Roberto Pagaria ^{Università di Bologna}

Representation theory and configuration spaces

Seminar on Combinatorics, Lie Theory, and Topology

December 9, 2020

Talk is being recorded.

Covered topics:

The category of finite sets

Ordered configuration spaces

The algebraic model

The category F

Let F be the category whose objects are the finite sets $[n] = \{1, 2, ..., n\}$ for $n \in \mathbb{N}$ and morphisms al the maps $f : [n] \rightarrow [m]$.

The category F

Let F be the category whose objects are the finite sets $[n] = \{1, 2, ..., n\}$ for $n \in \mathbb{N}$ and morphisms al the maps $f : [n] \rightarrow [m]$.

Definition

A representation of F is a functor $V : F \to Vec_{\mathbb{Q}}$, the category of (finite dimensional) \mathbb{Q} -vector spaces.

Equivalently, a representation is a collection of (finite dimensional) vector spaces $(V[n])_{n \in \mathbb{N}}$ and linear maps $f_* : V[n] \to V[m]$ for each map $f \in Map([n], [m])$ such that $(g \circ f)_* = g_* \circ f_*$.

The category F

Let F be the category whose objects are the finite sets $[n] = \{1, 2, ..., n\}$ for $n \in \mathbb{N}$ and morphisms al the maps $f : [n] \rightarrow [m]$.

Definition

A representation of F is a functor $V : F \to Vec_{\mathbb{Q}}$, the category of (finite dimensional) \mathbb{Q} -vector spaces.

Equivalently, a representation is a collection of (finite dimensional) vector spaces $(V[n])_{n \in \mathbb{N}}$ and linear maps $f_* : V[n] \to V[m]$ for each map $f \in Map([n], [m])$ such that $(g \circ f)_* = g_* \circ f_*$.

Example

Let D_0 be the representation given by $D_0[0] = \mathbb{Q}$ and $D_0[n] = 0$ for n > 0. This is a representation because $Map([n], [0]) = \emptyset$ for n > 0.

Classical representation theory

For each representation V and $n \in \mathbb{N}$, the vector space V[n] is a representation of \mathfrak{S}_n , i.e. the group of bijections $[n] \to [n]$.

Classical representation theory

For each representation V and $n \in \mathbb{N}$, the vector space V[n] is a representation of \mathfrak{S}_n , i.e. the group of bijections $[n] \to [n]$.

Theorem (Schur-Weyl duality)

Let W be a finite dimensional vector space, then there exists an isomorphism of $GL(W) \times \mathfrak{S}_n$ -representations:

$$W^{\otimes n} = igoplus_{\lambda dash n} igoplus_{\lambda dash n} \mathbb{S}^{\lambda}(W) oxtimes V_{\lambda}$$

 $I(\lambda) \leq \dim W$

where V_{λ} is an irreducible representation of \mathfrak{S}_n indexed by a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_{l(\lambda)})$ of n (i.e. $\lambda_1 + \dots + \lambda_{l(\lambda)} = n$) and \mathbb{S}^{λ} is the Schur functor.

Classical representation theory

For each representation V and $n \in \mathbb{N}$, the vector space V[n] is a representation of \mathfrak{S}_n , i.e. the group of bijections $[n] \to [n]$.

Theorem (Schur-Weyl duality)

Let W be a finite dimensional vector space, then there exists an isomorphism of $GL(W) \times \mathfrak{S}_n$ -representations:

$$W^{\otimes n} = igoplus_{\substack{\lambda \vdash n \ I(\lambda) \leq \dim W}} \mathbb{S}^{\lambda}(W) \boxtimes V_{\lambda}$$

where V_{λ} is an irreducible representation of \mathfrak{S}_n indexed by a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_{l(\lambda)})$ of n (i.e. $\lambda_1 + \dots + \lambda_{l(\lambda)} = n$) and \mathbb{S}^{λ} is the Schur functor.

Example

For n = 2 we have $W \otimes W = S^2 W \oplus \Lambda^2 W$.

The indecomposable projective representations

Definition

A Schur projective representation of weight k is \mathbb{P}_λ for $\lambda \vdash k$ defined by

$$\mathbb{P}_{\lambda}[n] = \mathbb{S}^{\lambda}(\mathbb{Q}^n)$$

and each $f: [n] \to [m]$ induces $\tilde{f}: \mathbb{Q}^n \to \mathbb{Q}^m$ and the linear map $\mathbb{S}^{\lambda}(\tilde{f}): \mathbb{P}_{\lambda}[n] \to \mathbb{P}_{\lambda}[m]$.

The dimension of $\mathbb{P}_{\lambda}[n]$ is given by the Schur polynomial $s_{\lambda}(1^n)$.

The indecomposable projective representations

Definition

A Schur projective representation of weight k is \mathbb{P}_λ for $\lambda \vdash k$ defined by

$$\mathbb{P}_{\lambda}[n] = \mathbb{S}^{\lambda}(\mathbb{Q}^n)$$

and each $f: [n] \to [m]$ induces $\tilde{f}: \mathbb{Q}^n \to \mathbb{Q}^m$ and the linear map $\mathbb{S}^{\lambda}(\tilde{f}): \mathbb{P}_{\lambda}[n] \to \mathbb{P}_{\lambda}[m]$.

The dimension of $\mathbb{P}_{\lambda}[n]$ is given by the Schur polynomial $s_{\lambda}(1^n)$.

Example

The exact sequence of representations

.

$$\cdots \to \mathbb{P}_{1^3} \to \mathbb{P}_{1^2} \to \mathbb{P}_1 \to \mathbb{P}_0 \to 0$$

specialize on the object [n] to the Koszul complex

$$\cdots \to \Lambda^3 \mathbb{Q}^n \to \Lambda^2 \mathbb{Q}^n \to \mathbb{Q}^n \to \mathbb{Q} \to 0.$$

The representations D_k

Definition

Let
$$D_k$$
 be the kernel ker $(\mathbb{P}_{1^{k-1}} \to \mathbb{P}_{1^{k-2}})$

The dimension of $D_k[n] = V_{(n-k+1,1^{k-1})}$ is $\binom{n-1}{k-1}$ (for k > 0).

The representations D_k

Definition

Let
$$D_k$$
 be the kernel ker $(\mathbb{P}_{1^{k-1}} \to \mathbb{P}_{1^{k-2}})$

The dimension of $D_k[n] = V_{(n-k+1,1^{k-1})}$ is $\binom{n-1}{k-1}$ (for k > 0).

Example

(

The representation \mathbb{P}_1 has D_2 as a subrepresentation:

$$0 \to D_2 \to \mathbb{P}_1 \to D_1 \to 0.$$

On the object [n] (for $n > 0$) is
 $0 \to V \to \mathbb{Q}^n \to \mathbb{Q} \to 0$
where $V = \langle e_i - e_j \rangle$. The sequence of F-representation do not split
(using i_1, i_2 : [1] \to [2] the retraction $r: \mathbb{Q} \to \mathbb{Q}^2$ would satisfy
 $e_1 = i_1(r(1)) = r(1) = i_2(r(1)) = e_2$).

The representations C_{λ}

Definition

Let $\lambda \vdash k$ with $\lambda_1 > 1$, the representation C_{λ} is defined by $C_{\lambda}[n] = 0$ for n < k and $C_{\lambda}[n] = \text{Ind}_{\mathfrak{S}_k \times \mathfrak{S}_{n-k}}^{\mathfrak{S}_n} V_{\lambda} \boxtimes \mathbb{1}_{n-k}$.

The representations C_{λ}

Definition

Let $\lambda \vdash k$ with $\lambda_1 > 1$, the representation C_{λ} is defined by $C_{\lambda}[n] = 0$ for n < k and $C_{\lambda}[n] = \operatorname{Ind}_{\mathfrak{S}_k \times \mathfrak{S}_{n-k}}^{\mathfrak{S}_n} V_{\lambda} \boxtimes 1_{n-k}$.

The dimension of $C_{\lambda}[n]$ is $\binom{n}{k} \dim V_{\lambda} = \binom{n}{k} \langle s_{\lambda}, p_{1^k} \rangle$. We say that C_{λ} is of weight $k = |\lambda|$.

Some facts

Definition

A representation V is *finitely generated* if there is a finite set $\{v_i\}_{i=1,...,N}$ of elements $v_i \in V[n_i]$ such that $\langle v_i \rangle_{i=1,...,N} = V$.

Some facts

Definition

A representation V is *finitely generated* if there is a finite set $\{v_i\}_{i=1,...,N}$ of elements $v_i \in V[n_i]$ such that $\langle v_i \rangle_{i=1,...,N} = V$.

Theorem (Wiltshire-Gordon '14)

- $\operatorname{Hom}_{\mathrm{F}}(\mathbb{P}_{\lambda}, V) \cong \operatorname{Hom}_{\mathfrak{S}_{k}}(V_{\lambda}, V[k]).$
- The category of f.g. representations has the Jordan-Hölder property.
- The indecomposable projective are $\{\mathbb{P}_{\lambda}\}_{\lambda}$.
- The irreducible representations are $\{D_k\}_{k\in\mathbb{N}}$ and $\{C_{\lambda}\}_{\lambda_1>1}$.
- Let V be f.g., the sequence dim V[n] is polynomial in n for n > 0.

Definition

The *skeleton filtration* of *V* is the filtration $\{sk_k V\}_k$ defined by $sk_k V = \langle V[i] \rangle_{i \le k}$.

Definition

The *skeleton filtration* of V is the filtration $\{sk_k V\}_k$ defined by $sk_k V = \langle V[i] \rangle_{i \le k}$.

Example

Recall that $\mathbb{P}_1[n] = \mathbb{Q}^n$, we have $\operatorname{sk}_k \mathbb{P}_1 = \mathbb{P}_1$ for $k \ge 1$ and $\operatorname{sk}_k \mathbb{P}_1 = 0$ otherwise. Therefore, $\operatorname{gr}_{\operatorname{sk}}^1 \mathbb{P}_1 = \mathbb{P}_1$ is not semisimple. Moreover the inclusion $i: D_2 \hookrightarrow \mathbb{P}_1$ induces the zero map $\operatorname{gr}_{\operatorname{sk}}(i) = 0$ (indeed $\operatorname{gr}_{\operatorname{sk}}^2 D_2 = D_2$).

Definition

The *skeleton filtration* of V is the filtration $\{sk_k V\}_k$ defined by $sk_k V = \langle V[i] \rangle_{i \le k}$.

Example

Recall that $\mathbb{P}_1[n] = \mathbb{Q}^n$, we have $\operatorname{sk}_k \mathbb{P}_1 = \mathbb{P}_1$ for $k \ge 1$ and $\operatorname{sk}_k \mathbb{P}_1 = 0$ otherwise. Therefore, $\operatorname{gr}_{\operatorname{sk}}^1 \mathbb{P}_1 = \mathbb{P}_1$ is not semisimple. Moreover the inclusion $i: D_2 \hookrightarrow \mathbb{P}_1$ induces the zero map $\operatorname{gr}_{\operatorname{sk}}(i) = 0$ (indeed $\operatorname{gr}_{\operatorname{sk}}^2 D_2 = D_2$).

Lemma (P. '20)

Let $f: V \to W$ be a morphism of F-representations. Suppose that V does not have composition factors of type D. Then

the map f and gr_{sk} f have the same rank.

Computing resolutions

Theorem (Assaf, Speyer '18, Ryba '18) The minimal projective resolution of C_{λ} , $\lambda \vdash k$, is given by $0 \rightarrow \mathbb{P}^{1} \rightarrow \cdots \rightarrow \mathbb{P}^{k-1} \rightarrow \mathbb{P}_{\lambda} \rightarrow C_{\lambda} \rightarrow 0$, where $\mathbb{P}^{n} = \bigoplus_{\mu \vdash n} \mathbb{P}_{\mu}^{c_{\lambda}^{\mu}}$ and the coefficients are $c_{\lambda}^{\mu} = \langle s_{\lambda'}, s_{\mu'}[L] \rangle$,

where L is the Lyndon symmetric function (i.e., the character of the free Lie algebra).

Computing resolutions

Theorem (Assaf, Speyer '18, Ryba '18) The minimal projective resolution of C_{λ} , $\lambda \vdash k$, is given by $0 \rightarrow \mathbb{P}^{1} \rightarrow \cdots \rightarrow \mathbb{P}^{k-1} \rightarrow \mathbb{P}_{\lambda} \rightarrow C_{\lambda} \rightarrow 0$, where $\mathbb{P}^{n} = \bigoplus_{\mu \vdash n} \mathbb{P}_{\mu}^{c_{\lambda}^{\mu}}$ and the coefficients are $c_{\lambda}^{\mu} = \langle s_{\lambda'}, s_{\mu'}[L] \rangle$,

where L is the Lyndon symmetric function (i.e., the character of the free Lie algebra).

Example

We have

$$0 \to \mathbb{P}_{(1,1)} \to \mathbb{P}_{(2,1)} \oplus \mathbb{P}_{(3)} \to \mathbb{P}_{(4)} \to C_{(4)} \to 0,$$

and so $\operatorname{Ext}^1(C_{(4)}, C_{(2)}) = \mathbb{Q}.$

Ordered configuration spaces

Let X be a topological space. Define:

$$\operatorname{Conf}_n(X) := \{(p_1, \ldots, p_n) \in X^n \mid p_i \neq p_j\}$$

Ordered configuration spaces

Let X be a topological space. Define: $Conf_n(X) := \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}$

Example $\operatorname{Conf}_n(S^1) = S^1 \times \mathfrak{S}_{n-1} \times \mathbb{R}^{n-1}.$

Ordered configuration spaces

Let X be a topological space. Define: $Conf_n(X) := \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_i\}$

Example $\operatorname{Conf}_n(S^1) = S^1 \times \mathfrak{S}_{n-1} \times \mathbb{R}^{n-1}.$

Example

 $\operatorname{Conf}_n(\mathbb{R}^2)$ is the complement of the hyperplane arrangement of type A_{n-1} .

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then p: $Conf_n(M) \rightarrow Conf_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}.$

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: \operatorname{Conf}_n(M) \to \operatorname{Conf}_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}.$

Recall the long exact sequence of homotopy groups:

$$\cdots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots$$

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: \operatorname{Conf}_n(M) \to \operatorname{Conf}_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}.$

Recall the long exact sequence of homotopy groups:

$$\cdots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots$$

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S^2 and $\mathbb{P}_2(\mathbb{R})$, then $Conf_n(S)$ is a $K(\pi, 1)$.

Add a point

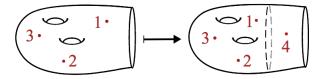
Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the fibration $p: \operatorname{Conf}_n(M) \to \operatorname{Conf}_{n-1}(M)$ has a section.

Add a point

Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the fibration $p: \operatorname{Conf}_n(M) \to \operatorname{Conf}_{n-1}(M)$ has a section.



The Euler characteristic

Theorem (Felix, Thomas 2000) Let M be an even-dimensional manifold. Then $\sum_{n=0}^{\infty} \frac{\chi(\operatorname{Conf}_n(M))}{n!} u^n = (1+u)^{\chi(M)}$

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If M is a manifold that admits a non-zero vector field (i.e. $\chi(M) = 0$) then dim $H^i(\text{Conf}_n(M); \mathbb{Q})$ is polynomial in n, for n > 0.

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If *M* is a manifold that admits a non-zero vector field (i.e. $\chi(M) = 0$) then dim $H^i(\text{Conf}_n(M); \mathbb{Q})$ is polynomial in *n*, for n > 0.

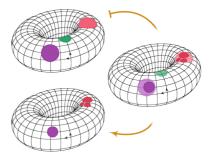
Moreover, if M has two linearly independent vector fields (e.g. a complex variety with $\chi(M) = 0$) then $\bigoplus_n H^i(\text{Conf}_n(M); \mathbb{Q})$ is an F-representation.

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If *M* is a manifold that admits a non-zero vector field (i.e. $\chi(M) = 0$) then dim $H^i(\text{Conf}_n(M); \mathbb{Q})$ is polynomial in *n*, for n > 0.

Moreover, if M has two linearly independent vector fields (e.g. a complex variety with $\chi(M) = 0$) then $\bigoplus_n H^i(\text{Conf}_n(M); \mathbb{Q})$ is an F-representation.

The map $f: [4] \to [3]$ is defined by f(1) = 1, f(2) = f(3) = f(4) = 2.



The Kriz model

Theorem (Kriz '94, Totaro '96)

Let *M* be a smooth projective variety. There exists a dga (E(M), d) such that $H^{\bullet}(E_n(M), d) \simeq H^{\bullet}(Conf_n(M); \mathbb{Q})$.

The Kriz model

Theorem (Kriz '94, Totaro '96)

Let *M* be a smooth projective variety. There exists a dga (E(M), d) such that $H^{\bullet}(E_n(M), d) \simeq H^{\bullet}(Conf_n(M); \mathbb{Q})$.

Let $E_n(M)$ be the exterior algebra on generators

- ▶ x_i for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree (deg x, 0),
- $G_{i,j}$ for i < j with degree (0, d 1),

The Kriz model

Theorem (Kriz '94, Totaro '96)

Let *M* be a smooth projective variety. There exists a dga (E(M), d) such that $H^{\bullet}(E_n(M), d) \simeq H^{\bullet}(Conf_n(M); \mathbb{Q})$.

Let $E_n(M)$ be the exterior algebra on generators

▶ x_i for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree (deg x, 0),

•
$$G_{i,j}$$
 for $i < j$ with degree $(0, d - 1)$,

and relations

•
$$(x_i - x_j)G_{i,j} = 0,$$

• $G_{i,j}G_{j,k} - G_{i,j}G_{i,k} + G_{j,k}G_{i,k} = 0.$

The Kriz model

Theorem (Kriz '94, Totaro '96)

Let *M* be a smooth projective variety. There exists a dga (E(M), d) such that $H^{\bullet}(E_n(M), d) \simeq H^{\bullet}(Conf_n(M); \mathbb{Q})$.

Let $E_n(M)$ be the exterior algebra on generators

▶ x_i for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\deg x, 0)$,

•
$$G_{i,j}$$
 for $i < j$ with degree $(0, d - 1)$,

and relations

•
$$(x_i - x_j)G_{i,j} = 0,$$

• $G_{i,j}G_{j,k} - G_{i,j}G_{i,k} + G_{j,k}G_{i,k} = 0.$

The differential of degree (d, 1 - d) is given by

- $\blacktriangleright d(x_i) = 0,$
- $\blacktriangleright \mathsf{d}(G_{i,j}) = [\Delta]_{i,j}.$

The action of F

If $\chi(M) = 0$, the Kriz model $E(M) = \bigoplus_{n \in \mathbb{N}} E_n(M)$ is a representation of F with the action of $f : [n] \to [m]$ given by:

$$f_*(x_i) = x_{f(i)} \qquad f_*(G_{i,j}) = \begin{cases} 0 & \text{if } f(i) = f(j) \\ G_{f(i),f(j)} & \text{otherwise} \end{cases}$$

The action of F

If $\chi(M) = 0$, the Kriz model $E(M) = \bigoplus_{n \in \mathbb{N}} E_n(M)$ is a representation of F with the action of $f : [n] \to [m]$ given by:

$$f_*(x_i) = x_{f(i)} \qquad f_*(G_{i,j}) = \begin{cases} 0 & \text{if } f(i) = f(j) \\ G_{f(i),f(j)} & \text{otherwise} \end{cases}$$

Indeed, if f(i) = f(j) we have $d(f_*(G_{i,j})) = 0$ and $f_*(d(G_{i,j})) = f_*([\Delta]_{i,j}) = \chi(M)[M]_{f(i)}.$

Representation theory of the Kriz model

Let $\mathcal{E} = S^1 \times S^1$ be an elliptic curve. Notice that $E_n^{0,q}(\mathcal{E})$ is the Orlik-Solomon algebra for the arrangement of type A_n . So

$$E_n^{0,n-1}(\mathcal{E}) = \operatorname{Ind}_{C_n}^{\mathfrak{S}_n} \zeta_n$$

as representation of \mathfrak{S}_n with basis the descending trees on [n].

Representation theory of the Kriz model

Let $\mathcal{E} = S^1 \times S^1$ be an elliptic curve. Notice that $E_n^{0,q}(\mathcal{E})$ is the Orlik-Solomon algebra for the arrangement of type A_n . So

$$E_n^{0,n-1}(\mathcal{E}) = \operatorname{Ind}_{C_n}^{\mathfrak{S}_n} \zeta_n$$

as representation of \mathfrak{S}_n with basis the descending trees on [n].

Theorem (Stanley '82, Lehrer, Solomon '86, Ashraf, Azam, Berceanu '12)

The action of \mathfrak{S}_n on the Kriz model is

$$E_n^{p,q}(\mathcal{E}) \cong igoplus_{\substack{\lambda \vdash n \ l(\lambda) = n-q \ w(\lambda) = p}} \operatorname{Ind}_{Z(\lambda)}^{\mathfrak{S}_n} \zeta_{\lambda}$$

where the sum is taken over all labelled partitions λ with blocks label by $\{1, x, y, xy\}$. The number $w(\lambda)$ is the sum of the degree of the labels.

Lemma (P. '20)

The sign representation appears only in the first row $E_n^{\bullet,0}(M)$ (M even dimensional).

Lemma (P. '20)

The sign representation appears only in the first row $E_n^{\bullet,0}(M)$ (M even dimensional).

Theorem (P. '20)

For q > 0 the composition factors are

$$E^{p,q}(\mathcal{E}) \sim \bigoplus_{\substack{|\lambda| - I(\lambda) = q \ w(\lambda) = p}} C_{\operatorname{Ind}_{Z(\lambda)}^{\mathfrak{S}_n} \zeta_{\lambda}},$$

where the sum is taken over all partitions λ without blocks of size one and label 1. Moreover

$$\operatorname{gr}_{\operatorname{sk}}^{n} E^{p,q}(\mathcal{E}) = \bigoplus_{\substack{|\lambda|=n\\|\lambda|-l(\lambda)=q\\w(\lambda)=p}}^{|\lambda|=n} C_{\operatorname{Ind}_{Z(\lambda)}^{\mathfrak{S}_{n}}\zeta_{\lambda}}.$$

$$\operatorname{gr}_{\operatorname{sk}}^{\bullet} H(E^{\bullet,\bullet}(\mathcal{E}),d) \cong H(\operatorname{gr}_{\operatorname{sk}}^{\bullet} E^{\bullet,\bullet}(\mathcal{E}),\operatorname{gr} d)$$

$$\operatorname{gr}_{\operatorname{sk}}^{\bullet} H(E^{\bullet,\bullet}(\mathcal{E}),d) \cong H(\operatorname{gr}_{\operatorname{sk}}^{\bullet} E^{\bullet,\bullet}(\mathcal{E}),\operatorname{gr} d)$$

Example

The differential is $d(G_{i,j}) = x_i y_i - x_i y_j - x_j y_i + x_j y_j$ and the graded differential is $gr d(G_{i,j}) = -x_i y_j - x_j y_i$

$$\operatorname{gr}_{\operatorname{sk}}^{\bullet} H(E^{\bullet,\bullet}(\mathcal{E}),d) \cong H(\operatorname{gr}_{\operatorname{sk}}^{\bullet} E^{\bullet,\bullet}(\mathcal{E}),\operatorname{gr} d)$$

Example

The differential is $d(G_{i,j}) = x_i y_i - x_i y_j - x_j y_i + x_j y_j$ and the graded differential is $gr d(G_{i,j}) = -x_i y_j - x_j y_i$

We have $\operatorname{gr}^n E^{p,q}(\mathcal{E}) = 0$ for $n \leq q$ or 2(n-q) < p or n > 2q + p.

$$\operatorname{gr}_{\operatorname{sk}}^{\bullet} H(E^{\bullet, \bullet}(\mathcal{E}), d) \cong H(\operatorname{gr}_{\operatorname{sk}}^{\bullet} E^{\bullet, \bullet}(\mathcal{E}), \operatorname{gr} d)$$

Example

The differential is $d(G_{i,j}) = x_i y_i - x_i y_j - x_j y_i + x_j y_j$ and the graded differential is $gr d(G_{i,j}) = -x_i y_j - x_j y_i$

We have $\operatorname{gr}^n E^{p,q}(\mathcal{E}) = 0$ for $n \leq q$ or 2(n-q) < p or n > 2q + p.

Corollary (P. '20)

For
$$q > 0$$
 we have as \mathfrak{S}_n -representation
 $H^{p,q}(E_n^{\bullet,\bullet}(\mathcal{E}), d) = \bigoplus_k \operatorname{Ind}_{\mathfrak{S}_k \times \mathfrak{S}_{n-k}}^{\mathfrak{S}_n} H^{p,q}(\operatorname{gr}_{\operatorname{sk}}^k E_k^{\bullet,\bullet}(\mathcal{E}), \operatorname{gr} d) \boxtimes 1_{n-k}.$
For $q = 0$ we have
 $H^{p,0}(E_n^{\bullet,\bullet}(\mathcal{E}), d) = \mathbb{P}_{1^p} \boxtimes \mathbb{V}_p \oplus \mathbb{P}_{1^{p-1}} \boxtimes \mathbb{V}_{p-2}$

Lemma

Let $f : \mathbb{N}_0 \to \mathbb{N}$ be a polynomial function, i.e. $f \in \mathbb{Q}[x]$. Then $f(n) = \sum_{i=0}^{\deg f} a_i {n \choose i}$ for some unique integer coefficients $a_i \in \mathbb{Z}$.

Lemma

Let $f : \mathbb{N}_0 \to \mathbb{N}$ be a polynomial function, i.e. $f \in \mathbb{Q}[x]$. Then $f(n) = \sum_{i=0}^{\deg f} a_i {n \choose i}$ for some unique integer coefficients $a_i \in \mathbb{Z}$.

Example

For
$$M = S^3$$
 we have $H^2(\operatorname{Conf}_n(S^3)) = H^{0,2}(E_n^{\bullet,\bullet}(S^3), d)$ and $H^2(\operatorname{Conf}_{\bullet}(S^3)) = D_3$ as F-module. Therefore dim $H^2(\operatorname{Conf}_n(S^3)) = \binom{n}{2} - \binom{n}{1} + \binom{n}{0}$.

Lemma

Let $f : \mathbb{N}_0 \to \mathbb{N}$ be a polynomial function, i.e. $f \in \mathbb{Q}[x]$. Then $f(n) = \sum_{i=0}^{\deg f} a_i {n \choose i}$ for some unique integer coefficients $a_i \in \mathbb{Z}$.

Example

For
$$M = S^3$$
 we have $H^2(\operatorname{Conf}_n(S^3)) = H^{0,2}(E_n^{\bullet,\bullet}(S^3), d)$ and $H^2(\operatorname{Conf}_{\bullet}(S^3)) = D_3$ as F-module. Therefore dim $H^2(\operatorname{Conf}_n(S^3)) = \binom{n}{2} - \binom{n}{1} + \binom{n}{0}$.

Corollary (P. '20)

For all n we have

$$\dim H^{p,q}(E_n^{\bullet,\bullet}(\mathcal{E}),d) = \sum_k \binom{n}{k} \dim H^{p,q}(\operatorname{gr}_{\operatorname{sk}}^k E^{\bullet,\bullet}(\mathcal{E}),\operatorname{gr} d).$$

Theorem (P. '20)

The Betti numbers of $Conf_n(\mathcal{E})$ are:

$$\begin{split} b_0 &= 1, \\ b_1 &= 2n, \\ b_2 &= 2\binom{n}{3} + 3\binom{n}{2} + n, \\ b_3 &= 14\binom{n}{4} + 8\binom{n}{3} + 2\binom{n}{2}, \\ b_4 &= 32\binom{n}{6} + 74\binom{n}{5} + 32\binom{n}{4} + 5\binom{n}{3}, \\ b_5 &= 63\binom{n}{8} + 427\binom{n}{7} + 490\binom{n}{6} + 154\binom{n}{5} + 18\binom{n}{4}, \\ b_k &= c_k\binom{n}{2k-2} + o(n^{2k-2}), \\ where \ c_k &\geq \binom{2k-3}{k-3}. \end{split}$$

Conjecture

The coefficient c_k is equal to $\binom{2k-3}{k-3}$.

Conjecture

The coefficient c_k is equal to $\binom{2k-3}{k-3}$.

From the previous theorem, for k > 5 we have $\operatorname{gr}_{\operatorname{sk}}^{2k} H^k(E^{\bullet,\bullet}(\mathcal{E})) = 0$ and $\operatorname{gr}_{\operatorname{sk}}^{2k-1} H^k(E^{\bullet,\bullet}(\mathcal{E})) = 0$. Moreover $\operatorname{gr}_{\operatorname{sk}}^{2k-2} H^k(E^{\bullet,\bullet}(\mathcal{E})) = \operatorname{gr}_{\operatorname{sk}}^{2k-2} H^{2,k-2}(E^{\bullet,\bullet}(\mathcal{E}))$ that contains $C_{(k+1,1^{k-3})}$ ($c_k = \dim V_{(k+1,1^{k-3})}$).

Thanks for listening!

roberto.pagaria@unibo.it