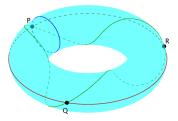
Roberto Pagaria Scuola Normale Superiore

Arithmetic Matroids and their Representations

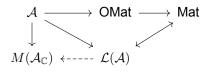
Combinatorics Seminar



at KTH Royal Institute of Technology April 3, 2019

Hyperplane arrangements

We will see:



Where:

- A is a real hyperplane arrangement,
- $M(\mathcal{A}_{\mathbb{C}})$ is the complement,
- Mat and OMat are a matroid and an oriented matroid,
- $\mathcal{L}(\mathcal{A})$ is the lattice of intersections.

A real hyperplane arrangement \mathcal{A} is a finite collection of hyperplanes H_i , $i \in E$ in \mathbb{R}^k . The complement $M(\mathcal{A}_{\mathbb{C}})$ is the topological space $\mathbb{C}^k \setminus \bigcup_{H \in \mathcal{A}} H \otimes \mathbb{C}$.

Roberto Pagaria

A real **hyperplane arrangement** \mathcal{A} is a finite collection of hyperplanes H_i , $i \in E$ in \mathbb{R}^k .

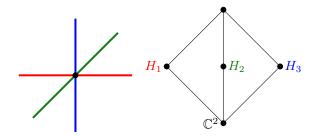
The **complement** $M(\mathcal{A}_{\mathbb{C}})$ is the topological space $\mathbb{C}^k \setminus \bigcup_{H \in \mathcal{A}} H \otimes \mathbb{C}$.

The **poset of intersections** is the partially ordered set whose elements are $\cap_{H \in I} H$, for $I \subseteq E$ ordered by reverse inclusion.

A real **hyperplane arrangement** A is a finite collection of hyperplanes H_i , $i \in E$ in \mathbb{R}^k .

The **complement** $M(\mathcal{A}_{\mathbb{C}})$ is the topological space $\mathbb{C}^k \setminus \bigcup_{H \in \mathcal{A}} H \otimes \mathbb{C}$.

The **poset of intersections** is the partially ordered set whose elements are $\cap_{H \in I} H$, for $I \subseteq E$ ordered by reverse inclusion.



The poset of intersections is a **geometric lattice**, i.e. a graded atomistic semimodular lattice.

- 1. $\mathsf{rk}(I) \leq |I|$,
- 2. if $I \subset J$ then $\mathsf{rk}(I) \leq \mathsf{rk}(J)$,
- 3. $\mathsf{rk}(I \cap J) + \mathsf{rk}(I \cup J) \le \mathsf{rk}(I) + \mathsf{rk}(J)$.

- 1. $rk(I) \le |I|$,
- **2**. if $I \subset J$ then $\mathsf{rk}(I) \leq \mathsf{rk}(J)$,
- 3. $\mathsf{rk}(I \cap J) + \mathsf{rk}(I \cup J) \le \mathsf{rk}(I) + \mathsf{rk}(J).$

A *k*-flat is a subset $I \subseteq E$ maximal among all subsets of rank *k*. A set *I* is (in-)dependent if rk(I) < |I| (resp. rk(I) = |I|). A basis $B \subseteq E$ is an independent set such that rk(E) = rk(B)(=|B|). A circuit $C \subseteq E$ is a minimal dependent set.

- 1. $rk(I) \le |I|$,
- **2**. if $I \subset J$ then $\mathsf{rk}(I) \leq \mathsf{rk}(J)$,
- 3. $\mathsf{rk}(I \cap J) + \mathsf{rk}(I \cup J) \le \mathsf{rk}(I) + \mathsf{rk}(J).$

A *k*-flat is a subset $I \subseteq E$ maximal among all subsets of rank *k*. A set *I* is (in-)dependent if rk(I) < |I| (resp. rk(I) = |I|). A basis $B \subseteq E$ is an independent set such that rk(E) = rk(B)(=|B|). A circuit $C \subseteq E$ is a minimal dependent set.

Facts:

- 1. the poset of flats coincides with the poset of the intersections.
- 2. the matroid is uniquely determined by its bases.

- 1. $rk(I) \le |I|$,
- **2**. if $I \subset J$ then $\mathsf{rk}(I) \leq \mathsf{rk}(J)$,
- 3. $\mathsf{rk}(I \cap J) + \mathsf{rk}(I \cup J) \le \mathsf{rk}(I) + \mathsf{rk}(J).$

A *k*-flat is a subset $I \subseteq E$ maximal among all subsets of rank *k*. A set *I* is (in-)dependent if rk(I) < |I| (resp. rk(I) = |I|). A basis $B \subseteq E$ is an independent set such that rk(E) = rk(B)(=|B|). A circuit $C \subseteq E$ is a minimal dependent set.

Example

The previous arrangement defines the matroid $E = \{1, 2, 3\}$ and $\mathsf{rk}(I) = \mathsf{codim}(\cap_{i \in I} H_i) = \min\{|I|, 2\}.$ The flats are $\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2, 3\}.$ The bases are $\{1, 2\}, \{1, 3\}, \{2, 3\}.$

Explicit construction

Any hyperplane H_i in \mathbb{R}^k is defined by $v_i \in (\mathbb{R}^k)^*$, unique up to scalars. An arrangement \mathcal{A} can be defined by a matrix

 $V = (v_i) \in M(k, n; \mathbb{R}).$

For each $I \in [n]$, let $V[I] = (v_i)_{i \in I}$.

Explicit construction

Any hyperplane H_i in \mathbb{R}^k is defined by $v_i \in (\mathbb{R}^k)^*$, unique up to scalars. An arrangement \mathcal{A} can be defined by a matrix

 $V = (v_i) \in M(k, n; \mathbb{R}).$

For each $I \in [n]$, let $V[I] = (v_i)_{i \in I}$.

The matroid associated with A is the set [n] with rank function

 $\mathsf{rk}(I) := \mathsf{rank}(V[I])$

and does not depend on the choice of V.

Definition

A chirotope of rank k over E is $\chi: E^k \to \{0, 1, -1\}$ such that

- 1. $\chi(\sigma \underline{x}) = \operatorname{sgn}(\sigma)\chi(\underline{x})$ for each $\sigma \in \mathfrak{S}_k$,
- 2. $(-1)^i \chi(y_i, x_2, \dots, x_k) \chi(x_1, y_1, \dots, \hat{y_i}, \dots, y_k) \ge 0$ for all i, then $\chi(\underline{x})\chi(\underline{y}) \ge 0$.

Definition

A chirotope of rank k over E is $\chi: E^k \to \{0, 1, -1\}$ such that

1.
$$\chi(\sigma \underline{x}) = \operatorname{sgn}(\sigma)\chi(\underline{x})$$
 for each $\sigma \in \mathfrak{S}_k$,

2. $(-1)^i \chi(y_i, x_2, \dots, x_k) \chi(x_1, y_1, \dots, \hat{y_i}, \dots, y_k) \ge 0$ for all *i*, then $\chi(\underline{x})\chi(\underline{y}) \ge 0$.

Example: The chirotope defined by an arrangement \mathcal{A} in \mathbb{R}^k is of rank k and is defined by:

$$\chi(i_1,\ldots,i_k) = \operatorname{sgn}\operatorname{det}(v_{i_1},\ldots,v_{i_k}).$$

Definition

A chirotope of rank k over E is $\chi: E^k \to \{0, 1, -1\}$ such that

1.
$$\chi(\sigma \underline{x}) = \operatorname{sgn}(\sigma)\chi(\underline{x})$$
 for each $\sigma \in \mathfrak{S}_k$,

2. $(-1)^i \chi(y_i, x_2, \dots, x_k) \chi(x_1, y_1, \dots, \hat{y_i}, \dots, y_k) \ge 0$ for all *i*, then $\chi(\underline{x})\chi(\underline{y}) \ge 0$.

Example: The chirotope defined by an arrangement \mathcal{A} in \mathbb{R}^k is of rank k and is defined by:

$$\chi(i_1,\ldots,i_k) = \operatorname{sgn}\operatorname{det}(v_{i_1},\ldots,v_{i_k}).$$

Fact: A chirotope defines a matroid by $\mathcal{B} = \{B \in E^r \mid \chi(B) \neq 0\}.$

Definition

A chirotope of rank k over E is $\chi: E^k \to \{0, 1, -1\}$ such that

1.
$$\chi(\sigma \underline{x}) = \operatorname{sgn}(\sigma)\chi(\underline{x})$$
 for each $\sigma \in \mathfrak{S}_k$,

2. $(-1)^i \chi(y_i, x_2, \dots, x_k) \chi(x_1, y_1, \dots, \hat{y_i}, \dots, y_k) \ge 0$ for all *i*, then $\chi(\underline{x})\chi(\underline{y}) \ge 0$.

Example: The chirotope defined by an arrangement \mathcal{A} in \mathbb{R}^k is of rank k and is defined by:

$$\chi(i_1,\ldots,i_k) = \operatorname{sgn} \det(v_{i_1},\ldots,v_{i_k}).$$

Fact: A chirotope defines a matroid by $\mathcal{B} = \{B \in E^r \mid \chi(B) \neq 0\}$.

Definition

Two chirotopes χ and χ' are equivalent if there exists $A \subseteq E$ such that $\chi'(\underline{x}) = (-1)^{|A \cap \underline{x}|} \chi(\underline{x}).$

Tutte polynomial

Definition

The **Tutte polynomial** of a matroid (E, rk) is

$$T(x,y) := \sum_{A \subseteq E} (x-1)^{\mathsf{rk}(E) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}.$$

Tutte polynomial

Definition

The **Tutte polynomial** of a matroid (E, rk) is

$$T(x,y) := \sum_{A \subseteq E} (x-1)^{\mathsf{rk}(E) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}.$$

The Poincaré polynomial of $M(\mathcal{A}_{\mathbb{C}})$ coincides with

$$P_{M(\mathcal{A}_{\mathbb{C}})}(q) = q^n T\left(\frac{q+1}{q}, 0\right),$$

where T is the Tutte polynomial of the matroid represented by A.

The cohomology algebra $H^{\bullet}(M(\mathcal{A}_{\mathbb{C}}))$ is isomorphic to the Orlik-Solomon algebra of the associated matroid.

The cohomology algebra $H^{\bullet}(M(\mathcal{A}_{\mathbb{C}}))$ is isomorphic to the Orlik-Solomon algebra of the associated matroid.

The homotopy type of $M(\mathcal{A}_{\mathbb{C}})$ depends only on the oriented matroid data using the Salvetti complex.

The cohomology algebra $H^{\bullet}(M(\mathcal{A}_{\mathbb{C}}))$ is isomorphic to the Orlik-Solomon algebra of the associated matroid.

The homotopy type of $M(\mathcal{A}_{\mathbb{C}})$ depends only on the oriented matroid data using the Salvetti complex.

However, the homotopy type is not determined by the matroid as shown by Rybnikov.

The cohomology algebra $H^{\bullet}(M(\mathcal{A}_{\mathbb{C}}))$ is isomorphic to the Orlik-Solomon algebra of the associated matroid.

The homotopy type of $M(\mathcal{A}_{\mathbb{C}})$ depends only on the oriented matroid data using the Salvetti complex.

However, the homotopy type is not determined by the matroid as shown by Rybnikov.

Definition

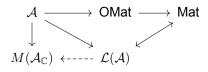
The **OS-algebra** of a matroid (E, rk) is the external algebra on generators ω_e for $e \in E$ and relations

$$\sum_{i=1}^{r} (-1)^{i} \omega_{c_1} \dots \hat{\omega}_{c_i} \dots \omega_{c_r} = 0$$

for each circuit $C = \{c_1, \ldots, c_r\} \subset E$.

Hyperplane arrangements

We have seen:

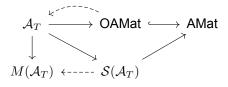


Where:

- A is a real hyperplane arrangement,
- $M(\mathcal{A}_{\mathbb{C}})$ is the complement,
- Mat and OMat are a matroid and an oriented matroid,
- $\mathcal{L}(\mathcal{A})$ is the lattice of intersections.

Toric arrangements

We will see:



Where:

- A_T is a toric arrangement,
- $M(\mathcal{A}_T)$ is the complement,
- AMat and OAMat are arithmetic matroid and orientable arithmetic matroid,
- $S(A_T)$ is the lattice of layers.

An hypertorus T in an algebraic torus $(\mathbb{C}^*)^k$ is the set

$$T = \{(t_1, \dots, t_k) \in (\mathbb{C}^*)^k \mid t_1^{v_1} t_2^{v_2} \cdots t_k^{v_k} = 1\}$$

for a vector $(v_i) \in \mathbb{Z}^k$.

A toric arrangement A_T is a collection of hypertori H_i , for $i \in [n]$.

An hypertorus *T* in an algebraic torus $(\mathbb{C}^*)^k$ is the set

$$T = \{(t_1, \dots, t_k) \in (\mathbb{C}^*)^k \mid t_1^{v_1} t_2^{v_2} \cdots t_k^{v_k} = 1\}$$

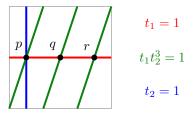
for a vector $(v_i) \in \mathbb{Z}^k$.

A toric arrangement A_T is a collection of hypertori H_i , for $i \in [n]$.

Example: the integer matrix

$$V = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 3 & 1 \end{array}\right)$$

defines the following toric arrangement:



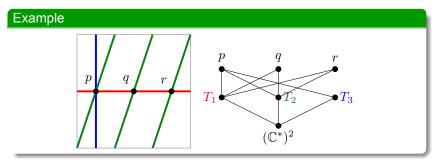
Poset of layers

A **layer** is a connected component of the intersection of some hypertori of A_T . The **poset of layers** $S(A_T)$ is the set of all layers ordered by reverse inclusion.

Poset of layers

A **layer** is a connected component of the intersection of some hypertori of A_T .

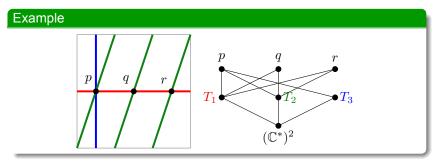
The **poset of layers** $S(A_T)$ is the set of all layers ordered by reverse inclusion.



Poset of layers

A **layer** is a connected component of the intersection of some hypertori of A_T .

The **poset of layers** $S(A_T)$ is the set of all layers ordered by reverse inclusion.



Fact: The poset of layers is a geometric semilattice.

Arithmetic matroids

A molecule is $S = R \sqcup T \sqcup F \subseteq E$ such that $\mathsf{rk}(R \sqcup T) = \mathsf{rk}(R)$ and $\mathsf{rk}(R \sqcup F) = \mathsf{rk}(R) + |F|$.

Definition (Brändén – Moci, D'Adderio – Moci 2014)

An **arithmetic matroid** is a matroid (E, rk) together with a multiplicity function $m: 2^E \to \mathbb{N}_+$ such that:

- 1. if $\mathsf{rk}(I \cup e) = \mathsf{rk}(I)$, then $m(I \cup e)|m(I)$; otherwise $m(I)|m(I \cup e)$,
- 2. for each molecule $m(R)m(R \cup T \cup F) = m(R \cup F)m(R \cup T)$,
- 3. for each molecule $\sum_{R \subseteq I \subseteq S} (-1)^{|R|+|F|-|I|} m(I) \ge 0$.

Arithmetic matroids

A molecule is $S = R \sqcup T \sqcup F \subseteq E$ such that $\mathsf{rk}(R \sqcup T) = \mathsf{rk}(R)$ and $\mathsf{rk}(R \sqcup F) = \mathsf{rk}(R) + |F|$.

Definition (Brändén – Moci, D'Adderio – Moci 2014)

An **arithmetic matroid** is a matroid (E, rk) together with a multiplicity function $m: 2^E \to \mathbb{N}_+$ such that:

- 1. if $\mathsf{rk}(I \cup e) = \mathsf{rk}(I)$, then $m(I \cup e)|m(I)$; otherwise $m(I)|m(I \cup e)$,
- 2. for each molecule $m(R)m(R \cup T \cup F) = m(R \cup F)m(R \cup T)$,
- 3. for each molecule $\sum_{R \subseteq I \subseteq S} (-1)^{|R|+|F|-|I|} m(I) \ge 0$.

Example

A toric arrangement A_T defines an arithmetic matroid by $\mathsf{rk}(I) := \mathsf{codim}(\bigcap_{i \in I} T_i)$ and $m(I) = \# \mathsf{c.c.} \text{ of } \bigcap_{i \in I} T_i.$

Explicit construction

An hypertorus T is the set

$$\{(t_1,\ldots,t_k)\in (\mathbb{C}^*)^k \mid t_1^{v_1}t_2^{v_2}\cdots t_k^{v_k}=1\}$$

for a vector $(v_i) \in \mathbb{Z}^k$. We collect these data in a matrix

$$V = (v_i) \in M(k, n; \mathbb{Z}).$$

This matrix is defined up to left multiplication by $GL(k, \mathbb{Z})$ and reverse sign of the columns.

Explicit construction

An hypertorus T is the set

$$\{(t_1, \dots, t_k) \in (\mathbb{C}^*)^k \mid t_1^{v_1} t_2^{v_2} \cdots t_k^{v_k} = 1\}$$
for a vector $(v_i) \in \mathbb{Z}^k$. We collect these data in a matrix

 $V = (v_i) \in M(k, n; \mathbb{Z}).$

This matrix is defined up to left multiplication by $GL(k, \mathbb{Z})$ and reverse sign of the columns.

The associated arithmetic matroid is defined by rk(I) := rank(V[I])

and by

$$m(I):= \mathop{\rm gcd}_{|J|=|I|} |\det(V[I]_J)|.$$

Orientable arithmetic matroid

An **oriented arithmetic matroid** is (E, χ, m) such that (E, χ) is an oriented matroid and $(E, \operatorname{rk}, m)$ is an arithmetic matroid with the compatibility condition: for all x_2, \ldots, x_k and y_0, \ldots, y_k

$$\sum_{i=0}^{k} (-1)^{i} \chi(\underline{x}_{i}) m(\underline{x}_{i}) \chi(\underline{y}^{i}) m(\underline{y}^{i}) = 0, \qquad (\mathsf{GP})$$

where $\underline{x}_{i} = (y_{i}, x_{2} \dots, x_{k})$ and $\underline{y}^{i} = (y_{0}, \dots, y_{i-1}, y_{i+1} \dots, y_{k})$.

Orientable arithmetic matroid

An **oriented arithmetic matroid** is (E, χ, m) such that (E, χ) is an oriented matroid and $(E, \operatorname{rk}, m)$ is an arithmetic matroid with the compatibility condition: for all x_2, \ldots, x_k and y_0, \ldots, y_k

$$\sum_{i=0}^{k} (-1)^{i} \chi(\underline{x}_{i}) m(\underline{x}_{i}) \chi(\underline{y}^{i}) m(\underline{y}^{i}) = 0, \qquad (\mathsf{GP})$$

where $\underline{x}_{i} = (y_{i}, x_{2} \dots, x_{k})$ and $\underline{y}^{i} = (y_{0}, \dots, y_{i-1}, y_{i+1} \dots, y_{k})$.

Remark

Condition (GP) involves only the value of m on the bases of (E, rk).

Orientable arithmetic matroid

An **oriented arithmetic matroid** is (E, χ, m) such that (E, χ) is an oriented matroid and $(E, \operatorname{rk}, m)$ is an arithmetic matroid with the compatibility condition: for all x_2, \ldots, x_k and y_0, \ldots, y_k

$$\sum_{i=0}^{k} (-1)^{i} \chi(\underline{x}_{i}) m(\underline{x}_{i}) \chi(\underline{y}^{i}) m(\underline{y}^{i}) = 0, \qquad (\mathsf{GP})$$

where $\underline{x}_{i} = (y_{i}, x_{2} \dots, x_{k})$ and $\underline{y}^{i} = (y_{0}, \dots, y_{i-1}, y_{i+1} \dots, y_{k})$.

Remark

Condition (GP) involves only the value of m on the bases of (E, rk).

Theorem (P. 2018)

If an arithmetic matroid is orientable then the orientation is unique up to re-orientation.

Representability problem

We ask whether an arithmetic matroid is representable and how many different representations exist.

Representability problem

We ask whether an arithmetic matroid is representable and how many different representations exist.

An arithmetic matroid is **strong GCD** if for all $I \subset E$

 $m(I) = \gcd\{m(B)|B \text{ basis and } |B \cap I| = \operatorname{rk} I\}.$

Theorem (P. 2018)

Suppose that $m(\emptyset) = m(E) = 1$, then $(E, \operatorname{rk}, m)$ is representable if and only if

- 1. it is orientable,
- 2. it is strong GCD.

Moreover, the representation is unique.

Arithmetic Tutte polynomial

Definition (Moci 2011)

The arithmetic Tutte polynomial of an arithmetic matroid (E, rk) is

$$T'(x,y) := \sum_{A \subseteq E} m(A)(x-1)^{\mathsf{rk}(E) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

Arithmetic Tutte polynomial

Definition (Moci 2011)

The arithmetic Tutte polynomial of an arithmetic matroid (E, rk) is

$$T'(x,y) := \sum_{A \subseteq E} m(A)(x-1)^{\mathsf{rk}(E) - \mathsf{rk}(A)} (y-1)^{|A| - \mathsf{rk}(A)}$$

The Poincaré polynomial of $M(\mathcal{A}_T)$ coincides with

$$P_{M(\mathcal{A}_T)}(q) = q^n T'\left(\frac{2q+1}{q}, 0\right),$$

where T' is the arithmetic Tutte polynomial of the arithmetic matroid represented by A_T .

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. 2018)

The rational cohomology algebra of the complement $M(\mathcal{A}_T)$ is generated by ψ_i and by $\omega_{W,I}$, for I independent and W c. c. of $\bigcap_{i \in I} T_i$, with relations

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. 2018)

The rational cohomology algebra of the complement $M(\mathcal{A}_T)$ is generated by ψ_i and by $\omega_{W,I}$, for I independent and W c. c. of $\bigcap_{i \in I} T_i$, with relations

$$\omega_{W_1,I_1}\omega_{W_2,I_2} = \pm \sum_{L \text{ c. c. } W_1 \cap W_2} \omega_{L,I_1 \sqcup I_2}$$
(1)

$$\omega_{W,I}\psi_i = 0 \quad \text{if} \quad i \in I \tag{2}$$

$$\sum_{\substack{j \in C \\ |B| \text{ even}}} \sum_{\substack{A \sqcup B \sqcup \{j\} = C \\ |B| \text{ even}}} (-1)^{|A_{\leq j}|} c_B \frac{m(A)}{m(A \cup B)} \omega_{W,A} \psi_B = 0,$$
(3)

$$\sum_{j \in C} (-1)^j c_{C \setminus j} m(C \setminus j) \psi_{C \setminus j} = 0$$
(4)

where C is a circuit and $c_B \in \{\pm 1\}$ depending on the chosen orientation.

Example: The two toric arrangements described by

$$N_1 = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 7 & 7 \end{pmatrix}$$
 and $N_2 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 7 \end{pmatrix}$,

have the same poset of layers but different integral cohomology algebras.

Example: The two toric arrangements described by

$$N_1 = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 7 & 7 \end{pmatrix}$$
 and $N_2 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 7 \end{pmatrix}$,

have the same poset of layers but different integral cohomology algebras.

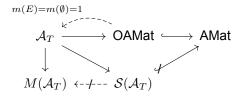
Example: The two toric arrangements described by

$$N_3 = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 5 & 0 & 5 \\ 0 & 0 & 5 & 5 \end{pmatrix} \text{ and } N_4 = \begin{pmatrix} 1 & 4 & 1 & 6 \\ 0 & 5 & 0 & 5 \\ 0 & 0 & 5 & 5 \end{pmatrix},$$

have different posets of layers and different rational cohomology algebra. However, they have the same arithmetic matroid.

Toric arrangements

We have seen:



Where:

- A_T is a toric arrangement,
- $M(\mathcal{A}_T)$ is the complement,
- AMat and OAMat are arithmetic matroid and orientable arithmetic matroid,
- $S(A_T)$ is the lattice of layers.

Thanks for listening!

roberto.pagaria@gmail.com