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Zonotopes

Consider a undirected graph Γ on the vertex set [r ] = {1, . . . , r}
with yij edges between vertices i and j .

Definition

The graphical zonotope ZΓ of Γ is the integral polytope defined by
the Minkowski sum:

ZΓ :=
∑

(i ,j)∈Γ

yij [0, ei − ej ] ⊂ Rr .

For any polytope Z let C (Z ) be the number of integer points in
the interior of Z .

Example

1

2

32

4

4

we have C (ZΓ) = 23 and C (ZΓ + (1/2, 1/2)) = 30.
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Zonotopes

We consider graphs Γ possibly with multiple edges. A flat is a
partition of [r ] such that for each block the induced subgraph is
connected. The poset of flats S is the set of all flats ordered by
refinement.

Definition

Let S ∈ S be a flat, the deleted graph ΓS is the graph with only
edges in the flat S . The contracted graph ΓS is obtained from Γ
by contracting all the edges in the flat S .

Example

Consider the graph Γ with poset of flats S and the flat 12|3.

1

2

3Γ2

4

4 1|2|3

12|3 13|2 23|1

123

S

1

2

3Γ12|32 12 3

Γ12|3

8
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Zonotopes

Faces of zonotopes

Proposition

Every face of ZΓ is a (translated) graphical zonotope ZΓS
for some

flat S ∈ S. Moreover, the number of faces parallel to ZΓS
is equal

to the number of acyclic orientations of ΓS .

The vertices of ZΓ are in bijection with acyclic orientations of Γ.
In the
example Γ = K4 and ZK4 is the permutohedron.
In red the faces parallel to the segment ZΓ12|3|4 .
The number of such faces is equal to the
number of acyclic orientations of Γ12|3|4 ∼ K3.
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Zonotopes

Goal

Consider a graph Γ on vertices [r ] and yij edges between i and j .
Let ω ∈ Rr be a vector. We want to express C (ZΓ + ω) in term of
the numbers C (ZΓS

) for all S ∈ S.
More precisely,

C (ZΓ + ω) =
∑
S∈S

cS,ωC (ZΓS
)

where the coefficients cS ,ω do not depend on yij but only on the
poset of flats S (i.e. on δyij=0).
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Integer points

Counting integer points

Theorem (Stanley ’91, Ardila Beck McWhirter ’20)

Let Z =
∑

i [0, vi ] be an integral zonotope and ω ∈ Rr . Then

C (Z + ω) =
∑

I independent set

(−1)r−|I |δ(〈vi 〉i∈I +ω)∩Zr 6=∅ Vol(I ).

Example

Let Z = [0, e1] + [0, e1 + e2] + [0, e1 − e2] and ω = ( 1
2 ,

1
2 ).

C (Z + ω) = Vol(v2v3) + Vol(v1v2) + Vol(v1v3)− Vol(v2)− Vol(v3)

= 2 + 1 + 1− 1− 1 = 2.

Ardila, Supina,Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron
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Definition

A set S ⊆ [r ] is ω-integral if
∑

i∈S ωi ∈ Z. A partition S ` [r ] is
ω-integral if all its blocks Sj are ω-integral.

For a graphical zonotope ZΓ and a flat S ∈ S we have
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Integer points

Möbius inversion

Theorem (Mauri, Migliorini, P. ’23)

If
∑r

i=1 ωi ∈ Z, then

C (ZΓ + ω) = C (ZΓ) +
∑
S∈S

( ∑
T≥S

T ω-integral

µS(S ,T )
)
C (ZΓS

).

Corollary

In the case of the complete graph Γr we have

c0̂,ω =
∑
S`[r ]

S ω-integral

(−1)`(S)−1

`(S)∏
i=1

(|Si | − 1)!

Moreover, c0̂,ω = 0 if ω ∈ Zr .

Question: are the coefficients cS ,ω non-negative?
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Positivity and shellability

Shellability

We denote by Sω ⊂ S the downward closed subposet of
non-ω-integral flats. Let ∆(Sω) be the the order complex of the
poset Sω.

Theorem (Mauri, Migliorini, P. ’23)

The poset Sω is LEX-shellable. Therefore,

C (ZΓ + ω) = C (ZΓ) +
∑
S∈Sω

rk H̃top(∆(Sω,≥S))C (ZΓS
).

Corollary

If ω 6∈ Zr , then c0̂,ω 6= 0.
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Positivity and shellability

Theorem (Mauri, Migliorini, P. ’23)

The poset Sω is LEX-shellable. Therefore,

C (ZΓ + ω) = C (ZΓ) +
∑
S∈Sω

rk H̃top(∆(Sω,≥S))C (ΓS)

Example

Let ω = ( 1
2 ,

1
2 , 1) and Γ be the graph

1

2

32

4

4

12|3

123

1|2|3

13|2 23|1

Sω

C (ZΓ + ω) = C (ZΓ) + C (ZΓ13|2) + C (ZΓ23|1) + C (ZΓ1|2|3)

30 = 23 + 3 + 3 + 1.
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Categorification

Orientation character

Let OΓ be the oriented graph obtained by replacing every
unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation aΓ of Aut(Γ) defined by

aΓ(σ) = sgn(σ : V (Γ)→ V (Γ)) sgn(σ : E (OΓ)→ E (OΓ))

Example

Consider the graph:

1

2

3a

b

b

with a 6= b. Then Aut(Γ) = Z/2Z = 〈(12)〉 and
aΓ((12)) = (−1)a+1.
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Categorification

Permutation representations

Consider the group Aut(Γ) < Sr and suppose that ω is a
Aut(Γ)-invariant vector. Let C(ZΓ + ω) be the permutation
representation of Aut(Γ) on the set of integral points in the interior
of ZΓ + ω

dim C(ZΓ + ω) = C (ZΓ + ω).

Theorem (Mauri, Migliorini, P. 2023)

C(ZΓ + ω) =C(ZΓ)⊕⊕
S∈Sω/Aut(Γ)

Ind
Aut(Γ)
Stab(S) aΓS ⊗ H̃top(∆(Sω,≥S))⊗ C(ΓS).
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Categorification

Theorem (Mauri, Migliorini, P. 2023)

C(ZΓ + ω) =C(ZΓ)⊕⊕
S∈Sω/Aut(Γ)

Ind
Aut(Γ)
Stab(S) aΓS ⊗ H̃top(∆(Sω,≥S))⊗ C(ΓS)

Example

Then ω = ( 1
2 ,

1
2 , 1) and

1|2|3

13|2 23|1

Sω

1

2

3Γ2

4

4

The automorphism group is Aut(Γ) = Z/2Z = 〈(12)〉. Then:

C(ZΓ + ω) = C(ZΓ)⊕ Reg⊕3⊕(sgn⊗ sgn⊗1).
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Hitchin fibration and Decomposition theorem

Hitchin fibration

Let C be a smooth projective algebraic curve over C of genus
gC > 1 and E a vector bundle of rank n and degree d on C .

Definition

An Higgs bundle over C is a pair (E , φ) where E is a vector bundle
and φ : E → E ⊗ ωC an “endomorphism”.
The Dolbeault moduli space is

M(n, d) = {semistable Higgs bundle}�S-equivalence.

Every endomorphisms has a characteristic polynomial.

Definition

The Hitchin fibration is the map

χ : M(n, d)→ AN

sending (E , φ) to the coefficients of charφ.
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Hitchin fibration and Decomposition theorem

Decomposition theorem

The space M(n, d) is singular with a map to the affine space AN .
The cohomology does not work well on singular spaces, it is much
better to consider the intersection cohomology IH(M(n, d)).

IH(M(n, d)) = H(M(n, d), ICM(n,d)) ' H(AN ,Rχ∗ ICM(n,d))

Theorem (Mauri, Migliorini ’22)

The Ngô Decomposition Theorem specializes to

Rχ∗ ICM(n,d) |AN
red

=
⊕
n`n

ICSn(Ln,d ⊗ Λn)

for some local systems Ln,d on Sn and for Λn the cohomology
sheaf of the relative Picard group Pic0(Cn) of the normalization of
the spectral curve.

Proposition

For any a ∈ Sn we have

dimHtop(Rχ∗ ICM(n,d))a = # irr. comp. χ−1(a) = C (ZΓn + ω)
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Hitchin fibration and Decomposition theorem

M(n, 0)

χ

AN

M(n, 1)

χ

AN
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Hitchin fibration and Decomposition theorem

Conclusions

Let n = {n1, n2, . . . nr} ` n and d ∈ N.
Problem: determine Ln,d . In particular:

1 which partitions n appear in the decomposition (i.e.
Ln,d 6= 0)?

2 determine the rank rk(Ln,d).

3 determine the monodromy of the local system Ln,d .

Solution:

1 Ln,d 6= 0 if and only if n = (n) or ω = (dnin ) 6∈ Zr .

2

rk(Ln,d) = c0̂,ω =
∑

S ω-integral

(−1)`(S)−1
∏
i

(|Si | − 1)!

= dim H̃top(∆(Sω)).

3 The monodromy is given by the representation of Aut(Γn)

sgn⊗H̃top(∆(Sω)).
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Thanks for listening!

roberto.pagaria@unibo.it
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