
Cohomology of configuration spaces of points
on the 2-torus



Introduction

Let E be an elliptic curve. Define:
Cn(E) ∶= {(p1, . . . , pn) ∈ En ∣ pi ≠ pj}
UCn(E) ∶= {X ⊂ E ∣ ∣X∣ = n} ≃ Cn(E)/Sn

We will compute the cohomology ring H●(UCn(E)).

Motivation:
It is open in the Hilbert scheme.
It is related to the motion planning problem.
It is an example of elliptic arrangement.
It is related to configurations in higher genus.

Our plan:
Leray spectral sequence for Cn(E)↪ En.
Mixed Hodge theory for the degeneration of SS (Kriz model).
Representation theory of Sn to compute the model for UCn(E).
Some non-trivial computations (not shown).
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The Leray Spectral Sequence

What is a spectral sequence?

It is a collection (Em,dm)m∈N of CDGA such that Em+1 = H(Em,dm).
... 0 0

...
... . .

.

2 Q2 0 0 0 ⋯
1 Q3 Q6 Q3 0 ⋯
0 Q Q4 Q6 Q4 Q

0 1 2 3 4

Figure: The bigraded algebra E2 .

The differential dm has degree (m,1 −m).
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The Leray Spectral Sequence

The Leray SS

Let j ∶X → Y be a continuous map and F be a sheaf on X. Define the
higher direct image sheaves Rq j∗F on Y by

U ↦ Hq(j−1U,F).
Theorem (Leray ’46)
There exists a SS (Em,dm) such that:

Ep,q2 = Hp(Y,Rq j∗F)
Hk(X,F) =⊕p+q=k Ep,q∞

We apply this to j ∶ Cn(E)↪ En and F = QCn(E).
In this case we have

Rq j∗QCn(E) = ⊕
codimW=qQW ⊗Hq(Cq(C)),

where W ≃ En−q.
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Mixed Hodge theory

Kähler varieties have a decomposition of the cohomology
Hk(X) = ⊕

p+q=kH
p,q(X)

with Hp,q(X) = Hq,p(X).

Example

Let X = C∗ ∼ S1. The cohomology H1(C∗) = C cannot have such a
decomposition.

Anyway we have H1(C∗) = H1,1(C∗).

Theorem (Deligne ’74)
For algebraic varieties there exists a functorial decomposition:

Hk(X) = 2dimX⊕
w=0 ⊕

p+q=w H
p,q(X).

All “natural maps” preserve the weights w .
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Mixed Hodge theory

Properties

The Mixed Hodge Structure satisfies:
Hk(X) has weights in [0,2k].

If X is compact then Hk(X) has weights in [0, k].
If X is smooth then Hk(X) has weights in [k,2k].
The module Hk(Cq(C)) has only the weight 2k .

In our case
Hp(Rq j∗QCn(E)) = ⊕

codimW=qH
p(W )⊗Hq(Cq(C))

has only the weight p + 2q.
Corollary

The map dm ∶Ep,qm → Ep+m,q+1−mm is zero for m > 2.
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The Krǐz model

The Krǐz model

Theorem (Krǐz ’94, Bibby ’15, Dupont ’15)
The CDGA (E2,d2) is a model for H●(Cn(E)).

We describe (E2,d2) explicitly: E2 is the external algebra on
generators

xi , yi with degree (1,0),
ωi ,j for i < j with degree (0,1),

and relations
(xi − xj)ωi ,j = 0 and (yi − yj)ωi ,j = 0,
ωi ,jωj,k −ωi ,jωi ,k +ωj,kωi ,k = 0.

The differential is given by
d2(xi) = d2(yi) = 0,
d2(ωi ,j) = (xi − xj)(yi − yj).
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Representation theory

Action of the symmetric group

The action of σ ∈ Sn on E2 is given by σxi = xσ−1(i), σyi = yσ−1(i), and
σωi ,j = ωσ−1(i),σ−1(j).

Theorem (Ashraf, Azam, Berceanu ’12)
The Krǐz model decomposes as

Ep,q2 = ⊕∣L∗∣=q,∣H∗∣=p
IndSnZL∗ ,H∗ ξL∗,H∗ .

n

2n(0,0)

(p, p + 1)

Corollary (P. ’18)

For q > p + 1 we have (Ep,q2 )Sn = 0
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Representation theory

The Betti numbers

Let Tn(t) be the truncation at degree n of

T (t) = 1 + t3
(1 − t2)2 = 1 + 2t2 + t3 + 3t4 + 2t5 + 4t6 . . .

Theorem (Drummond-Cole, Knudsen ’17, Maguire ’16, Schiessl ’16)

The Poincaré polynomial of UCn(E) is (1 + t)2Tn−1(t).

The group E acts on Cn(E) by translation, so
Cn(E) ≃ E × Cn(E)/E.

We need to study only Cn(E)/E ≃ Cn−1(E ∖ p) that has Poincaré
polynomial equal to Tn−1(t).
The model E2 for Cn(E)/E differs from that of Cn(E) by adding the
relations ∑i xi = 0 and ∑ yi = 0.
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Representation theory

Action of the MPC

The mapping class group MCG(E) ∼ SL2(Z) acts on Cn(E) and
therefore on E2 as follows:

ωi ,j are invariants.
⟨xi , yi ⟩ is invariant and isomorphic to the irreducible
representation V1.

This action extends to SL2(Q).
Recall that the irreducible representations of SL2(Q) are Vn = SnV1 of
dimension n + 1.
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Representation theory

Theorem (P. ’18)

The cohomology H(ESn2 ,d2), for n = 2p, is:
p − 1 Vp−1 Vp−2
... . .

.
. .
.

2 V2 V1
1 V1 V0
0 V0

0 1 2 3 ⋯ p
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Representation theory

Sketch of proof.
Consider the elements α ∈ E1,12 and β ∈ E1,22 defined by:

α ∶= ∑
i ,k<h
(xi − xk)ωk,h

β ∶= ∑
i ,j,k<h

(3xi − xj − 2xk)(yj − yk)ωk,h
The cohomology H(ESn2 ,d2) is generated as SL2(Q)-module by αk
and αkβ.

Corollary (P. ’18)
The cohomology algebra H(UCn(E)) is given by H(E)⊗S●V1[β] with
relations

for n = 2p: αp = αp−1β = β2 = 0.
for n = 2p + 1: αp+1 = αp−1β = β2 = 0.

Moreover, UCn(E) is a formal space.
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Graphic elliptic arrangements

Graphic elliptic arrangements

Let G = ([n],E) be a graph. Define
MG ∶= {(p1, . . . , pn) ∈ En ∣ pi ≠ pj for (i , j) ∈ E}.

Consider the Leray SS associated with MG ↪ En; we have
E3(MG) = E∞(MG) = H(MG).

The model (E2(MG),d2) is given by the
generators

xi , yi with degree (1,0),
ωi ,j for (i , j) ∈ E with degree (0,1),

and relations
(xi − xj)ωi ,j = 0 and (yi − yj)ωi ,j = 0,
∑i∈C(−1)iωc1,c2ωc2,c3 . . .ωci−1,ciωci+1,ci+2 . . .ωcn,c1 = 0 for every cycle
(circuit) C of G.

The differential is given by
d2(xi) = d2(yi) = 0,
d2(ωi ,j) = (xi − xj)(yi − yj).
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The differential is given by
d2(xi) = d2(yi) = 0,
d2(ωi ,j) = (xi − xj)(yi − yj).
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Graphic elliptic arrangements

As done before we add the relations ∑i xi = ∑i yi = 0. The third page
E3(MG) is non-zero only when p + q < n,

n − 1

2n − 2n − 1
because MG/E has the homotopy type of a CW-complex of
dimension n − 1.
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Graphic elliptic arrangements

Suppose now that G has no cycles (circuits) of length ≤ k .
Conjecture
The groups Ep,q3 (MG) are zero for p + q < k and q > 0.

n − 1

2n − 2n − 1

This conjecture is equivalent to one of the following:
Hi(En ∖MG) has pure mixed Hodge structure for i > 2n − k .
computing the dimension of Λ●(xi , yi)/((xi − xj)(yi − yj))(i ,j)∈E in
degree less than k + 2.
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Thanks for listening!

roberto.pagaria@gmail.com
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