Roberto Pagaria

Università di Bologna

Combinatorial decomposition theorem for Hitchin fibrations

Ngô strings, lattice points in zonotopes, and shellability

The Tenth Congress of Romanian Mathematicians Joint with M. Mauri and L. Migliorini

July 4, 2023

- Algebraic geometry
(1) The Hitchin fibration
(2) Spectral curve
(3) The Ngô Decomposition theorem
- Combinatorics
(4) Dual graph
(5) Shellability
(6) Integral points in zonotopes
(3) Permutation representations

The moduli space $M(n, d)$

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_{C}>1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

The moduli space $M(n, d)$

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_{C}>1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where $\phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \omega_{C}$.

The moduli space $M(n, d)$

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_{C}>1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where $\phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \omega_{C}$.
A Higgs bundle is semistable if for every sub-Higgs bundle ($\mathcal{F}, \phi_{\mid \mathcal{F}}$) we have

$$
\frac{d(\mathcal{F})}{n(\mathcal{F})} \leq \frac{d(\mathcal{E})}{n(\mathcal{E})}=\frac{d}{n}
$$

The moduli space $M(n, d)$

Let C be a smooth projective algebraic curve over \mathbb{C} of genus $g_{C}>1$. We consider a vector bundle \mathcal{E} of rank n and degree d on C.

Definition

An Higgs bundle over C is a pair (\mathcal{E}, ϕ) where $\phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \omega_{C}$.
A Higgs bundle is semistable if for every sub-Higgs bundle $\left(\mathcal{F}, \phi_{\mid \mathcal{F}}\right)$ we have

$$
\frac{d(\mathcal{F})}{n(\mathcal{F})} \leq \frac{d(\mathcal{E})}{n(\mathcal{E})}=\frac{d}{n}
$$

Definition

The Dolbeault moduli space is

$$
M(n, d)=\{\text { semistable Higgs bundle }\} / S \text {-equivalence }
$$

Hitchin fibration

Every endomorphisms has a characteristic polynomial. For an Higgs bundle (\mathcal{E}, ϕ) we consider the characteristic polynomial

$$
\begin{aligned}
\chi_{\phi}(t) & =t^{n}+a_{1} t^{n-1}+\cdots+a_{n} \\
& =t^{n}-\operatorname{tr}(\phi) t^{n-1}+\cdots+(-1)^{n} \operatorname{det}(\phi)
\end{aligned}
$$

where $a_{i} \in H^{0}\left(C, \omega_{C}^{\otimes i}\right)$. Define $A_{n}=\bigoplus_{i=1}^{n} H^{0}\left(C, \omega_{C}^{\otimes i}\right) \simeq \mathbb{A}^{N}$.

Hitchin fibration

Every endomorphisms has a characteristic polynomial. For an Higgs bundle (\mathcal{E}, ϕ) we consider the characteristic polynomial

$$
\begin{aligned}
\chi_{\phi}(t) & =t^{n}+a_{1} t^{n-1}+\cdots+a_{n} \\
& =t^{n}-\operatorname{tr}(\phi) t^{n-1}+\cdots+(-1)^{n} \operatorname{det}(\phi)
\end{aligned}
$$

where $a_{i} \in H^{0}\left(C, \omega_{C}^{\otimes i}\right)$. Define $A_{n}=\bigoplus_{i=1}^{n} H^{0}\left(C, \omega_{C}^{\otimes i}\right) \simeq \mathbb{A}^{N}$.

Definition

The Hitchin fibration is the map

$$
\chi: M(n, d) \rightarrow A_{n}
$$

sending (\mathcal{E}, ϕ) to $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
The base of the fibration does not depend on d !

Spectral curve

For any point $a \in A_{n}$ the associated characteristic polynomial $p_{a}(t)=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$ describes a curve in the tangent bundle $T C \rightarrow C$.

Spectral curve

For any point $a \in A_{n}$ the associated characteristic polynomial $p_{a}(t)=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$ describes a curve in the tangent bundle $T C \rightarrow C$.

Definition

This zero locus is called spectral curve C_{a}.

Beauville Narasimhan Ramanan correspondence

Lemma

The BNR correspondence is
$\chi^{-1}(a)=\left\{(\mathcal{E}, \phi) \mid \chi_{\phi}=p_{a}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { semistable rank one torsion } \\ \text { free sheaves on } C_{a}\end{array}\right\}$ obtained by pushforward along $C_{a} \rightarrow C$.

The dimension of $M(n, d)$ is $2\left(g_{C}-1\right) n^{2}+2$.

Beauville Narasimhan Ramanan correspondence

Lemma

The BNR correspondence is
$\chi^{-1}(a)=\left\{(\mathcal{E}, \phi) \mid \chi_{\phi}=p_{a}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { semistable rank one torsion } \\ \text { free sheaves on } C_{a}\end{array}\right\}$ obtained by pushforward along $C_{a} \rightarrow C$.

The dimension of $M(n, d)$ is $2\left(g_{c}-1\right) n^{2}+2$.
We study the behaviour only on the reduced locus $A_{n, \text { red }} \subset A_{n}$ where the corresponding polynomial $p_{a}(t)$ has distinct irreducible factors.

Beauville Narasimhan Ramanan correspondence

Lemma

The BNR correspondence is
$\chi^{-1}(a)=\left\{(\mathcal{E}, \phi) \mid \chi_{\phi}=p_{a}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { semistable rank one torsion } \\ \text { free sheaves on } C_{a}\end{array}\right\}$ obtained by pushforward along $C_{a} \rightarrow C$.

The dimension of $M(n, d)$ is $2\left(g_{c}-1\right) n^{2}+2$.
We study the behaviour only on the reduced locus $A_{n, \text { red }} \subset A_{n}$ where the corresponding polynomial $p_{a}(t)$ has distinct irreducible factors. For any partition $\underline{n}=\left(n_{1}, n_{2}, \ldots, n_{r}\right) \vdash n$ we define $S_{\underline{n}} \subset A_{n, \text { red }}$ the set of points a such that the irreducible factors of $p_{a}(t)$ have degree $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$.

The strata $S_{\underline{n}}$ form a Whitney stratification of $A_{n, \text { red }}$.

Decomposition theorem

The space $M(n, d)$ is singular with a map to the affine space A_{n}. The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology $\mathrm{IH}(M(n, d))$.

$$
\mathrm{IH}(M(n, d))=H\left(M(n, d), \mathrm{IC} C_{M(n, d)}\right) \simeq H\left(A_{n}, R \chi_{*} \mathrm{IC}_{M(n, d)}\right)
$$

where IC is the perverse intersection complex.

Decomposition theorem

The space $M(n, d)$ is singular with a map to the affine space A_{n}. The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology $\mathrm{IH}(M(n, d))$.

$$
\mathrm{IH}(M(n, d))=H\left(M(n, d), \mathrm{IC} C_{M(n, d)}\right) \simeq H\left(A_{n}, R \chi_{*} \mathrm{IC}_{M(n, d)}\right)
$$

where IC is the perverse intersection complex.

Theorem (Mauri, Migliorini '22)

The Ngô Decomposition Theorem specializes to

$$
\left.R \chi_{*} I C_{M(n, d)}\right|_{A_{\text {red }}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right)
$$

for some local systems $\mathcal{L}_{\underline{n}, d}$ on $S_{\underline{n}}$ and for $\Lambda_{\underline{n}}$ the cohomology sheaf of the relative Picard group $\operatorname{Pic}^{0}\left(\bar{C}_{\underline{n}}\right)$ of the normalization of the spectral curve.

These summands are called N gô strings.

Main problem

Problem: determine $\mathcal{L}_{n, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e.

$$
\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?
$$

(2) determine the rank $r(\underline{n}, d):=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Main problem

Problem: determine $\mathcal{L}_{n, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e.

$$
\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?
$$

(2) determine the rank $r(\underline{n}, d):=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

The dual graph

For $a \in A_{n, \text { red }}$ the spectral curve is reduced. If $a \in S_{\underline{n}}$ the spectral curve has r irreducible components of degree n_{i}. The number of intersection points of two irreducible components is

$$
n_{i} n_{j}\left(2 g_{C}-2\right)
$$

The dual graph

For $a \in A_{n, \text { red }}$ the spectral curve is reduced. If $a \in S_{\underline{n}}$ the spectral curve has r irreducible components of degree n_{i}. The number of intersection points of two irreducible components is

$$
n_{i} n_{j}\left(2 g_{C}-2\right)
$$

Let $\Gamma_{\underline{n}}=\Gamma_{a}$ be the dual graph of the spectral curve C_{a}, i.e. the graph on r vertices and $y_{i, j}:=n_{i} n_{j}\left(2 g_{C}-2\right)$ edges between the vertices i and j.
Define the vector $\omega=\left(\frac{d n_{1}}{n}, \frac{d n_{2}}{n}, \ldots, \frac{d n_{r}}{n}\right) \in \mathbb{Q}^{r}$.

The dual graph

For $a \in A_{n, \text { red }}$ the spectral curve is reduced. If $a \in S_{\underline{n}}$ the spectral curve has r irreducible components of degree n_{i}. The number of intersection points of two irreducible components is

$$
n_{i} n_{j}\left(2 g_{C}-2\right)
$$

Let $\Gamma_{\underline{n}}=\Gamma_{a}$ be the dual graph of the spectral curve C_{a}, i.e. the graph on r vertices and $y_{i, j}:=n_{i} n_{j}\left(2 g_{C}-2\right)$ edges between the vertices i and j.
Define the vector $\omega=\left(\frac{d n_{1}}{n}, \frac{d n_{2}}{n}, \ldots, \frac{d n_{r}}{n}\right) \in \mathbb{Q}^{r}$.

Example

Let $n=4, d=2, g=2$, and $\underline{n}=(1,1,2)$.
The dual graph is :

$$
\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)
$$

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$
Z_{\Gamma}:=\sum_{(i, j) \in \Gamma} y_{i, j}\left[0, e_{i}-e_{j}\right] \subset \mathbb{R}^{V(\Gamma)}
$$

where $y_{i, j}$ is the number of edges between i and j.

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$
Z_{\Gamma}:=\sum_{(i, j) \in \Gamma} y_{i, j}\left[0, e_{i}-e_{j}\right] \subset \mathbb{R}^{V(\Gamma)}
$$

where $y_{i, j}$ is the number of edges between i and j.
For any polytope Z let $C(Z)$ be the number of integral points in the interior of Z.

Example

Let $n=4, g=2$, and $\underline{n}=(1,1,2)$. The graphical zonotope is

so $C\left(Z_{\Gamma}\right)=23$ and $C\left(Z_{\Gamma}+\omega\right)=30$.

Example

The strata $S_{(2,2,2)}$ is contained in the strata $S_{(2,4)}$, however there are three branching of $S_{(2,4)}$ concurring at $S_{(2,2,2)}$. Let $a \in S_{(2,2,2)}$, then $p_{a}(t)=p_{1}(t) p_{2}(t) p_{3}(t)$ is the product of three distinct polynomials of degree two. So the branching are in correspondence with the set partitions of [3], i.e. the ways to multiply some of its factors.

Example

The strata $S_{(2,2,2)}$ is contained in the strata $S_{(2,4)}$, however there are three branching of $S_{(2,4)}$ concurring at $S_{(2,2,2)}$. Let $a \in S_{(2,2,2)}$, then $p_{a}(t)=p_{1}(t) p_{2}(t) p_{3}(t)$ is the product of three distinct polynomials of degree two. So the branching are in correspondence with the set partitions of [3], i.e. the ways to multiply some of its factors.

Definition

Let $\underline{n} \vdash n$ and $\underline{S} \vdash[\ell(\underline{n})]$. Define the partition $\underline{n}_{\underline{S}} \vdash n$ as $\left(\sum_{j \in S_{i}} n_{j}\right)_{i}$.

Proposition

For any $a \in S_{\underline{n}}$ we have $\operatorname{dim} \mathcal{H}^{\text {top }}\left(R \chi_{*} \mid C_{M(n, d)}\right)_{a}=\#$ irr. comp. $\chi^{-1}(a)=C\left(Z_{\Gamma_{\underline{\underline{n}}}}+\omega\right)$

Proposition

For any $a \in S_{\underline{n}}$ we have $\operatorname{dim} \mathcal{H}^{\text {top }}\left(R \bar{\chi}_{*} \operatorname{IC}_{M(n, d)}\right)_{a}=\#$ irr. comp. $\chi^{-1}(a)=C\left(Z_{\Gamma_{\underline{n}}}+\omega\right)$

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$
\left.R \chi_{*} I C_{M(n, d)}\right|_{A_{\text {red }}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right) .
$$

For $a \in S_{\underline{n}}$ we have
$\mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \mathrm{IC}_{M(n, d)}\right)_{a}=\bigoplus_{\underline{S} \vdash\lceil\ell(\underline{n})]}\left(\mathcal{L}_{\underline{\underline{n}}_{\underline{s}}, d}\right)_{a} \otimes \bigotimes_{i=1}^{\ell(\underline{S})} \mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \mathrm{IC}_{M\left(\left|S_{i}\right|, 0\right)}\right)_{a}$

Proposition

For any $a \in S_{\underline{n}}$ we have $\operatorname{dim} \mathcal{H}^{\text {top }}\left(R \bar{\chi}_{*} \operatorname{IC}_{M(n, d)}\right)_{a}=\#$ irr. comp. $\chi^{-1}(a)=C\left(Z_{\Gamma_{\underline{n}}}+\omega\right)$

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$
\left.R \chi_{*} I C_{M(n, d)}\right|_{A_{\text {red }}}=\bigoplus_{\underline{n} \vdash n} I C_{S_{\underline{n}}}\left(\mathcal{L}_{\underline{n}, d} \otimes \Lambda_{\underline{n}}\right) .
$$

For $a \in S_{\underline{n}}$ we have

$$
\mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \mathrm{IC}_{M(n, d)}\right)_{a}=\bigoplus_{\underline{S}-[\ell(\underline{n})]}\left(\mathcal{L}_{\underline{n}_{\underline{S}}, d}\right)_{a} \otimes \bigotimes_{i=1}^{\ell(\underline{S})} \mathcal{H}^{\mathrm{top}}\left(R \chi_{*} \mathrm{IC}_{M\left(\left|S_{i}\right|, 0\right)}\right)_{a}
$$

and so

$$
C\left(Z_{\Gamma_{\underline{n}}}+\omega\right)=\sum_{\underline{S} \vdash\lceil\ell(\underline{n})]} r\left(\underline{n}_{\underline{s}}, d\right) \prod_{i=1}^{\ell(\underline{S})} C\left(Z_{\Gamma_{S_{i}}}\right)
$$

where Γ_{S} is the induced subgraph of Γ on the vertices $S \subseteq V$.

We consider graphs $\Gamma=(V, E)$ possibly with multiple edges. A flat is a partition of V such that for each block the induced subgraph is connected. The poset of flats \mathcal{S} is the set of all flats ordered by refinement.

Definition

Let $\underline{S} \in \mathcal{S}$ be a flat, the deleted graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S}. The contracted graph $\Gamma \underline{\underline{S}}$ is obtained from Γ by contracting all the edges in the flat \underline{S}.

We consider graphs $\Gamma=(V, E)$ possibly with multiple edges. A flat is a partition of V such that for each block the induced subgraph is connected. The poset of flats \mathcal{S} is the set of all flats ordered by refinement.

Definition

Let $\underline{S} \in \mathcal{S}$ be a flat, the deleted graph $\Gamma_{\underline{S}}$ is the graph with only edges in the flat \underline{S}. The contracted graph $\Gamma \underline{S}$ is obtained from Γ by contracting all the edges in the flat \underline{S}.

Example

Consider the graph Γ with poset of flats \mathcal{S} and the flat $12 \mid 3$.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{I \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in I}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I)
$$

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\sum_{I \text { independent set }}(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in I}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I) .
$$

Example

$$
\text { Let } Z=\left[0, e_{1}\right]+\left[0, e_{1}+e_{2}\right]+\left[0, e_{1}-e_{2}\right] \text { and } \omega=\left(\frac{1}{2}, \frac{1}{2}\right) \text {. }
$$

$$
\begin{aligned}
C(Z+\omega) & =\operatorname{Vol}\left(v_{2} v_{3}\right)+\operatorname{Vol}\left(v_{1} v_{2}\right)+\operatorname{Vol}\left(v_{1} v_{3}\right)-\operatorname{Vol}\left(v_{2}\right)-\operatorname{Vol}\left(v_{3}\right) \\
& =2+1+1-1-1=2 .
\end{aligned}
$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\quad \sum \quad(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I)
$$

I independent set

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in \mathcal{S}$ we have $\delta_{(\langle\underline{S}\rangle+\omega) \cap \mathbb{Z}^{r} \neq \emptyset}=1$ if and only if \underline{S} is ω-integral.

Counting integral points

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let $Z=\sum_{i \in E}\left[0, v_{i}\right]$ be an integral zonotope and $\omega \in \mathbb{R}^{r}$. Then

$$
C(Z+\omega)=\quad \sum \quad(-1)^{r-|I|} \delta_{\left(\left\langle v_{i}\right\rangle_{i \in 1}+\omega\right) \cap \mathbb{Z}^{r} \neq \emptyset} \operatorname{Vol}(I)
$$

I independent set

Definition

A set $S \subseteq[r]$ is ω-integral if $\sum_{i \in S} \omega_{i} \in \mathbb{Z}$. A partition $\underline{S} \vdash[r]$ is ω-integral if all its blocks S_{j} are ω-integral.

For a graphical zonotope Z_{Γ} and a flat $\underline{S} \in \mathcal{S}$ we have $\delta_{(\langle\underline{S}\rangle+\omega) \cap \mathbb{Z}^{r} \neq \emptyset}=1$ if and only if \underline{S} is ω-integral.

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

$$
\text { If } \sum_{i=1}^{r} \omega_{i} \in \mathbb{Z} \text {, then }
$$

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}}\left(\sum_{\substack{\underline{T} \geq \underline{S} \\ \underline{\omega} \text {-integral }}} \mu(\underline{S}, \underline{T})\right) C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}}\left(\sum_{\substack{\underline{T} \geq \underline{S} \\ \underline{\omega} \text {-integral }}} \mu(\underline{S}, \underline{T})\right) C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

Corollary

In the case of the complete graph Γ_{a} and $\omega=\left(\frac{d n_{i}}{n}\right)$ we have

$$
r(\underline{n}, d)=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}=\sum_{\substack{\underline{S} \vdash[r] \\ \underline{s} \omega-\text {-integral }}}(-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})}\left(\left|S_{i}\right|-1\right)!
$$

Möbius inversion

Theorem (Mauri, Migliorini, P. '23)

If $\sum_{i=1}^{r} \omega_{i} \in \mathbb{Z}$, then

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}}\left(\sum_{\substack{\underline{T} \geq \underline{S} \\ \underline{\omega} \text {-integral }}} \mu(\underline{S}, \underline{T})\right) C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

Corollary

In the case of the complete graph Γ_{a} and $\omega=\left(\frac{d n_{i}}{n}\right)$ we have

$$
r(\underline{n}, d)=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}=\sum_{\substack{\underline{S}-[r] \\ \underline{S} \omega \text {-integral }}}(-1)^{\ell(\underline{S})-1} \prod_{i=1}^{\ell(\underline{S})}\left(\left|S_{i}\right|-1\right)!
$$

Moreover, $\mathcal{L}_{\underline{n}, d}=0$ if $\omega \in \mathbb{Z}^{r}$, i.e. $\frac{d n_{i}}{n} \in \mathbb{Z}$ for all i.

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset \mathcal{S}_{ω}.

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset \mathcal{S}_{ω}.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is EL-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{s} \in \mathcal{S}_{\omega}} \operatorname{rk} \tilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω-integral flats. Let $\Delta\left(\mathcal{S}_{\omega}\right)$ be the the order complex of the poset \mathcal{S}_{ω}.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is EL-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{s} \in \mathcal{S}_{\omega}} \operatorname{rk} \tilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(Z_{\Gamma_{\underline{s}}}\right)
$$

Corollary

If $\omega \notin \mathbb{Z}^{r}$, i.e. exists i such that $\frac{d n_{i}}{n} \notin \mathbb{Z}$, then $\mathcal{L}_{\underline{n}, d} \neq 0$.
This solves Problem 1.

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is EL-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(\Gamma_{\underline{s}}\right)
$$

Example

Let $n=4, g=2$, and $\underline{n}=(1,1,2)$. Then $\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and

Theorem (Mauri, Migliorini, P. '23)

The poset \mathcal{S}_{ω} is EL-shellable. Therefore,

$$
C\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}\right)+\sum_{\underline{S} \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\mathrm{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) C\left(\Gamma_{\underline{s}}\right)
$$

Example

Let $n=4, g=2$, and $\underline{n}=(1,1,2)$. Then $\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and

$$
\begin{aligned}
C\left(Z_{\Gamma}+\omega\right) & =C\left(Z_{\Gamma}\right)+C\left(Z_{\Gamma_{13 \mid 2}}\right)+C\left(Z_{\Gamma_{23 \mid 1}}\right)+C\left(Z_{\Gamma_{1|2| 3}}\right) \\
30 & =23+3+3+1 .
\end{aligned}
$$

Orientation character

Let $O \Gamma$ be the oriented graph obtained by replacing every unoriented edge in 「 with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $\operatorname{Aut}(\Gamma)$ defined by

$$
a_{\Gamma}(\sigma)=\operatorname{sgn}(\sigma: V(\Gamma) \rightarrow V(\Gamma)) \operatorname{sgn}(\sigma: E(O \Gamma) \rightarrow E(O\ulcorner))
$$

Orientation character

Let $O \Gamma$ be the oriented graph obtained by replacing every unoriented edge in 「 with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $\operatorname{Aut}(\Gamma)$ defined by

$$
a_{\Gamma}(\sigma)=\operatorname{sgn}(\sigma: V(\Gamma) \rightarrow V(\Gamma)) \operatorname{sgn}(\sigma: E(O\ulcorner) \rightarrow E(O \Gamma))
$$

Example

Consider the graph:

with $a \neq b$. Then $\operatorname{Aut}(\Gamma)=\mathbb{Z} / 2 \mathbb{Z}=\langle(12)\rangle$ and $a_{\Gamma}(\sigma)=(-1)^{a+1}$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma)<\mathfrak{S}_{r}$ and suppose that ω is a Aut (Γ)-invariant vector. Let $\mathcal{C}\left(Z_{\Gamma}+\omega\right)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma}+\omega\left(\operatorname{dim} \mathcal{C}\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}+\omega\right)\right)$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma)<\mathfrak{S}_{r}$ and suppose that ω is a Aut (Γ)-invariant vector. Let $\mathcal{C}\left(Z_{\Gamma}+\omega\right)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma}+\omega\left(\operatorname{dim} \mathcal{C}\left(Z_{\Gamma}+\omega\right)=C\left(Z_{\Gamma}+\omega\right)\right)$.

Theorem (Mauri, Migliorini, P. 2023)

$\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus$
$\bigoplus \quad \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\mathrm{Aut}(\Gamma)} a_{\Gamma \underline{s}} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \underline{\underline{s}}}\right)\right) \otimes \mathcal{C}\left(\Gamma_{\underline{S}}\right)$. $\underline{S} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)$

Theorem (Mauri, Migliorini, P. 2023)

$$
\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus
$$

$$
\bigoplus_{\underline{s} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(\underline{S})}^{\operatorname{Aut}(\Gamma)} a_{\Gamma} \underline{s} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) \otimes \mathcal{C}\left(\Gamma_{\underline{s}}\right)
$$

Example

Let $n=4, g=2$, and $\underline{n}=(1,1,2)$. Then $\omega=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and

The automorphism group is $\operatorname{Aut}(\Gamma)=\mathbb{Z} / 2 \mathbb{Z}=\langle(1,2)\rangle$. Then:

$$
\mathcal{C}\left(Z_{\Gamma}+\omega\right)=\mathcal{C}\left(Z_{\Gamma}\right) \oplus \operatorname{Reg}^{\oplus 3} \oplus(\operatorname{sgn} \otimes \operatorname{sgn} \otimes 1)
$$

Theorem (Mauri, Migliorini, P. '23)

$$
\begin{aligned}
& \mathcal{C}\left(Z_{\Gamma}+\omega\right)= \mathcal{C}\left(Z_{\Gamma}\right) \oplus \\
& \bigoplus_{\underline{s} \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\text {Stab(}(\underline{\Omega})}^{\operatorname{Aut})} a_{\Gamma \underline{s}} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega, \geq \underline{s}}\right)\right) \otimes \mathcal{C}\left(\Gamma_{\underline{s}}\right) .
\end{aligned}
$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e. $\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?$
(2) determine the rank $r(\underline{n}, d):=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e.

$$
\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?
$$

(2) determine the rank $r(\underline{n}, d):=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d} \neq 0$ if and only if $\underline{n}=(n)$ or $\omega=\left(\frac{d n_{i}}{n}\right) \notin \mathbb{Z}^{r}$.

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e.

$$
\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?
$$

(2) determine the rank $r(\underline{n}, d):=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d} \neq 0$ if and only if $\underline{n}=(n)$ or $\omega=\left(\frac{d n_{i}}{n}\right) \notin \mathbb{Z}^{r}$.
(2)

$$
\begin{aligned}
r(\underline{n}, d) & =\sum_{\underline{s} \omega \text {-integral }}(-1)^{\ell(\underline{S})-1} \prod_{i}\left(\left|S_{i}\right|-1\right)! \\
& =\operatorname{dim} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
\end{aligned}
$$

Conclusions

Problem: determine $\mathcal{L}_{\underline{n}, d}$. In particular:
(1) which partitions \underline{n} appear in the decomposition (i.e.

$$
\left.\mathcal{L}_{\underline{n}, d} \neq 0\right) ?
$$

(2) determine the rank $r(\underline{n}, d):=\operatorname{dim}\left(\mathcal{L}_{\underline{n}, d}\right)_{a}$.
(3) determine the monodromy of the local system $\mathcal{L}_{\underline{n}, d}$.

Solution:

(1) $\mathcal{L}_{\underline{n}, d} \neq 0$ if and only if $\underline{n}=(n)$ or $\omega=\left(\frac{d n_{i}}{n}\right) \notin \mathbb{Z}^{r}$.
(2)

$$
\begin{aligned}
r(\underline{n}, d) & =\sum_{\underline{s} \omega \text {-integral }}(-1)^{\ell(\underline{S})-1} \prod_{i}\left(\left|S_{i}\right|-1\right)! \\
& =\operatorname{dim} \widetilde{H}^{\text {top }}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
\end{aligned}
$$

(3) The monodromy is given by the representation of $\operatorname{Aut}\left(\Gamma_{\underline{n}}\right)$

$$
\operatorname{sgn} \otimes \widetilde{H}^{\operatorname{top}}\left(\Delta\left(\mathcal{S}_{\omega}\right)\right)
$$

Thanks for listening!

roberto.pagaria@unibo.it

