Roberto Pagaria
Università di Bologna

Asymptotic growth of Betti numbers of configuration spaces of an elliptic curve

at
Northeastern Topology Seminar

Ordered configuration spaces

Let X be a topological space. Define:

$$
\operatorname{Conf}_{n}(X):=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Ordered configuration spaces

Let X be a topological space. Define:

$$
\operatorname{Conf}_{n}(X):=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Example
$\operatorname{Conf}_{n}\left(S^{1}\right)=S^{1} \times \mathfrak{S}_{n-1} \times \mathbb{R}^{n-1}$.

Ordered configuration spaces

Let X be a topological space. Define:

$$
\operatorname{Conf}_{n}(X):=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Example
$\operatorname{Conf}_{n}\left(S^{1}\right)=S^{1} \times \mathfrak{S}_{n-1} \times \mathbb{R}^{n-1}$.

Example

$\operatorname{Conf}_{n}\left(\mathbb{R}^{2}\right)$ is the complement of the hyperplane arrangement of type A_{n-1}.

Delete a point

Theorem (Fadell, Neuwirth 1962)
If M is a manifold without boundary, then
$p: \operatorname{Conf}_{n}(M) \rightarrow \operatorname{Conf}_{n-1}(M)$ is a fibration with fibre $M \backslash\{n-1$ points $\}$.

Delete a point

Theorem (Fadell, Neuwirth 1962)
If M is a manifold without boundary, then
$p: \operatorname{Conf}_{n}(M) \rightarrow \operatorname{Conf}_{n-1}(M)$ is a fibration with fibre
$M \backslash\{n-1$ points $\}$.
Recall the long exact sequence of homotopy groups:

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then
$p: \operatorname{Conf}_{n}(M) \rightarrow \operatorname{Conf}_{n-1}(M)$ is a fibration with fibre
$M \backslash\{n-1$ points $\}$.
Recall the long exact sequence of homotopy groups:

$$
\cdots \rightarrow \pi_{n}(F) \rightarrow \pi_{n}(E) \rightarrow \pi_{n}(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots
$$

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S^{2} and $\mathbb{P}_{2}(\mathbb{R})$, then $\operatorname{Conf}_{n}(S)$ is a $K(\pi, 1)$.

Add a point

Theorem (Fadell, Neuwirth 1962)
If M is a non-compact manifold without boundary then the fibration $p: \operatorname{Conf}_{n}(M) \rightarrow \operatorname{Conf}_{n-1}(M)$ has a section.

Add a point

Theorem (Fadell, Neuwirth 1962)
If M is a non-compact manifold without boundary then the fibration $p: \operatorname{Conf}_{n}(M) \rightarrow \operatorname{Conf}_{n-1}(M)$ has a section.

The Euler characteristic

Theorem (Felix, Thomas 2000)
Let M be an even-dimensional manifold. Then

$$
\sum_{n=0}^{\infty} \frac{\chi\left(\operatorname{Conf}_{n}(M)\right)}{n!} u^{n}=(1+u)^{\chi(M)}
$$

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If M is a manifold that admits a non-zero vector field (i.e. $\chi(M)=0)$ then $\operatorname{dim} H^{i}\left(\operatorname{Conf}_{n}(M) ; \mathbb{Q}\right)$ is polynomial in n, for $n>0$.

Theorem (Ellenberg, Wiltshire-Gordon 2015)
If M is a manifold that admits a non-zero vector field (i.e. $\chi(M)=0)$ then $\operatorname{dim} H^{i}\left(\operatorname{Conf}_{n}(M) ; \mathbb{Q}\right)$ is polynomial in n, for $n>0$.

The map $f:[4] \rightarrow[3]$ is defined by $f(1)=1$, $f(2)=f(3)=f(4)=2$.

Ellenberg, Wiltshire-Gordon 2015 https://arxiv.org/abs/1508.02430

The Kriz model

Theorem (Kriz '94, Totaro '96)
Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}\left(E_{n}(M), \mathrm{d}\right) \simeq H^{\bullet}\left(\operatorname{Conf}_{n}(M) ; \mathbb{Q}\right)$.

The Kriz model

Theorem (Kriz '94, Totaro '96)
Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}\left(E_{n}(M), \mathrm{d}\right) \simeq H^{\bullet}\left(\operatorname{Conf}_{n}(M) ; \mathbb{Q}\right)$.

Let $E_{n}(M)$ be the exterior algebra on generators

- x_{i} for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree ($\operatorname{deg} x, 0$),
- $G_{i, j}$ for $i<j$ with degree $(0, d-1)$,

The Kriz model

Theorem (Kriz '94, Totaro '96)
Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}\left(E_{n}(M), \mathrm{d}\right) \simeq H^{\bullet}\left(\operatorname{Conf}_{n}(M) ; \mathbb{Q}\right)$.

Let $E_{n}(M)$ be the exterior algebra on generators

- x_{i} for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\operatorname{deg} x, 0)$,
- $G_{i, j}$ for $i<j$ with degree $(0, d-1)$,
and relations
- $\left(x_{i}-x_{j}\right) G_{i, j}=0$,
- $G_{i, j} G_{j, k}-G_{i, j} G_{i, k}+G_{j, k} G_{i, k}=0$.

The Kriz model

Theorem (Kriz '94, Totaro '96)

Let M be a smooth projective variety. There exists a dga $(E(M), \mathrm{d})$ such that $H^{\bullet}\left(E_{n}(M), \mathrm{d}\right) \simeq H^{\bullet}\left(\operatorname{Conf}_{n}(M) ; \mathbb{Q}\right)$.

Let $E_{n}(M)$ be the exterior algebra on generators

- x_{i} for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree ($\operatorname{deg} x, 0$),
- $G_{i, j}$ for $i<j$ with degree $(0, d-1)$,
and relations
- $\left(x_{i}-x_{j}\right) G_{i, j}=0$,
- $G_{i, j} G_{j, k}-G_{i, j} G_{i, k}+G_{j, k} G_{i, k}=0$.

The differential of degree $(d, 1-d)$ is given by

- $\mathrm{d}\left(x_{i}\right)=0$,
- $\mathrm{d}\left(G_{i, j}\right)=[\Delta]_{i, j}$.

Representation theory of the Kriz model

Let $\mathcal{E}=S^{1} \times S^{1}$ be an elliptic curve.
Theorem (Stanley '82, Lehrer, Solomon '86, Ashraf, Azam, Berceanu '12)
The action of \mathfrak{S}_{n} on the Kriz model is

$$
E_{n}^{p, q}(\mathcal{E}) \cong \bigoplus_{\substack{\lambda \vdash n \\ \ell(\lambda)=n-q \\ w(\lambda)=p}} \operatorname{lnd}_{Z(\lambda)}^{\mathcal{S}_{n}} \zeta_{\lambda} \boxtimes \alpha_{\lambda}
$$

where the sum is taken over all labelled partitions λ with blocks label by $\{1, x, y, x y\}$. The number $w(\lambda)$ is the sum of the degree of the labels.

An additive basis for $E_{n}^{\bullet \bullet \bullet}(\mathcal{E})$ is given by descending forests on [n] with connected components labels by $1, x, y$, or $x y$.

Example

This labelled forest F corresponds to the monomial $m(F)=G_{1,3} G_{2,3} x_{3} x_{4} y_{4}$.

An additive basis for $E_{n}^{\bullet \bullet}(\mathcal{E})$ is given by descending forests on [n] with connected components labels by $1, x, y$, or $x y$.

Example

This labelled forest F corresponds to the monomial $m(F)=G_{1,3} G_{2,3} x_{3} x_{4} y_{4}$. The monomial is in bidegree $(3,2)=(w(F), n-c . c .(F))$, where $w(F)$ is the sum of degrees of labels of F. We want to define $k(F)=n-\mid\{$ single vertices labelled with 1$\} \mid=4$, it coincides with the number of different indices in $m(F)$.

Main claim

We want to filter the dga $\left(E_{n}^{\bullet, \bullet}(\mathcal{E}), \mathrm{d}\right)$ with the subspaces generated by monomials $m(F)$ with $k(F) \leq k$.

Claim
The differential is strict with respect to this filtration.
This would simplify the computation of $H^{\bullet \bullet}\left(E_{n}^{\bullet \bullet}(\mathcal{E}), \mathrm{d}\right)$.
Q: How to prove the claim formally?

The category FA

Let FA be the category whose objects are the finite sets $[n]=\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$ and morphisms al the maps
$f:[n] \rightarrow[m]$.

The category FA

Let FA be the category whose objects are the finite sets $[n]=\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$ and morphisms al the maps
$f:[n] \rightarrow[m]$.

Definition

A representation of FA is a functor $V: \mathrm{FA} \rightarrow \mathrm{Vec}_{\mathbb{Q}}$, the category of (finite dimensional) \mathbb{Q}-vector spaces.

Equivalently, a representation is a collection of (finite dimensional) vector spaces $(V[n])_{n \in \mathbb{N}}$ and linear maps $f_{*}: V[n] \rightarrow V[m]$ for each $\operatorname{map} f \in \operatorname{Map}([n],[m])$ such that $(g \circ f)_{*}=g_{*} \circ f_{*}$.

The category FA

Let FA be the category whose objects are the finite sets $[n]=\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$ and morphisms al the maps
$f:[n] \rightarrow[m]$.

Definition

A representation of FA is a functor $V: \mathrm{FA} \rightarrow \mathrm{Vec}_{\mathbb{Q}}$, the category of (finite dimensional) \mathbb{Q}-vector spaces.

Equivalently, a representation is a collection of (finite dimensional) vector spaces $(V[n])_{n \in \mathbb{N}}$ and linear maps $f_{*}: V[n] \rightarrow V[m]$ for each $\operatorname{map} f \in \operatorname{Map}([n],[m])$ such that $(g \circ f)_{*}=g_{*} \circ f_{*}$.

Example

Let D_{0} be the representation given by $D_{0}[0]=\mathbb{Q}$ and $D_{0}[n]=0$ for $n>0$. This is a representation because $\operatorname{Map}([n],[0])=\emptyset$ for $n>0$.

Lemma (P. '20)

If $\chi(M)=0$, the Kriz model $E(M)=\bigoplus_{n \in \mathbb{N}} E_{n}(M)$ is a representation of FA with the action of $f:[n] \rightarrow[m]$ given by:

$$
f_{*}\left(x_{i}\right)=x_{f(i)} \quad f_{*}\left(G_{i, j}\right)= \begin{cases}0 & \text { if } f(i)=f(j) \\ G_{f(i), f(j)} & \text { otherwise }\end{cases}
$$

Proof.

If $f(i)=f(j)$ we have $d\left(f_{*}\left(G_{i, j}\right)\right)=0$ and

$$
f_{*}\left(\mathrm{~d}\left(G_{i, j}\right)\right)=f_{*}\left([\Delta]_{i, j}\right)=\chi(M)[M]_{f(i)},
$$

that vanishes if and only if $\chi(M)=0$ or $[M]=0$.

Classical representation theory

For each representation V and $n \in \mathbb{N}$, the vector space $V[n]$ is a representation of \mathfrak{S}_{n}, i.e. the group of bijections $[n] \rightarrow[n]$.

Classical representation theory

For each representation V and $n \in \mathbb{N}$, the vector space $V[n]$ is a representation of \mathfrak{S}_{n}, i.e. the group of bijections $[n] \rightarrow[n]$.

Theorem (Schur-Weyl duality)
Let W be a finite dimensional vector space, then there exists an isomorphism of $\mathrm{GL}(W) \times \mathfrak{S}_{n}$-representations:

$$
W^{\otimes n}=\bigoplus_{\substack{\lambda \vdash n \\ I(\lambda) \leq \operatorname{dim} W}} \mathbb{S}^{\lambda}(W) \boxtimes V_{\lambda}
$$

where V_{λ} is an irreducible representation of \mathfrak{S}_{n} indexed by a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{I(\lambda)}\right)$ of n (i.e. $\lambda_{1}+\cdots+\lambda_{l(\lambda)}=n$) and \mathbb{S}^{λ} is the Schur functor.

Classical representation theory

For each representation V and $n \in \mathbb{N}$, the vector space $V[n]$ is a representation of \mathfrak{S}_{n}, i.e. the group of bijections $[n] \rightarrow[n]$.

Theorem (Schur-Weyl duality)
Let W be a finite dimensional vector space, then there exists an isomorphism of $\mathrm{GL}(W) \times \mathfrak{S}_{n}$-representations:

$$
W^{\otimes n}=\bigoplus_{\substack{\lambda \vdash n \\ I(\lambda) \leq \operatorname{dim} W}} \mathbb{S}^{\lambda}(W) \boxtimes V_{\lambda}
$$

where V_{λ} is an irreducible representation of \mathfrak{S}_{n} indexed by a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{I(\lambda)}\right)$ of n (i.e. $\lambda_{1}+\cdots+\lambda_{l(\lambda)}=n$) and \mathbb{S}^{λ} is the Schur functor.

Example

For $n=2$ we have $W \otimes W=S^{2} W \oplus \Lambda^{2} W$.

The indecomposable projective representations

Definition

A Schur projective representation of weight k is \mathbb{P}_{λ} for $\lambda \vdash k$ defined by

$$
\mathbb{P}_{\lambda}[n]=\mathbb{S}^{\lambda}\left(\mathbb{Q}^{n}\right)
$$

and each $f:[n] \rightarrow[m]$ induces $\tilde{f}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{m}$ and the linear map $\mathbb{S}^{\lambda}(\tilde{f}): \mathbb{P}_{\lambda}[n] \rightarrow \mathbb{P}_{\lambda}[m]$.

The dimension of $\mathbb{P}_{\lambda}[n]$ is given by the Schur polynomial $s_{\lambda}\left(1^{n}\right)$.

The indecomposable projective representations

Definition

A Schur projective representation of weight k is \mathbb{P}_{λ} for $\lambda \vdash k$ defined by

$$
\mathbb{P}_{\lambda}[n]=\mathbb{S}^{\lambda}\left(\mathbb{Q}^{n}\right)
$$

and each $f:[n] \rightarrow[m]$ induces $\tilde{f}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{m}$ and the linear map $\mathbb{S}^{\lambda}(\tilde{f}): \mathbb{P}_{\lambda}[n] \rightarrow \mathbb{P}_{\lambda}[m]$.

The dimension of $\mathbb{P}_{\lambda}[n]$ is given by the Schur polynomial $s_{\lambda}\left(1^{n}\right)$.

Example

The exact sequence of representations

$$
\cdots \rightarrow \mathbb{P}_{1^{3}} \rightarrow \mathbb{P}_{1^{2}} \rightarrow \mathbb{P}_{1} \rightarrow \mathbb{P}_{0} \rightarrow 0
$$

specialize on the object $[n$] to the Koszul complex

$$
\cdots \rightarrow \Lambda^{3} \mathbb{Q}^{n} \rightarrow \Lambda^{2} \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{n} \rightarrow \mathbb{Q} \rightarrow 0
$$

The representations D_{k}

Definition

Let D_{k} be the kernel $\operatorname{ker}\left(\mathbb{P}_{1^{k-1}} \rightarrow \mathbb{P}_{1^{k-2}}\right)$
The dimension of $D_{k}[n]=V_{\left(n-k+1,1^{k-1}\right)}$ is $\binom{n-1}{k-1}($ for $k>0)$.

The representations D_{k}

Definition

Let D_{k} be the kernel $\operatorname{ker}\left(\mathbb{P}_{1^{k-1}} \rightarrow \mathbb{P}_{1^{k-2}}\right)$
The dimension of $D_{k}[n]=V_{\left(n-k+1,1^{k-1}\right)}$ is $\binom{n-1}{k-1}($ for $k>0)$.

Example

The representation \mathbb{P}_{1} has D_{2} as a subrepresentation:

$$
0 \rightarrow D_{2} \rightarrow \mathbb{P}_{1} \rightarrow D_{1} \rightarrow 0
$$

On the object $[n]($ for $n>0)$ is

$$
0 \rightarrow V \rightarrow \mathbb{Q}^{n} \rightarrow \mathbb{Q} \rightarrow 0
$$

where $V=\left\langle e_{i}-e_{j}\right\rangle$. The sequence of FA-representation does not split.

The representations C_{λ}

Definition

Let $\lambda \vdash k$ with $\lambda_{1}>1$, the representation C_{λ} is defined by $C_{\lambda}[n]=0$ for $n<k$ and $C_{\lambda}[n]=\operatorname{Ind}_{\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}}^{\mathfrak{S}_{n}}\left(V_{\lambda} \boxtimes 1_{n-k}\right)$.

The representations C_{λ}

Definition

Let $\lambda \vdash k$ with $\lambda_{1}>1$, the representation C_{λ} is defined by $C_{\lambda}[n]=0$ for $n<k$ and $C_{\lambda}[n]=\operatorname{Ind}_{\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}}^{\mathfrak{S}_{n}}\left(V_{\lambda} \boxtimes 1_{n-k}\right)$.

The dimension of $C_{\lambda}[n]$ is $\binom{n}{k} \operatorname{dim} V_{\lambda}=\binom{n}{k}\left\langle s_{\lambda}, p_{1^{k}}\right\rangle$. We say that C_{λ} is of weight $k=|\lambda|$.

Some facts

Definition

A representation V is finitely generated if there is a finite set $\left\{v_{i}\right\}_{i=1, \ldots, N}$ of elements $v_{i} \in V\left[n_{i}\right]$ such that $\left\langle v_{i}\right\rangle_{i=1, \ldots, N}=V$.

Some facts

Definition

A representation V is finitely generated if there is a finite set $\left\{v_{i}\right\}_{i=1, \ldots, N}$ of elements $v_{i} \in V\left[n_{i}\right]$ such that $\left\langle v_{i}\right\rangle_{i=1, \ldots, N}=V$.

Theorem (Wiltshire-Gordon '14)
$-\operatorname{Hom}_{F A}\left(\mathbb{P}_{\lambda}, V\right) \cong \operatorname{Hom}_{\mathfrak{S}_{k}}\left(V_{\lambda}, V[k]\right)$.

- The category of f.g. representations has the Jordan-Hölder property.
- The indecomposable projective are $\left\{\mathbb{P}_{\lambda}\right\}_{\lambda}$.
- The irreducible representations are $\left\{D_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{C_{\lambda}\right\}_{\lambda_{1}>1}$.
- Let V be f.g., the sequence $\operatorname{dim} V[n]$ is polynomial in n for $n>0$.

Definition

The skeleton filtration of V is the filtration $\left\{\mathrm{sk}_{k} V\right\}_{k}$ defined by $\mathrm{sk}_{k} V=\langle V[i]\rangle_{i \leq k}$.

Definition

The skeleton filtration of V is the filtration $\left\{\mathrm{sk}_{k} V\right\}_{k}$ defined by $\mathrm{sk}_{k} V=\langle V[i]\rangle_{i \leq k}$.

Example

Recall that $\mathbb{P}_{1}[n]=\mathbb{Q}^{n}$, we have $\mathrm{sk}_{k} \mathbb{P}_{1}=\mathbb{P}_{1}$ for $k \geq 1$ and $\mathrm{sk}_{k} \mathbb{P}_{1}=0$ otherwise. Therefore, $\mathrm{gr}_{\mathrm{sk}}^{1} \mathbb{P}_{1}=\mathbb{P}_{1}$ is not semisimple. Moreover the inclusion $i: D_{2} \hookrightarrow \mathbb{P}_{1}$ induces the zero map $\mathrm{gr}_{\mathrm{sk}}(i)=0$ (indeed $\mathrm{gr}_{\mathrm{sk}}^{2} D_{2}=D_{2}$).

Definition

The skeleton filtration of V is the filtration $\left\{\mathrm{sk}_{k} V\right\}_{k}$ defined by $\mathrm{sk}_{k} V=\langle V[i]\rangle_{i \leq k}$.

Example

Recall that $\mathbb{P}_{1}[n]=\mathbb{Q}^{n}$, we have $\mathrm{sk}_{k} \mathbb{P}_{1}=\mathbb{P}_{1}$ for $k \geq 1$ and $\mathrm{sk}_{k} \mathbb{P}_{1}=0$ otherwise. Therefore, $\mathrm{gr}_{\mathrm{sk}}^{1} \mathbb{P}_{1}=\mathbb{P}_{1}$ is not semisimple. Moreover the inclusion $i: D_{2} \hookrightarrow \mathbb{P}_{1}$ induces the zero map $\mathrm{gr}_{\mathrm{sk}}(i)=0\left(\right.$ indeed $\mathrm{gr}_{\mathrm{sk}}^{2} D_{2}=D_{2}$).

Lemma (P. '20)
Let $f: V \rightarrow W$ be a morphism of FA-representations. Suppose that V does not have composition factors of type D. Then

- $\mathrm{gr}_{\mathrm{sk}} V$ is semisimple,
- the map f and $\mathrm{gr}_{\text {sk }} f$ have the same rank.

Computing resolutions

Theorem (Assaf, Speyer '18, Ryba '18)
The minimal projective resolution of $C_{\lambda}, \lambda \vdash k$, is given by

$$
0 \rightarrow \mathbb{P}^{1} \rightarrow \cdots \rightarrow \mathbb{P}^{k-1} \rightarrow \mathbb{P}_{\lambda} \rightarrow C_{\lambda} \rightarrow 0
$$

where $\mathbb{P}^{n}=\bigoplus_{\mu \vdash n} \mathbb{P}_{\mu}^{c_{\lambda}^{\mu}}$ and the coefficients are

$$
c_{\lambda}^{\mu}=\left\langle s_{\lambda^{\prime}}, s_{\mu^{\prime}}[L]\right\rangle
$$

where L is the Lyndon symmetric function (i.e., the character of the free Lie algebra).

Computing resolutions

Theorem (Assaf, Speyer '18, Ryba '18)
The minimal projective resolution of $C_{\lambda}, \lambda \vdash k$, is given by

$$
0 \rightarrow \mathbb{P}^{1} \rightarrow \cdots \rightarrow \mathbb{P}^{k-1} \rightarrow \mathbb{P}_{\lambda} \rightarrow C_{\lambda} \rightarrow 0
$$

where $\mathbb{P}^{n}=\bigoplus_{\mu \vdash n} \mathbb{P}_{\mu}^{c_{\lambda}^{\mu}}$ and the coefficients are

$$
c_{\lambda}^{\mu}=\left\langle s_{\lambda^{\prime}}, s_{\mu^{\prime}}[L]\right\rangle
$$

where L is the Lyndon symmetric function (i.e., the character of the free Lie algebra).

Example
We have

$$
0 \rightarrow \mathbb{P}_{(1,1)} \rightarrow \mathbb{P}_{(2,1)} \oplus \mathbb{P}_{(3)} \rightarrow \mathbb{P}_{(4)} \rightarrow C_{(4)} \rightarrow 0
$$

and so $\operatorname{Ext}^{1}\left(C_{(4)}, C_{(2)}\right)=\mathbb{Q}$.

Lemma (P. '20)

The sign representation appears only in the first row $E_{n}^{\bullet, 0}(M)$ (M even dimensional).

Lemma (P. '20)

The sign representation appears only in the first row $E_{n}^{\bullet, 0}(M)$ (M even dimensional).

Theorem (P. '20)

For $q>0$ the composition factors are

$$
E^{p, q}(\mathcal{E}) \sim \bigoplus_{\begin{array}{c}
|\lambda|-\ell(\lambda)=q \\
(\lambda)=p \\
k(\lambda)=|\lambda|
\end{array}} C_{\operatorname{Ind}_{Z(\lambda)}^{\mathcal{E}}|\lambda|} \zeta_{\lambda},
$$

where the sum is taken over all partitions λ without blocks of size one and label 1. Moreover

$$
\mathrm{gr}_{\mathrm{sk}}^{n} E^{p, q}(\mathcal{E})=\bigoplus_{\substack{|\lambda|-\ell(\lambda)=q \\ w(\lambda)=p \\ k(\lambda)=|\lambda|=n}} C_{\operatorname{Ind}_{Z(\lambda)}^{\mathcal{S}_{n}} \zeta_{\lambda}}
$$

We have

$$
\mathrm{gr}_{\mathrm{sk}}^{\bullet} H\left(E^{\bullet \bullet \bullet}(\mathcal{E}), \mathrm{d}\right) \cong H\left(\mathrm{gr}_{\mathrm{sk}}^{\bullet} E^{\bullet \bullet \bullet}(\mathcal{E}), \operatorname{grd}\right)
$$

We have

$$
\mathrm{gr}_{\mathrm{sk}}^{\bullet} H\left(E^{\bullet, \bullet}(\mathcal{E}), \mathrm{d}\right) \cong H\left(\mathrm{gr}_{\mathrm{sk}}^{\bullet} E^{\bullet \bullet \bullet}(\mathcal{E}), \operatorname{grd}\right)
$$

Example

The differential is $\mathrm{d}\left(G_{i, j}\right)=x_{i} y_{i}-x_{i} y_{j}-x_{j} y_{i}+x_{j} y_{j}$ and the graded differential is $\operatorname{grd}\left(G_{i, j}\right)=-x_{i} y_{j}-x_{j} y_{i}$

We have

$$
\mathrm{gr}_{\mathrm{sk}}^{\bullet} H\left(E^{\bullet \bullet \bullet}(\mathcal{E}), \mathrm{d}\right) \cong H\left(\mathrm{gr}_{\mathrm{sk}}^{\bullet} E^{\bullet \bullet \bullet}(\mathcal{E}), \operatorname{grd}\right)
$$

Example

The differential is $\mathrm{d}\left(G_{i, j}\right)=x_{i} y_{i}-x_{i} y_{j}-x_{j} y_{i}+x_{j} y_{j}$ and the graded differential is $\operatorname{grd}\left(G_{i, j}\right)=-x_{i} y_{j}-x_{j} y_{i}$

We have $\operatorname{gr}^{n} E^{p, q}(\mathcal{E})=0$ for $n \leq q$ or $2(n-q)<p$ or $n>2 q+p$.

We have

$$
\mathrm{gr}_{\mathrm{sk}}^{\bullet} H\left(E^{\bullet \bullet \bullet}(\mathcal{E}), \mathrm{d}\right) \cong H\left(\mathrm{gr}_{\mathrm{sk}}^{\bullet} E^{\bullet \bullet \bullet}(\mathcal{E}), \operatorname{grd}\right)
$$

Example

The differential is $\mathrm{d}\left(G_{i, j}\right)=x_{i} y_{i}-x_{i} y_{j}-x_{j} y_{i}+x_{j} y_{j}$ and the graded differential is $\operatorname{grd}\left(G_{i, j}\right)=-x_{i} y_{j}-x_{j} y_{i}$

We have $\operatorname{gr}^{n} E^{p, q}(\mathcal{E})=0$ for $n \leq q$ or $2(n-q)<p$ or $n>2 q+p$.
Corollary (P. '20)
For $q>0$ we have as \mathfrak{S}_{n}-representation

$$
H^{p, q}\left(E_{n}^{\bullet, \bullet}(\mathcal{E}), \mathrm{d}\right)=\bigoplus_{k} \operatorname{lnd}_{\mathfrak{S}_{k} \times \mathfrak{S}_{n-k}} H^{p, q}\left(\operatorname{gr}_{\mathrm{sk}}^{k} E_{k}^{\bullet, \bullet}(\mathcal{E}), \operatorname{grd}\right) \boxtimes 1_{n-k} .
$$

For $q=0$ we have

$$
H^{p, 0}\left(E^{\bullet, \bullet}(\mathcal{E}), \mathrm{d}\right)=\mathbb{P}_{1^{p}} \boxtimes \mathbb{V}_{p} \oplus \mathbb{P}_{1^{p-1}} \boxtimes \mathbb{V}_{p-2}
$$

Positivity of the coefficients

Lemma

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}$ be a polynomial function, i.e. $f \in \mathbb{C}[x]$. Then $f(n)=\sum_{i=0}^{\operatorname{deg} f} a_{i}\binom{n}{i}$ for some unique integer coefficients $a_{i} \in \mathbb{Z}$.

Positivity of the coefficients

Lemma

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}$ be a polynomial function, i.e. $f \in \mathbb{C}[x]$. Then $f(n)=\sum_{i=0}^{\operatorname{deg} f} a_{i}\binom{n}{i}$ for some unique integer coefficients $a_{i} \in \mathbb{Z}$.

Example

For $M=S^{3}$ we have $H^{2}\left(\operatorname{Conf}_{n}\left(S^{3}\right)\right)=H^{0,2}\left(E_{n}^{\bullet, \bullet}\left(S^{3}\right), \mathrm{d}\right)$ and $H^{2}\left(\right.$ Conf. $\left._{\bullet}\left(S^{3}\right)\right)=D_{3}$ as FA-module. Therefore $\operatorname{dim} H^{2}\left(\operatorname{Conf}_{n}\left(S^{3}\right)\right)=\binom{n}{2}-\binom{n}{1}+\binom{n}{0}$.

Positivity of the coefficients

Lemma

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}$ be a polynomial function, i.e. $f \in \mathbb{C}[x]$. Then $f(n)=\sum_{i=0}^{\operatorname{deg} f} a_{i}\binom{n}{i}$ for some unique integer coefficients $a_{i} \in \mathbb{Z}$.

Example

For $M=S^{3}$ we have $H^{2}\left(\operatorname{Conf}_{n}\left(S^{3}\right)\right)=H^{0,2}\left(E_{n}^{\bullet, \bullet}\left(S^{3}\right), \mathrm{d}\right)$ and $H^{2}\left(\operatorname{Conf}_{\bullet}\left(S^{3}\right)\right)=D_{3}$ as FA-module. Therefore $\operatorname{dim} H^{2}\left(\operatorname{Conf}_{n}\left(S^{3}\right)\right)=\binom{n}{2}-\binom{n}{1}+\binom{n}{0}$.

Corollary (P. '20)
For all n we have

$$
\operatorname{dim} H^{p, q}\left(E_{n}^{\bullet, \bullet}(\mathcal{E}), \mathrm{d}\right)=\sum_{k}\binom{n}{k} \operatorname{dim} H^{p, q}\left(\operatorname{gr}_{\mathrm{sk}}^{k} E_{n}^{\bullet, \bullet}(\mathcal{E}), \operatorname{grd}\right)
$$

We have

- $\operatorname{gr}_{\mathrm{sk}}^{2 k} H^{k}\left(E_{\bullet}(\mathcal{E})\right)=0$ for $k>0$,
- $\operatorname{gr}_{\mathrm{sk}}^{2 k-1} H^{k}\left(E_{0}(\mathcal{E})\right)=0$ for $k>2$,
$-\operatorname{gr}_{\mathrm{sk}}^{2 k-2} H^{k}\left(E_{\mathbf{0}}(\mathcal{E})\right)=\mathrm{gr}_{\mathrm{sk}}^{2 k-2} H^{2, k-2}\left(E_{\mathbf{0}}(\mathcal{E})\right)$ for $k>3$.

We have
$-\operatorname{gr}_{\mathrm{sk}}^{2 k} H^{k}\left(E_{\mathbf{0}}(\mathcal{E})\right)=0$ for $k>0$,

- $\operatorname{gr}_{\mathrm{sk}}^{2 k-1} H^{k}\left(E_{0}(\mathcal{E})\right)=0$ for $k>2$,
$-\operatorname{gr}_{\mathrm{sk}}^{2 k-2} H^{k}\left(E_{\mathbf{\bullet}}(\mathcal{E})\right)=\operatorname{gr}_{\mathrm{sk}}^{2 k-2} H^{2, k-2}\left(E_{\mathbf{\bullet}}(\mathcal{E})\right)$ for $k>3$.

Definition

A (k, a)-oyster partition is a partition of the type:

A (3, 2)-oyster partition $(9,8,8,7,7,1)$ of 40 .

Lower bound

Proposition (P. '20)

The module $\mathrm{gr}_{\mathrm{sk}}^{p+2 q} H^{p, q}\left(E_{\bullet}(\mathcal{E})\right)$ contains:

$$
\bigoplus_{\lambda} C_{V_{\lambda}}^{\oplus k+1}
$$

where the sum is taken over all (k, a)-oyster partition of $p+2 q$ (where $p=2 a+k$).

Lower bound

Proposition (P. '20)

The module $\mathrm{gr}_{\mathrm{sk}}^{p+2 q} H^{p, q}\left(E_{\bullet}(\mathcal{E})\right)$ contains:

$$
\bigoplus_{\lambda} C_{V_{\lambda}}^{\oplus k+1}
$$

where the sum is taken over all (k, a)-oyster partition of $p+2 q$ (where $p=2 a+k$).

Example

The previous oyster partition guaranties (for $p=8$ and $q=16$) that dim $\operatorname{gr}_{s k}^{40} H^{8,16}\left(\operatorname{Conf}_{40}(\mathcal{E})\right) \geq 4 \cdot 34.720 .785 .648 .417 .726 .000$ and that $\operatorname{dim} g r_{s k}^{40} H^{8,16}\left(\operatorname{Conf}_{n}(\mathcal{E})\right) \geq 4 \cdot 34.720 .785 .648 .417 .726 .000\binom{n}{40}$

Theorem (P. '20)

The Betti numbers of $\operatorname{Conf}_{n}(\mathcal{E})$ are:

$$
\begin{aligned}
& b_{0}=1, \\
& b_{1}=2 n, \\
& b_{2}=2\binom{n}{3}+3\binom{n}{2}+n, \\
& b_{3}=14\binom{n}{4}+8\binom{n}{3}+2\binom{n}{2}, \\
& b_{4}=32\binom{n}{6}+74\binom{n}{5}+33\binom{n}{4}+5\binom{n}{3}, \\
& b_{5}=63\binom{n}{8}+427\binom{n}{7}+490\binom{n}{6}+154\binom{n}{5}+18\binom{n}{4}, \\
& b_{k}=c_{k}\binom{n}{2 k-2}+o\left(n^{2 k-2}\right),
\end{aligned}
$$

where $c_{k} \geq\binom{ 2 k-3}{k-3}$.

The lower bound $c_{k} \geq\binom{ 2 k-3}{k-3}$ is given by the $(0,1)$-oyster partition $\left(k+1,1^{k-3}\right)$ of $2 k-2$.

Conjecture
The coefficient c_{k} is equal to $\binom{2 k-3}{k-3}$.

Thanks for listening!

roberto.pagaria@unibo.it

