Roberto Pagaria

Università di Bologna

Combinatorial decomposition theorem for Hitchin systems via zonotopes

Joint with M. Mauri and L. Migliorini

XXII congresso dell'Unione Matematica Italiana

Covered topics:

(1) Zonotopes
(2) Integer points
(3) Positivity and shellability

4 Categorification
(5) Hitchin fibration and Decomposition theorem

Consider a undirected graph Γ on the vertex set $[r]=\{1, \ldots, r\}$ with $y_{i j}$ edges between vertices i and j.

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by the Minkowski sum:

$$
Z_{\Gamma}:=\sum_{(i, j) \in \Gamma} y_{i j}\left[0, e_{i}-e_{j}\right] \subset \mathbb{R}^{r} .
$$

Consider a undirected graph Γ on the vertex set $[r]=\{1, \ldots, r\}$ with $y_{i j}$ edges between vertices i and j.

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by the Minkowski sum:

$$
Z_{\Gamma}:=\sum_{(i, j) \in \Gamma} y_{i j}\left[0, e_{i}-e_{j}\right] \subset \mathbb{R}^{r}
$$

For any polytope Z let $C(Z)$ be the number of integer points in the interior of Z.

Example

we have $C\left(Z_{\Gamma}\right)=23$ and $C\left(Z_{\Gamma}+(1 / 2,1 / 2)\right)=30$.

We consider graphs 「 possibly with multiple edges. A flat is a partition of $[r]$ such that for each block the induced subgraph is connected. The poset of flats \mathcal{S} is the set of all flats ordered by refinement.

Definition

Let $\underline{S} \in \mathcal{S}$ be a flat, the deleted graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S}. The contracted graph $\Gamma \underline{S}$ is obtained from Γ by contracting all the edges in the flat \underline{S}.

We consider graphs 「 possibly with multiple edges. A flat is a partition of $[r]$ such that for each block the induced subgraph is connected. The poset of flats \mathcal{S} is the set of all flats ordered by refinement.

Definition

Let $\underline{S} \in \mathcal{S}$ be a flat, the deleted graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S}. The contracted graph $\Gamma \underline{S}$ is obtained from Γ by contracting all the edges in the flat \underline{S}.

Example

Consider the graph Γ with poset of flats \mathcal{S} and the flat $12 \mid 3$.

Faces of zonotopes

Proposition

Every face of Z_{Γ} is a (translated) graphical zonotope $Z_{\Gamma_{\underline{s}}}$ for some flat $\underline{S} \in \mathcal{S}$. Moreover, the number of faces parallel to $Z_{\Gamma_{\underline{s}}}$ is equal to the number of acyclic orientations of Γ S.

The vertices of Z_{Γ} are in bijection with acyclic orientations of Γ. In the
example $\Gamma=K_{4}$ and $Z_{K_{4}}$ is the permutohedron. In red the faces parallel to the segment $Z_{\Gamma_{12| | \mid 4}}$.
The number of such faces is equal to the number of acyclic orientations of $\Gamma^{12|3| 4} \sim K_{3}$.

Goal

Consider a graph Γ on vertices $[r]$ and $y_{i j}$ edges between i and j. Let $\omega \in \mathbb{R}^{r}$ be a vector. We want to express $C\left(Z_{\Gamma}+\omega\right)$ in term of the numbers $C\left(Z_{\Gamma_{\underline{s}}}\right)$ for all $\underline{S} \in \mathcal{S}$.
More precisely,

$$
C\left(Z_{\Gamma}+\omega\right)=\sum_{\underline{s} \in \mathcal{S}} c_{\underline{S}, \omega} C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

where the coefficients $c_{\underline{S}, \omega}$ do not depend on $y_{i j}$ but only on the poset of flats \mathcal{S} (i.e. on $\delta_{y_{i j}}=0$).

Counting integer points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{l \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z} \neq \emptyset} \operatorname{Vol}(I) .
$$

Counting integer points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{l \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z} \neq \emptyset} \operatorname{Vol}(I) .
$$

Example

$$
\text { Let } Z=\left[0, e_{1}\right]+\left[0, e_{1}+e_{2}\right]+\left[0, e_{1}-e_{2}\right] \text { and } \omega=\left(\frac{1}{2}, \frac{1}{2}\right) \text {. }
$$

$$
\begin{aligned}
C(Z+\omega) & =\operatorname{Vol}\left(v_{2} v_{3}\right)+\operatorname{Vol}\left(v_{1} v_{2}\right)+\operatorname{Vol}\left(v_{1} v_{3}\right)-\operatorname{Vol}\left(v_{2}\right)-\operatorname{Vol}\left(v_{3}\right) \\
& =2+1+1-1-1=2 .
\end{aligned}
$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{l \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z} \neq \emptyset} \operatorname{Vol}(I) .
$$

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{l \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z} \neq \emptyset} \operatorname{Vol}(I) .
$$

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in \mathcal{S}$ we have $\delta_{(\langle\underline{S}\rangle+\omega) \cap \mathbb{Z}^{r} \neq \emptyset}=1$ if and only if \underline{S} is ω-integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{l \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z} \neq \emptyset} \operatorname{Vol}(I) .
$$

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in \mathcal{S}$ we have $\delta_{(\langle\underline{S}\rangle+\omega) \cap \mathbb{Z}^{r} \neq \emptyset}=1$ if and only if \underline{S} is ω-integral.

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)
If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}}\left(\sum_{\substack{\underline{T} \geq \underline{S} \\ \underline{\omega} \text { integral }}} \mu_{\mathcal{S}}(\underline{S}, \underline{T})\right) C\left(Z_{\Gamma_{\underline{\underline{s}}}}\right)
$$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}}\left(\sum_{\substack{\underline{T} \geq \underline{S} \\ \omega \text {-integral }}} \mu_{\mathcal{S}}(\underline{S}, \underline{I})\right) C\left(Z_{\Gamma_{\underline{\underline{s}}}}\right) .
$$

Corollary

In the case of the complete graph Γ_{r} we have

$$
c_{\hat{0}, \omega}=\sum_{\substack{\underline{S} \vdash[r] \\ \underline{S} \omega \text {-integral }}}(-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})}\left(\left|S_{i}\right|-1\right)!
$$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}}\left(\sum_{\substack{\underline{T} \geq \underline{S} \\ \underline{\omega} \text { integral }}} \mu_{\mathcal{S}}(\underline{S}, \underline{T})\right) C\left(Z_{\Gamma_{\underline{\underline{s}}}}\right) .
$$

Corollary

In the case of the complete graph Γ_{r} we have

$$
c_{\hat{0}, \omega}=\sum_{\underline{S}-[r]}(-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})}\left(\left|S_{i}\right|-1\right)!
$$

$$
\text { S } \omega \text {-integral }
$$

Moreover, $c_{\hat{0}, \omega}=0$ if $\omega \in \mathbb{Z}^{r}$.
Question: are the coefficients $c_{\underline{S}, \omega}$ non-negative?

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset \mathcal{S}_{ω}.

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset \mathcal{S}_{ω}.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is LEX-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{s} \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset \mathcal{S}_{ω}.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is LEX-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(Z_{\Gamma_{\underline{s}}}\right) .
$$

Corollary

If $\omega \notin \mathbb{Z}^{r}$, then $c_{\hat{0}, \omega} \neq 0$.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is LEX-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}_{\omega}} \mathrm{rk} \widetilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(\Gamma_{\underline{s}}\right)
$$

Example

Let $\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and Γ be the graph

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is LEX-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{s} \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(\Gamma_{\underline{s}}\right)
$$

Example

Let $\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and Γ be the graph

$$
\begin{aligned}
C\left(Z_{\Gamma}+\omega\right) & =C\left(Z_{\Gamma}\right)+C\left(Z_{\Gamma_{13 \mid 2}}\right)+C\left(Z_{\Gamma_{23 \mid 1}}\right)+C\left(Z_{\Gamma_{1|2| 3}}\right) \\
30 & =23+3+3+1 .
\end{aligned}
$$

Orientation character

Let $O \Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $\operatorname{Aut}(\Gamma)$ defined by

$$
a_{\Gamma}(\sigma)=\operatorname{sgn}(\sigma: V(\Gamma) \rightarrow V(\Gamma)) \operatorname{sgn}(\sigma: E(O \Gamma) \rightarrow E(O \Gamma))
$$

Orientation character

Let $O \Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $\operatorname{Aut}(\Gamma)$ defined by

$$
a_{\Gamma}(\sigma)=\operatorname{sgn}(\sigma: V(\Gamma) \rightarrow V(\Gamma)) \operatorname{sgn}(\sigma: E(O \Gamma) \rightarrow E(O \Gamma))
$$

Example

Consider the graph:

with $a \neq b$. Then $\operatorname{Aut}(\Gamma)=\mathbb{Z} / 2 \mathbb{Z}=\langle(12)\rangle$ and $a_{\Gamma}((12))=(-1)^{a+1}$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma)<\mathfrak{S}_{r}$ and suppose that ω is a Aut(Γ)-invariant vector. Let $\mathcal{C}\left(Z_{\Gamma}+\omega\right)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma}+\omega$

$$
\operatorname{dim} \mathcal{C}\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}+\omega\right)
$$

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma)<\mathfrak{S}_{r}$ and suppose that ω is a Aut (Γ)-invariant vector. Let $\mathcal{C}\left(Z_{\Gamma}+\omega\right)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma}+\omega$

$$
\operatorname{dim} \mathcal{C}\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}+\omega\right)
$$

Theorem (Mauri, Migliorini, P. 2023)

$\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus$
$\bigoplus \quad \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{s}} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) \otimes \mathcal{C}\left(\Gamma_{\underline{s}}\right)$.

$$
\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)
$$

Theorem (Mauri, Migliorini, P. 2023)

$$
\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus
$$

$$
\bigoplus_{\underline{s} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{s}} \otimes \widetilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) \otimes \mathcal{C}\left(\Gamma_{\underline{s}}\right)
$$

Example

Then $\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and

The automorphism group is $\operatorname{Aut}(\Gamma)=\mathbb{Z} / 2 \mathbb{Z}=\langle(12)\rangle$. Then:

$$
\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus \operatorname{Reg}^{\oplus 3} \oplus(\operatorname{sgn} \otimes \operatorname{sgn} \otimes 1)
$$

Theorem (Mauri, Migliorini, P. '23)

$$
\begin{aligned}
& \mathcal{C}\left(Z_{\Gamma}+\omega\right)= \mathcal{C}\left(Z_{\Gamma}\right) \oplus \\
& \bigoplus_{\underline{s} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{lnd}_{\operatorname{Stab}(\underline{\Gamma})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma \underline{s}} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) \otimes \mathcal{C}\left(\Gamma_{\underline{s}}\right) .
\end{aligned}
$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Hitchin fibration

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_{C}>1$ and \mathcal{E} a vector bundle of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where \mathcal{E} is a vector bundle and $\phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \omega_{C}$ an "endomorphism".
The Dolbeault moduli space is

$$
M(n, d)=\{\text { semistable Higgs bundle }\} / S \text {-equivalence }
$$

Every endomorphisms has a characteristic polynomial.

Definition

The Hitchin fibration is the map

$$
\chi: M(n, d) \rightarrow \mathbb{A}^{N}
$$

sending (\mathcal{E}, ϕ) to the coefficients of char_{ϕ}.

Decomposition theorem

The space $M(n, d)$ is singular with a map to the affine space \mathbb{A}^{N}. The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology $\mathrm{IH}(M(n, d))$. $\mathrm{IH}(M(n, d))=H\left(M(n, d), \mathrm{IC}_{M(n, d)}\right) \simeq H\left(\mathbb{A}^{N}, R \chi_{*} \mathrm{IC} \mathrm{C}_{M(n, d)}\right)$

Decomposition theorem

The space $M(n, d)$ is singular with a map to the affine space \mathbb{A}^{N}. The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology $\mathrm{IH}(M(n, d))$.

$$
\mathrm{IH}(M(n, d))=H\left(M(n, d), \mathrm{IC}_{M(n, d)}\right) \simeq H\left(\mathbb{A}^{N}, R \chi_{*} \mathrm{IC} \mathrm{C}_{M(n, d)}\right)
$$

Theorem (Mauri, Migliorini '22)

The Ngô Decomposition Theorem specializes to

$$
\left.R \chi_{*} I C_{M(n, d)}\right|_{\mathbb{A}_{\text {red }}^{N}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right)
$$

for some local systems $\mathcal{L}_{\underline{n}, d}$ on $S_{\underline{n}}$ and for $\Lambda_{\underline{n}}$ the cohomology sheaf of the relative Picard group $\operatorname{Pic}^{0}\left(\bar{C}_{\underline{n}}\right)$ of the normalization of the spectral curve.

Proposition

For any $a \in S_{\underline{n}}$ we have

$$
\operatorname{dim} \mathcal{H}^{\text {top }}\left(R \chi_{*} I C_{M(n, d)}\right)_{a}=\# \text { irr. comp. } \chi^{-1}(a)=C\left(Z_{\Gamma_{\underline{n}}}+\omega\right)
$$

Conclusions

Let $\underline{n}=\left\{n_{1}, n_{2}, \ldots n_{r}\right\} \vdash n$ and $d \in \mathbb{N}$.
Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e. $\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?$
(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Conclusions

Let $\underline{n}=\left\{n_{1}, n_{2}, \ldots n_{r}\right\} \vdash n$ and $d \in \mathbb{N}$.
Problem: determine $\mathcal{L}_{n, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e.

$$
\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?
$$

(2) determine the rank $\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right)$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d} \neq 0$ if and only if $\underline{n}=(n)$ or $\omega=\left(\frac{d n_{i}}{n}\right) \notin \mathbb{Z}^{r}$.
(2)

$$
\begin{aligned}
\operatorname{rk}\left(\mathcal{L}_{\underline{n}, d}\right) & =c_{\hat{0}, \omega}=\sum_{\underline{S} \omega \text {-integral }}(-1)^{\ell(\underline{S})-1} \prod_{i}\left(\left|S_{i}\right|-1\right)! \\
& =\operatorname{dim} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
\end{aligned}
$$

(3) The monodromy is given by the representation of $\operatorname{Aut}\left(\Gamma_{\underline{n}}\right)$

$$
\operatorname{sgn} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
$$

Thanks for listening!

roberto.pagaria@unibo.it

