Roberto Pagaria

Università di Bologna

Combinatorial decomposition theorem for Hitchin systems via zonotopes

Joint with M. Mauri and L. Migliorini

XXII congresso dell'Unione Matematica Italiana

September 4, 2023

Covered topics:

4 Categorification

Consider a undirected graph Γ on the vertex set $[r] = \{1, ..., r\}$ with y_{ij} edges between vertices i and j.

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by the Minkowski sum:

$$Z_{\Gamma} := \sum_{(i,j)\in \Gamma} y_{ij}[0,e_i-e_j] \subset \mathbb{R}^r.$$

Consider a undirected graph Γ on the vertex set $[r] = \{1, \ldots, r\}$ with y_{ii} edges between vertices *i* and *j*.

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by the Minkowski sum:

$$Z_{\Gamma} := \sum_{(i,j)\in \Gamma} y_{ij}[0,e_i-e_j] \subset \mathbb{R}^r.$$

For any polytope Z let C(Z) be the number of integer points in the interior of Z.

Example

We consider graphs Γ possibly with multiple edges. A *flat* is a partition of [r] such that for each block the induced subgraph is connected. The *poset of flats* S is the set of all flats ordered by refinement.

Definition

Let $\underline{S} \in S$ be a flat, the *deleted* graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S} . The *contracted* graph $\Gamma^{\underline{S}}$ is obtained from Γ by contracting all the edges in the flat \underline{S} .

We consider graphs Γ possibly with multiple edges. A *flat* is a partition of [r] such that for each block the induced subgraph is connected. The *poset of flats* S is the set of all flats ordered by refinement.

Definition

Let $\underline{S} \in S$ be a flat, the *deleted* graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S} . The *contracted* graph $\Gamma^{\underline{S}}$ is obtained from Γ by contracting all the edges in the flat \underline{S} .

Example

Consider the graph Γ with poset of flats ${\cal S}$ and the flat 12|3.

Faces of zonotopes

Proposition

Every face of Z_{Γ} is a (translated) graphical zonotope $Z_{\Gamma_{\underline{S}}}$ for some flat $\underline{S} \in S$. Moreover, the number of faces parallel to $Z_{\Gamma_{\underline{S}}}$ is equal to the number of acyclic orientations of $\Gamma^{\underline{S}}$.

The vertices of Z_{Γ} are in bijection with acyclic orientations of $\Gamma.$ In the

example $\Gamma = K_4$ and Z_{K_4} is the *permutohedron*. In red the faces parallel to the segment $Z_{\Gamma_{12|3|4}}$. The number of such faces is equal to the number of acyclic orientations of $\Gamma^{12|3|4} \sim K_3$.

Goal

Consider a graph Γ on vertices [r] and y_{ij} edges between i and j. Let $\omega \in \mathbb{R}^r$ be a vector. We want to express $C(Z_{\Gamma} + \omega)$ in term of the numbers $C(Z_{\Gamma \underline{s}})$ for all $\underline{S} \in S$. More precisely,

$$C(Z_{\Gamma} + \omega) = \sum_{\underline{S} \in S} c_{\underline{S},\omega} C(Z_{\Gamma_{\underline{S}}})$$

where the coefficients $c_{\underline{S},\omega}$ do not depend on y_{ij} but only on the poset of flats S (i.e. on $\delta_{y_{ij}=0}$).

Counting integer points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then
 $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Counting integer points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then
 $C(Z + \omega) = \sum_{I \text{ independent set}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Example

Let $Z = [0, e_1] + [0, e_1 + e_2] + [0, e_1 - e_2]$ and $\omega = (\frac{1}{2}, \frac{1}{2})$.

$$C(Z + \omega) = \operatorname{Vol}(v_2 v_3) + \operatorname{Vol}(v_1 v_2) + \operatorname{Vol}(v_1 v_3) - \operatorname{Vol}(v_2) - \operatorname{Vol}(v_3)$$

= 2 + 1 + 1 - 1 - 1 = 2.

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z = \sum_{i} [0, v_i]$ be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{I \text{ independent set}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_j are ω -integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z = \sum_{i} [0, v_i]$ be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{I \text{ independent set}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_j are ω -integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in S$ we have $\delta_{(\langle S \rangle + \omega) \cap \mathbb{Z}^r \neq \emptyset} = 1$ if and only if \underline{S} is ω -integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z = \sum_{i} [0, v_i]$ be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{I \text{ independent set}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \operatorname{Vol}(I).$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_j are ω -integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in S$ we have $\delta_{(\langle S \rangle + \omega) \cap \mathbb{Z}^r \neq \emptyset} = 1$ if and only if \underline{S} is ω -integral.

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \left(\sum_{\underline{T} \ge \underline{S} \\ \underline{T} \ \omega \text{-integral}} \mu_{\mathcal{S}}(\underline{S}, \underline{T})\right) C(Z_{\Gamma_{\underline{S}}}).$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \Big(\sum_{\substack{\underline{T} \ge \underline{S} \\ T \text{ ω-integral}}} \mu_{S}(\underline{S}, \underline{T}) \Big) C(Z_{\Gamma_{\underline{S}}}).$

Corollary

In the case of the complete graph Γ_r we have

$$c_{\hat{0},\omega} = \sum_{\substack{\underline{S} \vdash [r] \\ \underline{S} \ \omega \text{-integral}}} (-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})} (|S_i|-1)!$$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S} \Big(\sum_{\substack{\underline{T} \ge S \\ T \text{ ω-integral}}} \mu_{S}(\underline{S}, \underline{T}) \Big) C(Z_{\Gamma_{\underline{S}}}).$

Corollary

In the case of the complete graph Γ_r we have

$$c_{\hat{0},\omega} = \sum_{\substack{\underline{S} \vdash [r] \\ \underline{S} \ \omega \text{-integral}}} (-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\varepsilon(\underline{S})} (|S_i| - 1)!$$

Moreover, $c_{\hat{0},\omega} = 0$ if $\omega \in \mathbb{Z}^r$.

Question: are the coefficients $c_{S,\omega}$ non-negative?

Roberto Pagaria

0(C)

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset S_{ω} .

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset S_{ω} .

Theorem (Mauri, Migliorini, P. '23) The poset S_{ω} is LEX-shellable. Therefore, $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(Z_{\Gamma_{\underline{S}}}).$

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset S_{ω} .

Theorem (Mauri, Migliorini, P. '23) The poset S_{ω} is LEX-shellable. Therefore, $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(Z_{\Gamma_{\underline{S}}}).$

Corollary

If $\omega \notin \mathbb{Z}^r$, then $c_{\hat{0},\omega} \neq 0$.

Theorem (Mauri, Migliorini, P. '23)

The poset S_{ω} is LEX-shellable. Therefore, $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(\Gamma_{\underline{S}})$

Example

Let $\omega = (\frac{1}{2}, \frac{1}{2}, 1)$ and Γ be the graph

Theorem (Mauri, Migliorini, P. '23)

The poset
$$S_{\omega}$$
 is LEX-shellable. Therefore,
 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{\underline{S} \in S_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(S_{\omega, \geq \underline{S}}))C(\Gamma_{\underline{S}})$

Example

Let $\omega = (\frac{1}{2}, \frac{1}{2}, 1)$ and Γ be the graph

 $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + C(Z_{\Gamma_{13|2}}) + C(Z_{\Gamma_{23|1}}) + C(Z_{\Gamma_{1|2|3}})$ 30 = 23 + 3 + 3 + 1.

Orientation character

Let $O\Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of Aut(Γ) defined by

 $a_{\Gamma}(\sigma) = \operatorname{sgn}(\sigma \colon V(\Gamma) \to V(\Gamma)) \operatorname{sgn}(\sigma \colon E(O\Gamma) \to E(O\Gamma))$

Orientation character

Let $O\Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of Aut(Γ) defined by

$$a_{\Gamma}(\sigma) = \operatorname{sgn}(\sigma \colon V(\Gamma) \to V(\Gamma)) \operatorname{sgn}(\sigma \colon E(O\Gamma) \to E(O\Gamma))$$

Example

Consider the graph:

with
$$a \neq b$$
. Then Aut(Γ) = $\mathbb{Z}/2\mathbb{Z} = \langle (12) \rangle$ and $a_{\Gamma}((12)) = (-1)^{a+1}$.

Roberto Pagaria

Combinatorial decomposition theorem for Hitchin fibrations

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma) < \mathfrak{S}_r$ and suppose that ω is a $\operatorname{Aut}(\Gamma)$ -invariant vector. Let $\mathcal{C}(Z_{\Gamma} + \omega)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma} + \omega$

 $\dim \mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma} + \omega).$

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma) < \mathfrak{S}_r$ and suppose that ω is a $\operatorname{Aut}(\Gamma)$ -invariant vector. Let $\mathcal{C}(Z_{\Gamma} + \omega)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma} + \omega$

$$\dim \mathcal{C}(Z_{\Gamma}+\omega)=\mathcal{C}(Z_{\Gamma}+\omega).$$

Theorem (Mauri, Migliorini, P. 2023)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}}).$$

Theorem (Mauri, Migliorini, P. 2023)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}})$$

Example

Then $\omega = (\frac{1}{2}, \frac{1}{2}, 1)$ and $\begin{array}{c} 13|2 \quad 23|1 \\ | \swarrow 2 \\ 1|2|3 \quad \mathcal{S}_{\omega} \end{array} \begin{array}{c} 1 \\ 2 \\ \mathcal{O} \end{array} \begin{array}{c} 1 \\ \mathcal{O} \end{array}$ The automorphism group is $\operatorname{Aut}(\Gamma) = \mathbb{Z}/2\mathbb{Z} = \langle (12) \rangle$. Then: $\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \operatorname{Reg}^{\oplus 3} \oplus (\operatorname{sgn} \otimes \operatorname{sgn} \otimes 1)$.

Theorem (Mauri, Migliorini, P. '23)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \bigoplus_{\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{\underline{S}}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq \underline{S}})) \otimes \mathcal{C}(\Gamma_{\underline{S}}).$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Hitchin fibration

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_C > 1$ and \mathcal{E} a vector bundle of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where \mathcal{E} is a vector bundle and $\phi: \mathcal{E} \to \mathcal{E} \otimes \omega_C$ an "endomorphism". The Dolbeault moduli space is $M(n, d) = \{\text{semistable Higgs bundle}\} / S$ -equivalence.

Every endomorphisms has a characteristic polynomial.

Definition

The Hitchin fibration is the map

$$\chi\colon M(n,d)\to \mathbb{A}^{\wedge}$$

sending (\mathcal{E}, ϕ) to the coefficients of char $_{\phi}$.

Decomposition theorem

The space M(n, d) is singular with a map to the affine space \mathbb{A}^N . The cohomology does not work well on singular spaces, it is much better to consider the *intersection cohomology* IH(M(n, d)). IH(M(n, d)) = $H(M(n, d), IC_{M(n,d)}) \simeq H(\mathbb{A}^N, R\chi_* IC_{M(n,d)})$

Decomposition theorem

The space M(n, d) is singular with a map to the affine space \mathbb{A}^N . The cohomology does not work well on singular spaces, it is much better to consider the *intersection cohomology* IH(M(n, d)). IH(M(n, d)) = $H(M(n, d), IC_{M(n,d)}) \simeq H(\mathbb{A}^N, R\chi_* IC_{M(n,d)})$

Theorem (Mauri, Migliorini '22)

The Ngô Decomposition Theorem specializes to

$$\mathsf{R}\chi_* \mathsf{IC}_{\mathcal{M}(n,d)} |_{\mathbb{A}^N_{\mathsf{red}}} = \bigoplus_{n \vdash n} \mathsf{IC}_{S_{\underline{n}}}(\mathcal{L}_{\underline{n},d} \otimes \Lambda_{\underline{n}})$$

for some local systems $\mathcal{L}_{\underline{n},d}$ on $S_{\underline{n}}$ and for $\Lambda_{\underline{n}}$ the cohomology sheaf of the relative Picard group $\operatorname{Pic}^{0}(\overline{C}_{\underline{n}})$ of the normalization of the spectral curve.

Proposition

For any $a \in S_{\underline{n}}$ we have dim $\mathcal{H}^{top}(R\chi_* \operatorname{IC}_{M(n,d)})_a = \# \operatorname{irr. comp.} \chi^{-1}(a) = C(Z_{\Gamma_{\underline{n}}} + \omega)$

Conclusions

Let $\underline{n} = \{n_1, n_2, \dots, n_r\} \vdash n \text{ and } d \in \mathbb{N}$. **Problem:** determine $\mathcal{L}_{n,d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- **2** determine the rank $rk(\mathcal{L}_{\underline{n},d})$.
- **3** determine the monodromy of the local system $\mathcal{L}_{n,d}$.

Conclusions

Let $\underline{n} = \{n_1, n_2, \dots, n_r\} \vdash n \text{ and } d \in \mathbb{N}$. **Problem:** determine $\mathcal{L}_{n,d}$. In particular:

- which partitions <u>n</u> appear in the decomposition (i.e. $\mathcal{L}_{\underline{n},d} \neq 0$)?
- **2** determine the rank $rk(\mathcal{L}_{\underline{n},d})$.
- **③** determine the monodromy of the local system $\mathcal{L}_{n,d}$.

Solution:

•
$$\mathcal{L}_{\underline{n},d} \neq 0$$
 if and only if $\underline{n} = (n)$ or $\omega = (\frac{dn_i}{n}) \notin \mathbb{Z}^r$.

$$\begin{aligned} \mathsf{rk}(\mathcal{L}_{\underline{n},d}) &= c_{\hat{0},\omega} = \sum_{\underline{S} \ \omega \text{-integral}} (-1)^{\ell(\underline{S})-1} \prod_{i} (|S_i|-1)! \\ &= \dim \widetilde{H}^{\mathrm{top}}(\Delta(\mathcal{S}_{\omega})). \end{aligned}$$

• The monodromy is given by the representation of $\operatorname{Aut}(\Gamma_{\underline{n}})$ $\operatorname{sgn} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega})).$

Thanks for listening!

roberto.pagaria@unibo.it