# Roberto Pagaria 

Università di Bologna

# Hodge theory for polymatroids joint work with Gian Marco Pezzoli 

at University of Strasbourg

May 18, 2022

## Covered topics:

Polymatroids and subspace arrangements

Geometry and wonderful models

Leray model for polymatroids

The Kähler package

## Subspace arrangements

## Definition

A subspace arrangement in a complex vector space $V$ is a finite collection of linear subspaces $S_{i}$ of $V$.


## Subspace arrangements

## Definition

A subspace arrangement in a complex vector space $V$ is a finite collection of linear subspaces $S_{i}$ of $V$.


Sometimes is useful to work with the projective version: the collection of $\mathbb{P}\left(S_{i}\right) \subset \mathbb{P}(V)$.

For $I \subseteq[n]=\{1,2, \ldots, n\}$ define the codimension function $\operatorname{cd}(I)=\operatorname{codim}_{V}\left(\cap_{i \in I} S_{i}\right)$ as the complex codimension of the flat $\cap_{i \in I} S_{i}$.

For $I \subseteq[n]=\{1,2, \ldots, n\}$ define the codimension function $\operatorname{cd}(I)=\operatorname{codim}_{V}\left(\cap_{i \in I} S_{i}\right)$ as the complex codimension of the flat $\cap_{i \in I} S_{i}$.

## Example

In $\mathbb{C}^{5}$ consider $S_{a}, S_{b}$ two subspace of dimension three and a line $S_{c}$ in general position. We have $\operatorname{cd}(a)=2, \operatorname{cd}(c)=4$ and $\operatorname{cd}(a c)=\operatorname{cd}(b c)=\operatorname{cd}(a b c)=5$. Observe that $S_{a} \cap S_{c}=S_{b} \cap S_{c}$.

## Polymatroids

A polymatroid $P$ is a function $c d: \mathcal{P}([n]) \rightarrow \mathbb{N}$ such that 1. $\operatorname{cd}(\emptyset)=0$,
2. cd is increasing: $A \subset B$ implies $\operatorname{cd}(A) \leq \operatorname{cd}(B)$.
3. cd is submodular: $\operatorname{cd}(A)+\operatorname{cd}(B) \geq \operatorname{cd}(A \cap B)+\operatorname{cd}(A \cup B)$ for all $A, B$.

## Polymatroids

A polymatroid $P$ is a function $c d: \mathcal{P}([n]) \rightarrow \mathbb{N}$ such that

1. $\operatorname{cd}(\emptyset)=0$,
2. cd is increasing: $A \subset B$ implies $\operatorname{cd}(A) \leq \operatorname{cd}(B)$.
3. cd is submodular: $\operatorname{cd}(A)+\operatorname{cd}(B) \geq \operatorname{cd}(A \cap B)+\operatorname{cd}(A \cup B)$ for all $A, B$.

These objects codify the combinatorics of:

1. subspace arrangements,
2. cycles in an hypergraph,
3. generalized permutohedra.

A flat $F \subseteq[n]$ of codimension $k$ is a maximal subset such that $\operatorname{cd}(F)=k$.

## The poset of flats

## Definition (Poset of flats)

Let $L$ be the set of all flats of the polymatroid $P$ ordered by reverse inclusion.

## The poset of flats

## Definition (Poset of flats)

Let $L$ be the set of all flats of the polymatroid $P$ ordered by reverse inclusion.

Example


In general $L$ is not a geometric lattice and is not ranked.

## Wonderful model

The complement is $M=V \backslash\left(\cup_{i=1}^{n} S_{i}\right)$.

## Wonderful model

The complement is $M=V \backslash\left(\cup_{i=1}^{n} S_{i}\right)$.

## Definition

A wonderful model is a smooth projective variety $Y$ containing $M$ as open subset such that $Y \backslash M$ is a simple normal crossing divisor.
(simple normal crossing divisor: the irreducible components are smooth and intersect locally as coordinate hyperplanes)

## Wonderful model

The complement is $M=V \backslash\left(\cup_{i=1}^{n} S_{i}\right)$.
Definition
A wonderful model is a smooth projective variety $Y$ containing $M$ as open subset such that $Y \backslash M$ is a simple normal crossing divisor.
(simple normal crossing divisor: the irreducible components are smooth and intersect locally as coordinate hyperplanes) Let $\mathcal{G} \subset L$ be a "well chosen" collection of flats and consider

$$
M \hookrightarrow V \times \underset{W \in \mathcal{G}}{X} \mathbb{P}(V / W)
$$

Let $Y_{\mathcal{G}}$ be the closure of the image of $M$.

## Wonderful model

The complement is $M=V \backslash\left(\cup_{i=1}^{n} S_{i}\right)$.
Definition
A wonderful model is a smooth projective variety $Y$ containing $M$ as open subset such that $Y \backslash M$ is a simple normal crossing divisor.
(simple normal crossing divisor: the irreducible components are smooth and intersect locally as coordinate hyperplanes) Let $\mathcal{G} \subset L$ be a "well chosen" collection of flats and consider

$$
M \hookrightarrow V \times \underset{W \in \mathcal{G}}{X} \mathbb{P}(V / W)
$$

Let $Y_{\mathcal{G}}$ be the closure of the image of $M$.
Theorem (De Concini, Procesi '95)
The variety $Y_{\mathcal{G}}$ is a wonderful model for $M$.

## Building sets

A subset $\mathcal{G}$ of $L$ is a building set if for all $x \in L$

$$
[\hat{0}, x]=\prod_{y \in \max \left(\mathcal{G}_{\leq x}\right)}[\hat{0}, y]
$$

and

$$
\operatorname{cd}(x)=\sum_{y \in \max \left(\mathcal{G}_{\leq x}\right)} \operatorname{cd}(y) .
$$

## Building sets

A subset $\mathcal{G}$ of $L$ is a building set if for all $x \in L$

$$
[\hat{0}, x]=\prod_{y \in \max \left(\mathcal{G}_{\leq x}\right)}[\hat{0}, y]
$$

and

$$
\operatorname{cd}(x)=\sum_{y \in \max \left(\mathcal{G}_{\leq x}\right)} \operatorname{cd}(y) .
$$

## Example



## Example



If $\mathcal{G}=\{a b c, a, b, c\}$ is the minimal building set of the previous example. Then the wonderful model is $Y_{\mathcal{G}}=\mathrm{Bl}_{S_{a}} \mathrm{Bl}_{S_{b}} \mathrm{Bl}_{S_{c}} \mathrm{Bl}_{0} \mathbb{C}^{5}$ a sequence of blow-ups.

## $\mathcal{G}$-nested sets

The simple normal crossing divisor $Y_{\mathcal{G}} \backslash M$ has irreducible components $\left\{D_{W}\right\}_{W \in \mathcal{G}}$ in bijections with the building set $\mathcal{G}$.

## $\mathcal{G}$-nested sets

The simple normal crossing divisor $Y_{\mathcal{G}} \backslash M$ has irreducible components $\left\{D_{W}\right\}_{W \in \mathcal{G}}$ in bijections with the building set $\mathcal{G}$.

## Definition

A set $S \subseteq \mathcal{G}$ is $\mathcal{G}$-nested if the intersection $\cap_{W \in S} D_{W}$ is non-empty. Abstractly, $S \subseteq \mathcal{G}$ is $\mathcal{G}$-nested if for any non-trivial antichain $T \in S$ we have $\bigvee T \notin \mathcal{G}$.

## $\mathcal{G}$-nested sets

The simple normal crossing divisor $Y_{\mathcal{G}} \backslash M$ has irreducible components $\left\{D_{W}\right\}_{W \in \mathcal{G}}$ in bijections with the building set $\mathcal{G}$.

## Definition

A set $S \subseteq \mathcal{G}$ is $\mathcal{G}$-nested if the intersection $\cap_{W \in S} D_{W}$ is non-empty. Abstractly, $S \subseteq \mathcal{G}$ is $\mathcal{G}$-nested if for any non-trivial antichain $T \in S$ we have $\bigvee T \notin \mathcal{G}$.


## Nested set complex

Let $n(\mathcal{G})$ be the collection of all $\mathcal{G}$-nested sets. It is an abstract simplicial complex.

## Example



## Previous works

- De Concini, Procesi '95 described the Chow ring $A\left(Y_{\mathcal{G}}\right)$ (cohomology) of wonderful models.
- Feichtner, Yuzvinsky '03 described the Chow ring $A(L)$ of an atomic lattice with a building set.
- Huh, Adiprasito, Katz '18 proved the Kähler package for $A(L)$ of a geometric lattice with the maximal building set.


## Previous works

- De Concini, Procesi '95 described the Chow ring $A\left(Y_{\mathcal{G}}\right)$ (cohomology) of wonderful models.
- Feichtner, Yuzvinsky '03 described the Chow ring $A(L)$ of an atomic lattice with a building set.
- Huh, Adiprasito, Katz '18 proved the Kähler package for $A(L)$ of a geometric lattice with the maximal building set.
- De Concini, Procesi '95 described the Leray model $B(\mathcal{G})$ for $M \hookrightarrow Y_{\mathcal{G}}$.
- Yuzvinsky '02, '99 simplified the model of De Concini Procesi and relates it to the Goresky-MacPherson formula.
- Bibby, Denham, Feichtner '21 studied the Leray model $B(\mathcal{G})$ for geometric lattices and partial building sets.


## Leray model and Chow ring

The Leray model ( $\left.B^{\cdot} \cdot(\mathcal{G}), \mathrm{d}\right)$ is the second page of the Leray spectral sequence for $M \hookrightarrow Y_{\mathcal{G}}$ (aka the Morgan algebra). Furthermore, $B{ }^{, 0}(\mathcal{G})=H^{\cdot}\left(Y_{\mathcal{G}}\right)=A^{\cdot}\left(Y_{\mathcal{G}}\right)$ and $H^{\cdot}(B(\mathcal{G}), \mathrm{d})=H^{\cdot}(M)$.

## Leray model and Chow ring

The Leray model $\left(B^{r} \cdot(\mathcal{G}), \mathrm{d}\right)$ is the second page of the Leray spectral sequence for $M \hookrightarrow Y_{\mathcal{G}}$ (aka the Morgan algebra).
Furthermore, $B{ }^{, 0}(\mathcal{G})=H^{\cdot}\left(Y_{\mathcal{G}}\right)=A^{\cdot}\left(Y_{\mathcal{G}}\right)$ and $H^{\prime}(B(\mathcal{G}), \mathrm{d})=H^{\cdot}(M)$.

Explicitly, $B^{\circ} \cdot(\mathcal{G})$ is generated by $e_{W}, x_{W}$ for $W \in \mathcal{G}$ with bidegree $(0,1)$ and $(2,0)$ respectively and relations:

- $e_{T} x_{S}\left(\sum_{Z \geq W} x_{Z}\right)^{b}=0$ for $S, T \subset \mathcal{G}, W \in \mathcal{G}$ and $b=\operatorname{cd}(W)-\operatorname{cd}\left(\bigvee(T \cup S)_{<W}\right)$,
with differential defined by $\mathrm{d}\left(e_{W}\right)=x_{W}$.
(we use the notation $e_{T}=\prod_{W \in T} e_{W}$.)


## Leray model and Chow ring

The Leray model $\left(B^{\circ} \cdot(\mathcal{G}), \mathrm{d}\right)$ is the second page of the Leray spectral sequence for $M \hookrightarrow Y_{\mathcal{G}}$ (aka the Morgan algebra).
Furthermore, $B^{,, 0}(\mathcal{G})=H^{\cdot}\left(Y_{\mathcal{G}}\right)=A^{\cdot}\left(Y_{\mathcal{G}}\right)$ and $H^{\cdot}(B(\mathcal{G}), \mathrm{d})=H^{\cdot}(M)$.
Explicitly, $A^{(\mathcal{G})}$ is generated by $x_{W}$ for $W \in \mathcal{G}$ of degree 1 and relations:

- $x_{S}\left(\sum_{z \geq W} x_{Z}\right)^{b}=0$ for $S \subset \mathcal{G}, W \in \mathcal{G}$ and $b=\operatorname{cd}(W)-\operatorname{cd}\left(\bigvee\left(S_{<} W\right)\right)$.
In the realizable case $x_{W}=\left[D_{W}\right]$ is the fundamental class of the (exceptional) divisor associated to $W$.


## A second presentation

Define $\sigma_{W}=\sum_{Z \geq W} x_{Z}$ and $\tau_{W}=\sum_{Z \geq W} e_{Z}$. Geometrically, $\sigma_{W} \in A^{1}\left(Y_{\mathcal{G}}\right)$ is the fundamental class of the total transform of $W$ :

$$
\sigma_{W}=\left[\pi^{-1}(W)\right]
$$

where $\pi: Y_{\mathcal{G}} \rightarrow \mathbb{P}(V)$ is the canonical projection.

## A second presentation

Define $\sigma_{W}=\sum_{Z \geq W} x_{Z}$ and $\tau_{W}=\sum_{z \geq W} e_{Z}$. Geometrically, $\sigma_{W} \in A^{1}\left(Y_{\mathcal{G}}\right)$ is the fundamental class of the total transform of $W$ :

$$
\sigma_{W}=\left[\pi^{-1}(W)\right]
$$

where $\pi: Y_{\mathcal{G}} \rightarrow \mathbb{P}(V)$ is the canonical projection.
The Leray model $B^{\prime} \cdot(\mathcal{G})$ is generated by $\tau_{W}, \sigma_{W}$ for $W \in \mathcal{G}$ with bidegree $(0,1)$ and $(2,0)$ respectively and relations:

- $\prod_{t \in T}\left(\tau_{t}-\tau_{W}\right) \prod_{t \in S}\left(\sigma_{t}-\sigma_{W}\right) \sigma_{W}^{b}=0$ for $S, T \subset \mathcal{G}, W \in \mathcal{G}$ and $b=\operatorname{cd}(W)-\operatorname{cd}\left(V(T \cup S)_{<W}\right)$,
with differential defined by $\mathrm{d}\left(\tau_{W}\right)=\sigma_{W}$.


## Goresky MacPherson formula

Consider a subspace arrangement with complement $M$ and poset of flats $L$.

Theorem (Goresky MacPherson '88)
There is an additive isomorphism

$$
\tilde{H}^{k}(M ; \mathbb{Z}) \cong \bigoplus_{W \in L \backslash \hat{0}} \tilde{H}_{2 c d}(W)-2-k(\Delta((\hat{0}, W)) ; \mathbb{Z})
$$

where $\Delta((\hat{0}, W))$ is the order complex of the interval $(\hat{0}, W)$.
We used the convention that $\tilde{H}_{-1}(\emptyset, \mathbb{Z})=\mathbb{Z}$.

## The critical monomial algebra

Theorem (Yuzvinsky '99, P. Pezzoli '21)
There exists a critical monomial algebra $\mathrm{CM}(\mathcal{G}) \subset B(\mathcal{G})$ such that the inclusion is a quasi-isomorphism.

## The critical monomial algebra

Theorem (Yuzvinsky '99, P. Pezzoli '21)
There exists a critical monomial algebra $\mathrm{CM}(\mathcal{G}) \subset B(\mathcal{G})$ such that the inclusion is a quasi-isomorphism. Moreover,

$$
\tilde{H}^{\bullet}(\mathrm{CM}(\mathcal{G}), \mathrm{d}) \cong \bigoplus_{W \in L \backslash \hat{0}} \bigotimes_{Z \in \max \left(\mathcal{G}_{\leq W}\right)} \tilde{H}_{2 \operatorname{cd}(Z)-2-.}(n(\mathcal{G}, Z)),
$$

## The critical monomial algebra

## Theorem (Yuzvinsky '99, P. Pezzoli '21)

There exists a critical monomial algebra $\operatorname{CM}(\mathcal{G}) \subset B(\mathcal{G})$ such that the inclusion is a quasi-isomorphism. Moreover,

$$
\tilde{H}^{\bullet}(\mathrm{CM}(\mathcal{G}), \mathrm{d}) \cong \bigoplus_{W \in L \backslash \hat{0}} \bigotimes_{Z \in \max \left(\mathcal{G}_{\leq W}\right)} \tilde{H}_{2 \operatorname{cd}(Z)-2-.}(n(\mathcal{G}, Z)),
$$

where $n(\mathcal{G}, Z)$ is the $\mathcal{G}$-nested set complex of $(\hat{0}, Z)$.




| addendum | hom degree | degree | $W$ |
| :---: | :---: | :---: | :---: |
| $\mathbb{Z}$ | 0 | 8 | $a b c$ |
| $\mathbb{Z}$ | -1 | 3 | $a$ |
| $\mathbb{Z}$ | -1 | 3 | $b$ |
| $\mathbb{Z}$ | -1 | 7 | $c$ |
| $\mathbb{Z}$ | -1 | 6 | $a b$ |




| addendum | hom degree | degree | $W$ |
| :---: | :---: | :---: | :---: |
| $\mathbb{Z}$ | 0 | 8 | $a b c$ |
| $\mathbb{Z}$ | -1 | 3 | $a$ |
| $\mathbb{Z}$ | -1 | 3 | $b$ |
| $\mathbb{Z}$ | -1 | 7 | $c$ |
| $\mathbb{Z}$ | -1 | 6 | $a b$ |

## Definitions

Let $A$ be an algebra with top degree $n$ and deg: $A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

- the algebra $A$ satisfies Poincaré duality if the bilinear pairing

$$
A^{k} \times A^{n-k} \rightarrow \mathbb{Q}
$$

defined by $(a, b) \mapsto \operatorname{deg}(a b)$ is non-degenerate.

## Definitions

Let $A$ be an algebra with top degree $n$ and deg: $A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

- the algebra $A$ satisfies Poincaré duality if the bilinear pairing

$$
A^{k} \times A^{n-k} \rightarrow \mathbb{Q}
$$

defined by $(a, b) \mapsto \operatorname{deg}(a b)$ is non-degenerate.

- the element $\ell \in A^{1}$ satisfies the Hard Lefschetz property if

$$
\cdot \ell^{n-2 k}: A^{k} \rightarrow A^{n-k}
$$

is an isomorphism for all $k \leq \frac{n}{2}$.

## Definitions

Let $A$ be an algebra with top degree $n$ and deg: $A^{n} \rightarrow \mathbb{Q}$ an isomorphism.

- the algebra $A$ satisfies Poincaré duality if the bilinear pairing

$$
A^{k} \times A^{n-k} \rightarrow \mathbb{Q}
$$

defined by $(a, b) \mapsto \operatorname{deg}(a b)$ is non-degenerate.

- the element $\ell \in A^{1}$ satisfies the Hard Lefschetz property if

$$
\cdot \ell^{n-2 k}: A^{k} \rightarrow A^{n-k}
$$

is an isomorphism for all $k \leq \frac{n}{2}$.

- the element $\ell \in A^{1}$ satisfies the Hodge Riemann relations if

$$
Q_{\ell}^{k}: A^{k} \times A^{k} \rightarrow \mathbb{Q}
$$

defined by $Q_{\ell}^{k}(a, b)=(-1)^{k} \operatorname{deg}\left(a \ell^{n-2 k} b\right)\left(\right.$ for $\left.k \leq \frac{n}{2}\right)$ is positive definite on the subspace

$$
P_{k}=\operatorname{ker}\left(\cdot \ell^{n-2 k+1}: A^{k} \rightarrow A^{n-k+1}\right)
$$

Let $L$ be a geometric lattice with $\mathrm{cd}=\mathrm{rk}$ and $\mathcal{G}$ be the maximal building set. The algebra $A(\mathcal{G})$ is the Chow ring of the matroid.

Theorem (Adiprasito, Huh, Katz '18)
The ring $A(\mathcal{G})$ is a Poincaré duality algebra and each $\ell=\sum_{W \neq \hat{1}} c_{W} X_{W} \in A^{1}(\mathcal{G})$ (ample) such that

$$
c_{W}+c_{Z}>c_{W \vee Z}+c_{W \wedge Z}
$$

satisfies Hard Lefschetz and Hodge Riemann relations.

Let $L$ be a geometric lattice with $\mathrm{cd}=\mathrm{rk}$ and $\mathcal{G}$ be the maximal building set. The algebra $A(\mathcal{G})$ is the Chow ring of the matroid.

Theorem (Adiprasito, Huh, Katz '18)
The ring $A(\mathcal{G})$ is a Poincaré duality algebra and each $\ell=\sum_{W \neq \hat{1}} c_{W} x_{W} \in A^{1}(\mathcal{G})$ (ample) such that

$$
c_{W}+c_{Z}>c_{W \vee Z}+c_{W \wedge Z}
$$

satisfies Hard Lefschetz and Hodge Riemann relations.
The Hodge Riemann relations prove a conjecture by Read, Hoggar, Rota, Heron, Welsh '60s-'70s:

Corollary (Adiprasito, Huh, Katz '18)
The coefficients of the characteristic polynomial for a log-concave sequence.

Let $L$ be the poset of flats of a polymatroid and $\mathcal{G}$ an arbitrary building set.

Theorem (P. Pezzoli '21)
The ring $A(\mathcal{G})$ is a Poincaré duality algebra and each
$\ell=-\sum_{W \in \mathcal{G}} d_{W} \sigma_{W} \in A^{1}(\mathcal{G})$ such that

$$
d_{W}>0
$$

satisfies Hard Lefschetz and Hodge Riemann relations.

Let $L$ be the poset of flats of a polymatroid and $\mathcal{G}$ an arbitrary building set.

Theorem (P. Pezzoli '21)
The ring $A(\mathcal{G})$ is a Poincaré duality algebra and each
$\ell=-\sum_{W \in \mathcal{G}} d_{W} \sigma_{W} \in A^{1}(\mathcal{G})$ such that

$$
d_{W}>0
$$

satisfies Hard Lefschetz and Hodge Riemann relations.
We call this orthant the $\sigma$-cone.

## Remark

The $\sigma$-cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

## Remark

The $\sigma$-cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

## Example

Consider the polymatroid realized by three distinct lines in $\mathbb{C}^{3}$.
 $Y_{\mathcal{G}}$ is the blowup of $\mathbb{P}^{2}$ in three points. If the three points are in general position then the ample cone coincides with the $\sigma$-cone.

## Remark

The $\sigma$-cone is contained in the ample cone of any realization, but for polymatroids the ample cone depends on the chosen realization.

## Example

Consider the polymatroid realized by three distinct lines in $\mathbb{C}^{3}$.

$Y_{\mathcal{G}}$ is the blowup of $\mathbb{P}^{2}$ in three points. If the three points are in general position then the ample cone coincides with the $\sigma$-cone.Otherwise the three points are collinear and the ample cone is given by:

$$
\begin{aligned}
\left\{-d_{a b c} \sigma_{a b c}-d_{a} \sigma_{a}-d_{b} \sigma_{b}-d_{c} \sigma_{c} \mid\right. & d_{a}, d_{b}, d_{c}>0 \\
& \left.d_{a b c}>-\min \left(d_{a}, d_{b}, d_{c}\right)\right\}
\end{aligned}
$$

## Remark

There are examples of polymatroids with (reduced) characteristic polynomial with negative coefficients and that do not form a log-concave sequence.

## Remark

There are examples of polymatroids with (reduced) characteristic polynomial with negative coefficients and that do not form a log-concave sequence.

## Remark

The main problem is that $x_{\hat{1}}$ behaves different from $x_{W}$ for $W \in \mathcal{G} \backslash \hat{1}$.

## Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.
Sketch of the proof:

1. Present a Gröbner basis for $A(\mathcal{G})$,

## Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.
Sketch of the proof:

1. Present a Gröbner basis for $A(\mathcal{G})$,
2. Prove Poincaré duality constructing an explicit pairing,

## Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.
Sketch of the proof:

1. Present a Gröbner basis for $A(\mathcal{G})$,
2. Prove Poincaré duality constructing an explicit pairing,
3. Prove recursive relations using Poincaré duality,

## Sketch of the proof

Theorem (P. Pezzoli '21)
The Chow ring of a polymatroid satisfies the Kähler package.
Sketch of the proof:

1. Present a Gröbner basis for $A(\mathcal{G})$,
2. Prove Poincaré duality constructing an explicit pairing,
3. Prove recursive relations using Poincaré duality,
4. Prove simultaneously Hard Lefschetz and Hodge Riemann by induction on $|\mathcal{G}|$.

# Thanks for listening! 

roberto.pagaria@unibo.it

