vλ

,

where the sum is taken over all (k, a)-oyster partition of p + 2q
(where p = 2a + k).

Example
The previous oyster partition guaranties (for p = 8 and q = 16)
that dim gr40

sk H
8,16(Conf40(E)) ≥ 4 · 34.720.785.648.417.726.000

and that
dim gr40

sk H
8,16(Confn(E)) ≥ 4 · 34.720.785.648.417.726.000

( n
40

)
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The category of finite sets

Theorem (P. ’20)
The Betti numbers of Confn(E) are:

b0 = 1,
b1 = 2n,

b2 = 2
(
n

3

)
+ 3
(
n

2

)
+ n,

b3 = 14
(
n

4

)
+ 8
(
n

3

)
+ 2
(
n

2

)
,

b4 = 32
(
n

6

)
+ 74

(
n

5

)
+ 33

(
n

4

)
+ 5
(
n

3

)
,

b5 = 63
(
n

8

)
+ 427

(
n

7

)
+ 490

(
n

6

)
+ 154

(
n

5

)
+ 18

(
n

4

)
,

bk = ck

(
n

2k − 2

)
+ o(n2k−2),

where ck ≥
(2k−3
k−3

)
.
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The category of finite sets

The lower bound ck ≥
(2k−3
k−3

)
is given by the (0, 1)-oyster partition

(k + 1, 1k−3) of 2k − 2.

Conjecture

The coefficient ck is equal to
(2k−3
k−3

)
.
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Thanks for listening!

roberto.pagaria@unibo.it
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