Roberto Pagaria Scuola Normale Superiore

Counting Regions

PISA-HOKKAIDO-ROMA2 Summer School on Mathematics and Its Applications 2018

at Centro di Ricerca Matematica Ennio De Giorgi September 6, 2018 Covered topics:

1 Introduction

3 Deletion and restriction

Consider an *arrangement* in \mathbb{R}^n , i.e. a finite set \mathcal{A} of hyperplanes H_1, \ldots, H_k .

Problem: How many open *regions* (also called *chambers*) are described by the arrangement? How many of them are bounded?

Graded Poset

Definition

A graded poset is a partially ordered set \mathcal{L} such that all maximal chains between any two elements have the same finite length. The rank of an element $x \in \mathcal{L}$ is the length of a maximal chain with x as a maximum.

The poset of *intersections* of an arrangement $\mathcal{A} = \{H_1, ..., H_k\}$ is the graded poset $\mathcal{L}(\mathcal{A})$ whose elements are the non-empty intersections of hyperplanes ordered by reverse inclusion.

Example

The posets of intersections of the previous example.

Combinatorics

The Möbius Function

Let \mathcal{L} be a (locally) finite poset.

Definition

The *Möbius function* of \mathcal{L} is $\mu_L: \mathcal{L} \times \mathcal{L} \to \mathbb{Z}$ defined by:

$$\sum_{x \leq z \leq y} \mu_{\mathcal{L}}(x, z) = \delta_{x, y} \qquad \forall x, y \in \mathcal{L}.$$

Example

The Möbius functions $\mu(0, y)$, for $y \in \mathcal{L}$ of the two previous posets.

The classical Möbius function

Example

Let $(\mathbb{N}_{>0}, |)$ be the locally finite poset of positive integers ordered by the division relation. Then the function $\mu(1, n)$ is the classical Möbius function, i.e.:

$$\mu(1, n) = \begin{cases} 0 & \text{if } n \text{ is not squarefree} \\ 1 & \text{if } n \text{ has an even number of prime factors} \\ -1 & \text{if } n \text{ has an odd number of prime factors} \end{cases}$$

Combinatorics

The Characteristic Polynomial

Definition

The characteristic polynomial of an hyperplane arrangement \mathcal{A} is: $\chi_{\mathcal{A}}(t) \stackrel{\text{def}}{=} \sum_{x \in \mathcal{L}(\mathcal{A})} \mu(0, x) t^{n-\mathsf{rk}\,x}$

Example

The characteristic polynomial $\chi(t)$ of the two examples are

respectively, $t^2 - 3t + 2$ and $t^2 - 3t + 3$.

Deletion and Restriction

Definition

The *deletion* of *H* from \mathcal{A} is the arrangement $\mathcal{A}_H = \mathcal{A} \setminus \{H\}$. The *restriction* of *H* is the arrangement \mathcal{A}^H in the euclidean space *H* given by $\{K \cap H \mid K \in \mathcal{A}\}$.

Example

The arrangements \mathcal{A} , \mathcal{A}_H and \mathcal{A}^H , respectively,

with polynomials
$$\chi_{\mathcal{A}} = t^2 - 3t + 3$$
, $\chi_{\mathcal{A}_H} = t^2 - 2t + 1$ and $\chi_{\mathcal{A}^H} = t - 2$.

Recursion for Deletion and Restriction

Theorem

Let \mathcal{A} be an arrangement and $H \in \mathcal{A}$, then $\chi_{\mathcal{A}}(t) = \chi_{\mathcal{A}_{H}}(t) - \chi_{\mathcal{A}^{H}}(t)$

Let $R(\mathcal{A})$ be the number of regions described by \mathcal{A} .

Observation

For any arrangement \mathcal{A} and $H \in \mathcal{A}$, we have $R(\mathcal{A}) = R(\mathcal{A}_H) + R(\mathcal{A}^H)$.

Number of Regions

Example

Let \mathcal{A} be the arrangement of k points in the real line \mathbb{R} , we have: $\chi_{\mathcal{A}}(t) = t - k, \mathsf{R}(\mathcal{A}) = k + 1 \text{ and } \mathsf{BR}(\mathcal{A}) = k - 1.$

Theorem

The number of regions is $R(A) = (-1)^n \chi_A(-1)$.

Proof.

The two functions R(A) and $(-1)^n \chi_A(-1)$ satisfy the same recursion (deletion-restriction) and they coincide on all the arrangements in \mathbb{R} .

Bounded Regions

Let BR(A) be the number of (relative) bounded regions, those number satisfy the recursion:

 $BR(\mathcal{A}) = \begin{cases} BR(\mathcal{A}_H) + BR(\mathcal{A}^H) & \text{if } M(\mathcal{A}_H) \text{ does not contain any line} \\ 0 & \text{if } M(\mathcal{A}_H) \text{ contains a line} \end{cases}$

Lemma

If $M(A_H)$ contains a line then $\chi_A(1) = 0$.

Theorem

The number of (relative) bounded regions is $BR(A) = (-1)^n \chi_A(1)$.

Roberto Pagaria

Definitions

Consider the compact torus $T^n := (S^1)^n$ and a finite collection \mathcal{A} of subtori H_1, \ldots, H_k of codimension one. We call \mathcal{A} a *toric arrangement*.

Problem: How many open regions are described by the toric arrangement? The intersection of some hypertori can be disconneted!

Poset and Characteristic Polynomial

We consider the poset $\mathcal{L}(\mathcal{A})$ of connected components of intersections.

Example

The Hasse diagram of the poset $\mathcal{L}(\mathcal{A})$ of the previous example is shown on the right, labelled with the Möbius function $\mu_{\mathcal{L}}(0, x)$ for $x \in \mathcal{L}(\mathcal{A})$.

The characteristic polynomial is $\chi_A(t) = t^2 - 3t + 4$.

As done before, we define the Möbius function for the poset $\mathcal{L}(\mathcal{A})$ and the characteristic polynomial of the toric arrangement.

Toric case

Toric Regions

We call TR(A) the number of toric regions described by A.

Example

The running example describes 4 regions in the torus T^2 .

Lemma

For \mathcal{A} a toric arrangement and $H \in \mathcal{A}$ an hypertorus, we have $\mathsf{TR}(\mathcal{A}) = \begin{cases} \mathsf{TR}(\mathcal{A}_H) + \mathsf{TR}(\mathcal{A}^H) & \text{if } M(\mathcal{A}_H) \text{ does not contain any 1-torus} \\ \mathsf{TR}(\mathcal{A}^H) & \text{if } M(\mathcal{A}_H) \text{ contains a 1-torus} \end{cases}$

Number of Toric Regions

Example

Let \mathcal{A} be the toric arrangement of k points in the 1-torus S^1 , we have: $\chi_{\mathcal{A}}(t) = t - k$, and $TR(\mathcal{A}) = k$.

Lemma

If
$$M(\mathcal{A}_H)$$
 contains a 1-torus then $\chi_{\mathcal{A}_H}(0) = 0$.

Theorem

Let \mathcal{A} be a toric arrangement, the number of toric regions is TR(\mathcal{A}) = $(-1)^n \chi_{\mathcal{A}}(0)$.

Proof.

The two functions TR(A) and $(-1)^n \chi_A(0)$ satisfy the same recursion (deletion-restriction) and they coincide on all the arrangements in S^1 .

Thanks for listening!