Roberto Pagaria

Università di Bologna

The S_{n}-action on the Orlik-Terao algebra of type A_{n-1}

Arrangements in Ticino

June, 2022

A short story:

Moseley-Proudfoot-Young conjecture

Failing approaches

Orlik-Terao algebra of type A_{n}

Once upon a time

On last Christmas'Eve I've done a post-review for MathSciNet of
Proudfoot, Ramos, Stability phenomena for resonance arrangements.

Once upon a time

On last Christmas'Eve I've done a post-review for MathSciNet of
Proudfoot, Ramos, Stability phenomena for resonance arrangements.
documenting myself, I discovered the article
Matherne, Miyata, Proudfoot, Ramos Equivariant log concavity and representation stability

Once upon a time

On last Christmas'Eve I've done a post-review for MathSciNet of
Proudfoot, Ramos, Stability phenomena for resonance arrangements.
documenting myself, I discovered the article
Matherne, Miyata, Proudfoot, Ramos Equivariant log concavity and representation stability
in which they report a conjecture of
Moseley, Proudfoot, Young The Orlik-Terao algebra and the cohomology of configuration space

The two dragons

Definition (M_{n})

Is the algebra $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ with relations

1. $x_{i, j}+x_{j, i}$
2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

The two dragons

Definition $\left(M_{n}\right)$
Is the algebra $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ with relations

1. $x_{i, j}+x_{j, i}$
2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Definition $\left(D_{n}\right)$

Is the algebra $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ with relations

$$
\text { 1. } x_{i, j}+x_{j, i}
$$

2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$

3'. $\left(x_{i, j}+x_{j, k}+x_{k, i}\right)^{2}$

The two dragons

Definition (M_{n})

Is the algebra $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ with relations

$$
\text { 1. } x_{i, j}+x_{j, i}
$$

2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j} \quad 3^{\prime} .\left(x_{i, j}+x_{j, k}+x_{k, i}\right)^{2}$
with the natural action of S_{n} :

$$
\sigma\left(x_{i, j}\right)=x_{\sigma(i), \sigma(j)}
$$

The two dragons

Definition $\left(M_{n}\right)$

Is the algebra $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ with relations

1. $x_{i, j}+x_{j, i}$
2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j} \quad 3^{\prime} .\left(x_{i, j}+x_{j, k}+x_{k, i}\right)^{2}$
with the natural action of S_{n} :

$$
\sigma\left(x_{i, j}\right)=x_{\sigma(i), \sigma(j)}
$$

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of graded S_{n}-representations

$$
M_{n} \simeq_{S_{n}} D_{n} .
$$

The geometry of the D_{n} dragon's den

Let $S U_{2}$ be the special unitary group

$$
S U_{2}=\left\{\left.\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}+|\beta|^{2}=1\right\} \simeq S^{3}
$$

The geometry of the D_{n} dragon's den

Let $S U_{2}$ be the special unitary group

$$
S U_{2}=\left\{\left.\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}+|\beta|^{2}=1\right\} \simeq S^{3}
$$

Let $\operatorname{Conf}_{n}(X)$ be the ordered configuration space of n points in X $\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}$.

The geometry of the D_{n} dragon's den

Let $S U_{2}$ be the special unitary group

$$
S U_{2}=\left\{\left.\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}+|\beta|^{2}=1\right\} \simeq S^{3}
$$

Let $\operatorname{Conf}_{n}(X)$ be the ordered configuration space of n points in X

$$
\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Proposition

The algebra D_{n} is the cohomology of $\operatorname{Conf}_{n}\left(S U_{2}\right) / S U_{2}$

$$
D_{n} \simeq H^{2 \cdot}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) / S U_{2} ; \mathbb{Q}\right)
$$

where $S U_{2}$ acts freely by group multiplication.

The geometry of the D_{n} dragon's den

Let $S U_{2}$ be the special unitary group

$$
S U_{2}=\left\{\left.\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}+|\beta|^{2}=1\right\} \simeq S^{3}
$$

Let $\operatorname{Conf}_{n}(X)$ be the ordered configuration space of n points in X

$$
\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\} .
$$

Proposition

The algebra D_{n} is the cohomology of $\operatorname{Conf}_{n}\left(S U_{2}\right) / S U_{2}$

$$
D_{n} \simeq H^{2} \cdot\left(\operatorname{Conf}_{n}\left(S U_{2}\right) / S U_{2} ; \mathbb{Q}\right)
$$

where $S U_{2}$ acts freely by group multiplication.
D_{n}^{i} is the Whitehouse representation, the top grade D_{n}^{n-2} is

- the multilinear part of the free Lie algebra Lie_{n-1},
- the homology of nonmodular partitions,
- the homology of homeomorphically irreducible trees...

The geometry of the M_{n} dragon's den

$$
\begin{aligned}
& \text { Let } T^{a}=\left(\mathbb{C}^{*}\right)^{a} \text { be an algebraic torus. Consider } \\
& \qquad \begin{aligned}
& T_{\binom{n}{2}} \rightarrow T^{n-1} \rightarrow 0 \\
& x_{i, j} \mapsto z_{i} z_{j}^{-1}
\end{aligned}
\end{aligned}
$$

The geometry of the M_{n} dragon's den

$$
\begin{aligned}
& \text { Let } T^{a}=\left(\mathbb{C}^{*}\right)^{a} \text { be an algebraic torus. Consider } \\
& \qquad \begin{array}{r}
0 \rightarrow T^{k} \rightarrow T^{\binom{n}{2}} \rightarrow T^{n-1} \rightarrow 0 \\
x_{i, j} \mapsto z_{i} z_{j}^{-1}
\end{array}
\end{aligned}
$$

The geometry of the M_{n} dragon's den

Let $T^{a}=\left(\mathbb{C}^{*}\right)^{a}$ be an algebraic torus. Consider

$$
\begin{aligned}
0 \rightarrow T^{k} \rightarrow & T^{\binom{n}{2}} \rightarrow T^{n-1} \rightarrow 0 \\
x_{i, j} \mapsto & z_{i} z_{j}^{-1}
\end{aligned}
$$

and define the hypertoric variety

$$
X_{n}=T^{*} \mathbb{C}^{\binom{n}{2}} / / / / \|_{0} T^{k}
$$

with the natural action of T^{n-1}.

The geometry of the M_{n} dragon's den

Let $T^{a}=\left(\mathbb{C}^{*}\right)^{a}$ be an algebraic torus. Consider

$$
\begin{gathered}
0 \rightarrow T^{k} \rightarrow T_{\binom{n}{2}} \rightarrow T^{n-1} \rightarrow 0 \\
x_{i, j} \mapsto z_{i} z_{j}^{-1}
\end{gathered}
$$

and define the hypertoric variety

$$
X_{n}=T^{*} \mathbb{C}\binom{n}{2} / / / / /_{0} T^{k}
$$

with the natural action of T^{n-1}.
Theorem (Braden Proudfoot '09)
There exists an S_{n}-isomorphism of graded ring

$$
M_{n} \simeq I H^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right)
$$

Believe in good

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

Believe in good

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

- M_{n} and D_{n} has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+k t)$

Believe in good

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

- M_{n} and D_{n} has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+k t)$
- $M_{n}=D_{n}$ for $n \leq 10$ using SageMath (MPY '16)

Believe in good

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

- M_{n} and D_{n} has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+k t)$
- $M_{n}=D_{n}$ for $n \leq 10$ using SageMath (MPY '16)
- $M_{n}=D_{n}$ for $n \leq 22$ using SageMath (Matherne, Miyata, Proudfoot, Ramos '21)

Believe in good

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

- M_{n} and D_{n} has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+k t)$
- $M_{n}=D_{n}$ for $n \leq 10$ using SageMath (MPY '16)
- $M_{n}=D_{n}$ for $n \leq 22$ using SageMath (Matherne, Miyata, Proudfoot, Ramos '21)
- $M_{n}^{i}=D_{n}^{i}$ is true for $i \leq 7$ using representation stability (MMPR '21)

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of S_{n}-representations $M_{n} \simeq s_{n} D_{n}$.
Q: Are M_{n} and D_{n} two presentation of the same algebra?

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of S_{n}-representations $M_{n} \simeq s_{n} D_{n}$.
Q: Are M_{n} and D_{n} two presentation of the same algebra?
Remark
The algebras M_{n} and D_{n} are not isomorphic for $n \geq 5$.

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.
Q: Is there an easy deformation between M_{n} and D_{n} ?

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.
Q: Is there an easy deformation between M_{n} and D_{n} ?

Remark

The family $\mathbb{Q}\left[x_{i, j}, t\right]_{i \neq j}$ with relations

1. $x_{i, j}+x_{j, i}$
2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$
3. $2\left(x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}\right)+t\left(x_{i, j}^{2}+x_{j, k}^{2}+x_{k, i}^{2}\right)$
is equal to M_{n} for $t=0$ and to D_{n} for $t=1$. However, SageMath shows that these two points are not in the flat locus for $n \geq 5$.

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.
Q: Is there an easy deformation between M_{n} and D_{n} ?

Remark

The family $\mathbb{Q}\left[x_{i, j}, t\right]_{i \neq j}$ with relations

1. $x_{i, j}+x_{j, i}$
2. $\sum_{j \neq i} x_{i, j}$ for all $i=1, \ldots, n$
3. $2\left(x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}\right)+t\left(x_{i, j}^{2}+x_{j, k}^{2}+x_{k, i}^{2}\right)$
is equal to M_{n} for $t=0$ and to D_{n} for $t=1$. However, SageMath shows that these two points are not in the flat locus for $n \geq 5$.

Q : Is there any deformation between M_{n} and D_{n} ?

Fact 1: The irreducible representation of S_{n} are parametrized by the partition of n. Let \mathbb{V}_{λ} be the irreducible representation associated with $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ and $\sum_{i} \lambda_{i}=n$.

Fact 1: The irreducible representation of S_{n} are parametrized by the partition of n. Let \mathbb{V}_{λ} be the irreducible representation associated with $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$ and $\sum_{i} \lambda_{i}=n$.
Fact 2: There exists a Frobenius characteristic function ch : $\left\{S_{n}\right.$ representations $\} \rightarrow$ \{symmetric polynomials $\}$

$$
\mathbb{V}_{\lambda} \longmapsto s_{\lambda}
$$

where s_{λ} is the Schur symmetric polynomial.

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

Q: Is there any deformation between M_{n} and D_{n} ?

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)
There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

Q: Is there any deformation between M_{n} and D_{n} ?

Remark

$$
\begin{aligned}
& M_{n}^{1}=D_{n}^{1}=\mathbb{V}_{n-2,1,1} \\
& \begin{aligned}
S^{2} \mathbb{V}_{n-2,1,1}= & \mathbb{V}_{n-4,1,1,1,1}+\mathbb{V}_{n-4,2,2}+\mathbb{V}_{n-3,2,1} \\
& \quad+\mathbb{V}_{n-3,3}+2 \mathbb{V}_{n-2,2}+\mathbb{V}_{n-1,1}+\mathbb{V}_{n}
\end{aligned} \\
& \begin{array}{l}
M_{n}^{2}=D_{n}^{2}=
\end{array} \mathbb{V}_{n-4,1,1,1,1}+\mathbb{V}_{n-4,2,2}+\mathbb{V}_{n-3,2,1}+\mathbb{V}_{n-2,2}
\end{aligned}
$$

The early January attack

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_{n}-representations $M_{n} \simeq S_{n} D_{n}$.

Q: Is there any deformation between M_{n} and D_{n} ?

Remark

$$
\begin{aligned}
& M_{n}^{1}=D_{n}^{1}=\mathbb{V}_{n-2,1,1} \\
& S^{2} \mathbb{V}_{n-2,1,1}=\mathbb{V}_{n-4,1,1,1,1}+\mathbb{V}_{n-4,2,2}+\mathbb{V}_{n-3,2,1} \\
& +\mathbb{V}_{n-3,3}+2 \mathbb{V}_{n-2,2}+\mathbb{V}_{n-1,1}+\mathbb{V}_{n} \\
& M_{n}^{2}=D_{n}^{2}=\mathbb{V}_{n-4,1,1,1,1}+\mathbb{V}_{n-4,2,2}+\mathbb{V}_{n-3,2,1}+\mathbb{V}_{n-2,2}
\end{aligned}
$$

hence there is a unique graded S_{n}-equivariant "deformation" between M_{n} and D_{n} with the desired properties in degree one and two. It is parametrized by \mathbb{P}^{1}.

The first assistant C_{n}

Goal: describe D_{n} as graded S_{n}-representation.
Definition (Artinian Orlik-Terao algebra of type A_{n})
Define C_{n} as the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j}^{2}$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

The first assistant C_{n}

Goal: describe D_{n} as graded S_{n}-representation.
Definition (Artinian Orlik-Terao algebra of type A_{n})
Define C_{n} as the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j}^{2}$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Theorem (Cohen '76)
The cohomology of the configuration space on \mathbb{R}^{3} is

$$
C_{n}=H^{2 \cdot}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{3}\right) ; \mathbb{Q}\right)
$$

The first assistant C_{n}

Goal: describe D_{n} as graded S_{n}-representation.
Definition (Artinian Orlik-Terao algebra of type A_{n})
Define C_{n} as the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j}^{2}$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Theorem (Cohen '76)
The cohomology of the configuration space on \mathbb{R}^{3} is

$$
C_{n}=H^{2 \cdot}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{3}\right) ; \mathbb{Q}\right)
$$

- C_{n}^{i} is the Eulerian representation (up to the sign),

The first assistant C_{n}

Goal: describe D_{n} as graded S_{n}-representation.
Definition (Artinian Orlik-Terao algebra of type A_{n})
Define C_{n} as the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j}^{2}$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Theorem (Cohen '76)
The cohomology of the configuration space on \mathbb{R}^{3} is

$$
C_{n}=H^{2 \cdot}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{3}\right) ; \mathbb{Q}\right)
$$

- C_{n}^{i} is the Eulerian representation (up to the sign),
$-\operatorname{Res}_{S_{n}}^{S_{n+1}} D_{n+1}=C_{n}$,

The first assistant C_{n}

Goal: describe D_{n} as graded S_{n}-representation.
Definition (Artinian Orlik-Terao algebra of type A_{n})
Define C_{n} as the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j}^{2}$
3. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Theorem (Cohen '76)
The cohomology of the configuration space on \mathbb{R}^{3} is

$$
C_{n}=H^{2 \cdot}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{3}\right) ; \mathbb{Q}\right)
$$

- C_{n}^{i} is the Eulerian representation (up to the sign),
$-\operatorname{Res}_{S_{n}}^{S_{n+1}} D_{n+1}=C_{n}$,
- $C_{n}=D_{n} \otimes\left(\mathbb{V}_{n}+q \mathbb{V}_{n-1,1}\right)$.

Theorem (Sundaram, Welker '97)
As S_{n}-representation

$$
C_{n}^{i}=\bigoplus_{\substack{\lambda \vdash n \\ l(\lambda)=n-i}} \operatorname{lnd}_{\times_{i} Z_{i} S_{m_{i}}}^{S_{n}} \boxtimes \zeta_{i}
$$

where $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$.

Theorem (Sundaram, Welker '97)
As S_{n}-representation

$$
C_{n}^{i}=\bigoplus_{\substack{\lambda \vdash-n \\ I(\lambda)=n-i}} \operatorname{lnd}_{\times_{i} Z_{i} S_{m_{i}}}^{S_{n}} \boxtimes \zeta_{i}
$$

where $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$.
The graded Frobenius characteristic of C_{n} is

$$
\operatorname{ch} C_{n}=\sum_{\lambda \vdash n} q^{\sum_{i}(i-1) m_{i}} \prod_{i=1}^{n} h_{m_{i}}\left[\ell_{i}\right]
$$

where $\ell_{i}=\operatorname{ch} \operatorname{Ind}_{Z_{i}}^{S_{i}} \zeta_{i}$ is the Lyndon/Gessel-Reutenauer symmetric function, ie the character of the multilinear component of the free Lie algebra.

Theorem (Sundaram, Welker '97)

As S_{n}-representation

$$
C_{n}^{i}=\bigoplus_{\substack{\lambda \vdash n \\ I(\lambda)=n-i}} \operatorname{lnd}_{\times_{i} Z_{i} \backslash S_{m_{i}}}^{S_{n}} \boxtimes \zeta_{i}
$$

where $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$.
The graded Frobenius characteristic of C_{n} is

$$
\operatorname{ch} C_{n}=\sum_{\lambda \vdash n} q^{\sum_{i}(i-1) m_{i}} \prod_{i=1}^{n} h_{m_{i}}\left[\ell_{i}\right],
$$

where $\ell_{i}=\operatorname{ch} \operatorname{Ind}{ }_{Z_{i}}^{S_{i}} \zeta_{i}$ is the Lyndon/Gessel-Reutenauer symmetric function, ie the character of the multilinear component of the free Lie algebra.

The plethysm $f[g]$ is an operation on symmetric functions such that ch $W[$ ch $V]=\mathrm{ch} \operatorname{Ind}_{S_{k} S_{h}}^{S_{h k}}\left(V^{\boxtimes h} \otimes W\right)$

The second assistant R_{n}

Goal: describe M_{n} as graded S_{n}-representation. Definition
Let $R_{n}=S \cdot \mathbb{V}_{n-1,1}$ be the symmetric algebra on the standard representation.

The second assistant R_{n}

Goal: describe M_{n} as graded S_{n}-representation.

Definition

Let $R_{n}=S \cdot \mathbb{V}_{n-1,1}$ be the symmetric algebra on the standard representation.

Theorem (Moseley, Proudfoot, Young '16)
The following holds:
$M_{n} \otimes R_{n}=\bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times S_{i} S_{m_{i}}}^{S_{n}}\left(C_{l(\lambda)} \otimes \boxtimes_{i}\left(M_{i}^{c} \otimes R_{i}\right) \boxtimes\left(\mathbb{V}_{m_{i}} \oplus \mathbb{V}_{m_{i}-1,1}\right)\right)$
where $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$ and $\left(M_{n}^{c}\right)^{i}=M_{n}^{2 n-2-i}$.

The late January attack

The representation D_{n} can be described from

$$
\begin{gathered}
C_{n}=D_{n} \otimes\left(\mathbb{V}_{n}+q \mathbb{V}_{n-1,1}\right), \\
C_{n}=\bigoplus_{\lambda \vdash n} \operatorname{Ind}_{X_{i} Z_{i} L_{m_{i}}}^{S_{n}} \boxtimes \zeta_{i} .
\end{gathered}
$$

The late January attack

The representation D_{n} can be described from

$$
\begin{gathered}
C_{n}=D_{n} \otimes\left(\mathbb{V}_{n}+q \mathbb{V}_{n-1,1}\right), \\
C_{n}=\bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times_{i} z_{i} S_{m_{i}}}^{S_{n}} \boxtimes \zeta_{i} .
\end{gathered}
$$

The MPY-conjecture follows by showing that D_{n} satisfies the recurrence relation
$M_{n} \otimes R_{n}=\bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times S_{i} l S_{m_{i}}}^{S_{n}}\left(C_{l(\lambda)} \otimes \boxtimes_{i}\left(M_{i}^{c} \otimes R_{i}\right) \boxtimes\left(\mathbb{V}_{m_{i}} \oplus \mathbb{V}_{m_{i}-1,1}\right)\right)$,
where $R_{n}=S \cdot \mathbb{V}_{n-1,1}$.

The late January attack

The Frobenius characteristic of D_{n} can be described from

$$
\begin{gathered}
\text { ch } C_{n}=\operatorname{ch} D_{n} *\left(s_{n}+q s_{n-1,1}\right), \\
\operatorname{ch} C_{n}=\sum_{\lambda \vdash n} q^{\sum_{i}(i-1) m_{i}} \prod_{i=1}^{n} h_{m_{i}}\left[\ell_{i}\right] .
\end{gathered}
$$

The late January attack

The Frobenius characteristic of D_{n} can be described from

$$
\begin{gathered}
\text { ch } C_{n}=\operatorname{ch} D_{n} *\left(s_{n}+q s_{n-1,1}\right), \\
\operatorname{ch} C_{n}=\sum_{\lambda \vdash n} q^{\sum_{i}(i-1) m_{i}} \prod_{i=1}^{n} h_{m_{i}}\left[\ell_{i}\right] .
\end{gathered}
$$

The MPY-conjecture follows by showing that ch D_{n} satisfies the recurrence relation

$$
\operatorname{ch} M_{n} * \operatorname{ch} R_{n}=
$$

$$
=\sum_{\substack{\nu_{1}, \ldots \nu_{n} \\ \sum_{i} i \nu_{i}=n}}\left\langle s_{\nu_{1}} \ldots s_{\nu_{n}}, \operatorname{ch} C_{\sum \nu_{i}}\right\rangle \prod_{i} s_{\nu_{i}}\left[q^{2 i-2}\left(\operatorname{ch} M_{i}\right)_{\mid q=q^{-1}} * \operatorname{ch} R_{i}\right]
$$

where

$$
\operatorname{ch} R_{n}=(1-q) h_{n}\left[\frac{X}{1-q}\right]
$$

The late January attack

The Frobenius characteristic of D_{n} can be described from

$$
\begin{gathered}
\text { ch } C_{n}=\operatorname{ch} D_{n} *\left(s_{n}+q s_{n-1,1}\right), \\
\operatorname{ch} C_{n}=\sum_{\lambda \vdash n} q^{\sum_{i}(i-1) m_{i}} \prod_{i=1}^{n} h_{m_{i}}\left[\ell_{i}\right] .
\end{gathered}
$$

The MPY-conjecture follows by showing that ch D_{n} satisfies the recurrence relation

$$
\operatorname{ch} M_{n} * \operatorname{ch} R_{n}=
$$

$$
=\sum_{\substack{\nu_{1}, \ldots \nu_{n} \\ \sum_{i} i \nu_{i}=n}}\left\langle s_{\nu_{1}} \ldots s_{\nu_{n}}, \text { ch } C_{\sum \nu_{i}}\right\rangle \prod_{i} s_{\nu_{i}}\left[q^{2 i-2}\left(\operatorname{ch} M_{i}\right)_{\mid q=q^{-1}} * \operatorname{ch} R_{i}\right]
$$

where

$$
\operatorname{ch} R_{n}=(1-q) h_{n}\left[\frac{X}{1-q}\right]
$$

The February attack

Idea: use spectral sequence to compute the S_{n} action on D_{n}.

The February attack

Idea: use spectral sequence to compute the S_{n} action on D_{n}.
Theorem (Cohen, Taylor '78)
There exists a spectral sequence

$$
E_{r}^{p, q}\left(S U_{2}, n\right) \Rightarrow H^{p+q}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) ; \mathbb{Q}\right)
$$

The February attack

Idea: use spectral sequence to compute the S_{n} action on D_{n}.
Theorem (Cohen, Taylor '78)
There exists a spectral sequence

$$
E_{r}^{p, q}\left(S U_{2}, n\right) \Rightarrow H^{p+q}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) ; \mathbb{Q}\right)
$$

whose second page is

$$
E_{2}^{\cdot, q}\left(S U_{2}, n\right)=\bigoplus_{\substack{S \vdash-[n] \\ I(S)=n-q}} \bigotimes_{i}\left(C_{\left|S_{i}\right|}^{\text {top }} \otimes H^{\prime}\left(S U_{2} ; \mathbb{Q}\right)\right)
$$

The February attack

Idea: use spectral sequence to compute the S_{n} action on D_{n}.
Theorem (Cohen, Taylor '78)
There exists a spectral sequence

$$
E_{r}^{p, q}\left(S U_{2}, n\right) \Rightarrow H^{p+q}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) ; \mathbb{Q}\right)
$$

whose second page is

$$
E_{2}^{\cdot, q}\left(S U_{2}, n\right)=\bigoplus_{\substack{S \vdash[n] \\ I(S)=n-q}} \bigotimes_{i}\left(C_{\left|S_{i}\right|}^{\text {top }} \otimes H^{\prime}\left(S U_{2} ; \mathbb{Q}\right)\right)
$$

It degenerates at the fourth page by comparison with the SS $E_{r}^{p, q}\left(\mathbb{R}^{3}, n\right) \Rightarrow H^{p+q}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{3}\right)\right)$.

The February attack

$$
E_{r}^{p, q}\left(S U_{2}, n\right) \Rightarrow H^{p+q}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) ; \mathbb{Q}\right)
$$

4	$*$	$*$		
2	$*$	$*$	$*$	
0	$*$	$*$	$*$	$*$
	0	3	6	9

$$
E_{2}\left(S U_{2}, 3\right)
$$

The February attack

$$
E_{r}^{p, q}\left(S U_{2}, n\right) \Rightarrow H^{p+q}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) ; \mathbb{Q}\right)
$$

$E_{2}\left(S U_{2}, 3\right)$

$E_{\infty}\left(S U_{2}, 3\right)$

We also used

$$
H^{\prime}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) ; \mathbb{Q}\right)=H^{\prime}\left(\operatorname{Conf}_{n}\left(S U_{2}\right) / S U_{2} ; \mathbb{Q}\right) \otimes H^{\prime}\left(S U_{2} ; \mathbb{Q}\right)
$$

by the Leray-Hirsch theorem.

Defeating the drake D_{n}

By taking the "refined" Euler characteristic of $E_{2}^{p, q}\left(S U_{2}, n\right)$ and of $E_{\infty}^{p, q}\left(S U_{2}, n\right)$ we obtain:

Corollary (P. '22)
The Frobeinus characteristic of D_{n} is

$$
\text { ch } \begin{aligned}
D_{n} & =\sum_{\lambda \vdash n} \frac{q^{n-l(\lambda)}}{1-q} \prod_{i} h_{m_{i}}\left[(1-q) \ell_{i}\right] \\
& =\frac{1}{1-q} \sum_{\lambda \vdash n} \prod_{i} h_{m_{i}}\left[q^{i-1}(1-q) \ell_{i}\right],
\end{aligned}
$$

where $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$.

The return of the King

Definition (Terao '02)

The Orlik-Terao algebra $O T_{n}$ of type A_{n} is the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

The return of the King

Definition (Terao '02)

The Orlik-Terao algebra $O T_{n}$ of type A_{n} is the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Remark

- $O T_{n}$ is the subalgebra of rational functions on \mathbb{C}^{n} generated by $\frac{1}{z_{i}-z_{j}}$.

The return of the King

Definition (Terao '02)

The Orlik-Terao algebra $O T_{n}$ of type A_{n} is the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Remark

- $O T_{n}$ is the subalgebra of rational functions on \mathbb{C}^{n} generated by $\frac{1}{z_{i}-z_{j}}$.
- $O T_{n}$ is the coordinate ring of the reciprocal plane.

The return of the King

Definition (Terao '02)

The Orlik-Terao algebra $O T_{n}$ of type A_{n} is the quotient of $\mathbb{Q}\left[x_{i, j}\right]_{i \neq j}$ by the relations

1. $x_{i, j}+x_{j, i}$
2. $x_{i, j} x_{j, k}+x_{j, k} x_{k, i}+x_{k, i} x_{i, j}$

Remark

- $O T_{n}$ is the subalgebra of rational functions on \mathbb{C}^{n} generated by $\frac{1}{z_{i}-z_{j}}$.
- $O T_{n}$ is the coordinate ring of the reciprocal plane.
- $O T_{n}$ degenerates flatly to the Stanley-Reisner ring of the broken circuit complex.

Defeating the drake M_{n}

Goal: a non-recursive description of M_{n}.
Theorem (Braden, Proudfoot '09)
They prove

$$
\begin{aligned}
& M_{n}=I H^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right), \\
& R_{n}=I H_{T^{n-1}}^{2 \cdot}(* ; \mathbb{Q}), \\
& O T_{n}=I H_{T^{n-1}}^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right) .
\end{aligned}
$$

Hence, $O T_{n}=M_{n} \otimes R_{n}$ as graded S_{n}-representations.

Defeating the drake M_{n}

Goal: a non-recursive description of M_{n}.
Theorem (Braden, Proudfoot '09)
They prove

$$
\begin{aligned}
& M_{n}=I H^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right), \\
& R_{n}=I H_{T^{2 n-1}}^{2 \cdot}(* ; \mathbb{Q}), \\
& O T_{n}=I H_{T^{n-1}}^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right) .
\end{aligned}
$$

Hence, $O T_{n}=M_{n} \otimes R_{n}$ as graded S_{n}-representations.
We want to invert R_{n} : by the exactness of the Kozsul complex we have

$$
\operatorname{ch} R_{n} *\left(\operatorname{ch} \wedge \cdot \mathbb{V}_{n-1,1}\right)_{\mid q=-q}=h_{n} .
$$

Defeating the drake M_{n}

Goal: a non-recursive description of M_{n}.
Theorem (Braden, Proudfoot '09)
They prove

$$
\begin{aligned}
& M_{n}=I H^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right), \\
& R_{n}=I H_{T^{2 n-1}}^{2 \cdot}(* ; \mathbb{Q}), \\
& O T_{n}=I H_{T^{n-1}}^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right) .
\end{aligned}
$$

Hence, $O T_{n}=M_{n} \otimes R_{n}$ as graded S_{n}-representations.
We want to invert R_{n} : by the exactness of the Kozsul complex we have

$$
\operatorname{ch} R_{n} *\left(\operatorname{ch} \wedge \cdot \mathbb{V}_{n-1,1}\right)_{\mid q=-q}=h_{n} .
$$

Finally ch $M_{n}=\operatorname{ch} O T_{n} * \frac{h_{n}[(1-q) X]}{1-q}$.

Defeating the drake M_{n}

Goal: a non-recursive description of M_{n}.
Theorem (Braden, Proudfoot '09)
They prove

$$
\begin{aligned}
& M_{n}=I H^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right), \\
& R_{n}=I H_{T^{2 n-1}}^{2 \cdot}(* ; \mathbb{Q}), \\
& O T_{n}=I H_{T^{n-1}}^{2 \cdot}\left(X_{n} ; \mathbb{Q}\right) .
\end{aligned}
$$

Hence, $O T_{n}=M_{n} \otimes R_{n}$ as graded S_{n}-representations.
We want to invert R_{n} : by the exactness of the Kozsul complex we have

$$
\operatorname{ch} R_{n} *\left(\operatorname{ch} \wedge \cdot \mathbb{V}_{n-1,1}\right)_{\mid q=-q}=h_{n} .
$$

Finally ch $M_{n}=\operatorname{ch} O T_{n} * \frac{h_{n}[(1-q) X]}{1-q}$.

The King's cohort

We filter $O T_{n}$ by the support of the monomials. Let T_{n} be the submodule of $O T_{n}$ generated by monomials with full support.

Lemma (P. '22)
We have

$$
O T_{n}=\bigoplus_{S \vdash[n]} \bigotimes_{i} T_{S_{i}}
$$

and

$$
\operatorname{ch} O T_{n}=\sum_{\lambda \vdash n} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i}\right] .
$$

The final battle

Theorem (P. '22)
We have

$$
\begin{aligned}
& \operatorname{ch} M_{n}=\operatorname{ch} D_{n} \\
& \text { ch } T_{n}=q^{n-1} \ell_{n} * \operatorname{ch} R_{n}=(1-q) q^{n-1} \ell_{n} * h_{n}\left[\frac{X}{1-q}\right] .
\end{aligned}
$$

The final battle

Theorem (P. '22)
We have

$$
\begin{aligned}
& \text { ch } M_{n}=\operatorname{ch} D_{n} \\
& \text { ch } T_{n}=q^{n-1} \ell_{n} * \operatorname{ch} R_{n}=(1-q) q^{n-1} \ell_{n} * h_{n}\left[\frac{X}{1-q}\right] .
\end{aligned}
$$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\left(\operatorname{ch} O T_{n}-\operatorname{ch} T_{n}\right) * \frac{h_{n}[(1-q) X]}{1-q}$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\left(\operatorname{ch} O T_{n}-\operatorname{ch} T_{n}\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i}\right]\right) * \frac{h_{n}[(1-q) X]}{1-q}$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\left(\operatorname{ch} O T_{n}-\operatorname{ch} T_{n}\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i}\right]\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\right.$ ch $\left.T_{i} * h_{i}[(1-q) X]\right]$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\left(\operatorname{ch} O T_{n}-\operatorname{ch} T_{n}\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i}\right]\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\right.$ ch $\left.T_{i} * h_{i}[(1-q) X]\right]$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[(1-q) q^{i-1} \ell_{i} * h_{i}\left[\frac{X}{1-q}\right] * h_{i}[(1-q) X]\right]$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\left(\operatorname{ch} O T_{n}-\operatorname{ch} T_{n}\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i}\right]\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i} * h_{i}[(1-q) X]\right]$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[(1-q) q^{i-1} \ell_{i} * h_{i}\left[\frac{X}{1-q}\right] * h_{i}[(1-q) X]\right]$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash-n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[(1-q) q^{i-1} \ell_{i}\right]$

Proof.

By a simultaneous induction:
ch $M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\left(\operatorname{ch} O T_{n}-\operatorname{ch} T_{n}\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i}\right]\right) * \frac{h_{n}[(1-q) X]}{1-q}$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[\operatorname{ch} T_{i} * h_{i}[(1-q) X]\right]$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[(1-q) q^{i-1} \ell_{i} * h_{i}\left[\frac{X}{1-q}\right] * h_{i}[(1-q) X]\right]$
$=\frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq(n)}} \prod_{i} h_{m_{i}}\left[(1-q) q^{i-1} \ell_{i}\right]$
$=\operatorname{ch} D_{n}-q^{n-1} \ell_{n}$

The final battle

Proof.
From

$$
\operatorname{ch} M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\operatorname{ch} D_{n}-q^{n-1} \ell_{n}
$$

The final battle

Proof.

From

$$
\operatorname{ch} M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\operatorname{ch} D_{n}-q^{n-1} \ell_{n}
$$

we deduce

$$
\begin{aligned}
& \operatorname{ch} M_{n}=\operatorname{ch} D_{n} \\
& \operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=q^{n-1} \ell_{n}
\end{aligned}
$$

The final battle

Proof.

From

$$
\operatorname{ch} M_{n}-\operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=\operatorname{ch} D_{n}-q^{n-1} \ell_{n}
$$

we deduce

$$
\begin{aligned}
& \operatorname{ch} M_{n}=\operatorname{ch} D_{n} \\
& \operatorname{ch} T_{n} * \frac{h_{n}[(1-q) X]}{1-q}=q^{n-1} \ell_{n}
\end{aligned}
$$

and so

$$
\text { ch } T_{n}=(1-q) q^{n-1} \ell_{n} * h_{n}\left[\frac{X}{1-q}\right] .
$$

The treasure

Corollary (P. '22)
We have

$$
\text { ch } O T_{n}=\sum_{\lambda \vdash n} q^{n-l(\lambda)} \prod_{i} h_{m_{i}}\left[\ell_{i} * \operatorname{ch} R_{i}\right] .
$$

The treasure

Corollary (P. '22)

We have

$$
\text { ch } O T_{n}=\sum_{\lambda \vdash n} q^{n-I(\lambda)} \prod_{i} h_{m_{i}}\left[\ell_{i} * \operatorname{ch} R_{i}\right] .
$$

Define $L=\sum_{n \geq 1} q^{n-1} t^{n} \ell_{n}=-\frac{\log (1-q t X)}{q}$.

The treasure

Corollary (P. '22)

We have

$$
\text { ch } O T_{n}=\sum_{\lambda \vdash n} q^{n-l(\lambda)} \prod_{i} h_{m_{i}}\left[\ell_{i} * \operatorname{ch} R_{i}\right] .
$$

Define $L=\sum_{n \geq 1} q^{n-1} t^{n} \ell_{n}=-\frac{\log (1-q t X)}{q}$.

Corollary

The generating functions are

$$
\begin{gathered}
\sum_{n \geq 1} \operatorname{ch}_{D_{n}}(q) t^{n}=\sum_{n \geq 1} \operatorname{ch}_{M_{n}}(q) t^{n}=\frac{1}{1-q}(\operatorname{Exp}((1-q) L)-1), \\
\sum_{n \geq 1} \operatorname{ch}_{O T_{n}}(q) t^{n}=\operatorname{Exp}\left((1-q) L * \operatorname{Exp}\left(\frac{X}{1-q}\right)\right)-1
\end{gathered}
$$

.and they lived happily ever after

Proudfoot gave to his PhD student Moseley the problem of computing ch $O T_{n}$ in 2008. He hasn't solved it, but long after they come up with the MPY conjecture $D_{n}=M_{n}$.
Finally, the circle is closed.

and they lived happily ever after

Proudfoot gave to his PhD student Moseley the problem of computing ch $O T_{n}$ in 2008. He hasn't solved it, but long after they come up with the MPY conjecture $D_{n}=M_{n}$.
Finally, the circle is closed.
full story in The Frobenius characteristic of the Orlik-Terao algebra of type A arXiv:2203.08265 March 15th, 2022
submitted to IMRN on April 12th, 2022
accepted in IMRN on May 26th, 2022
published in IMRN on June 14th, 2022

to be continued...

Future works:

to be continued...

Future works:

- The MPY conjecture is stated also for graphical arrangements $D_{\Gamma} \simeq M_{\Gamma}$ as graded representations of Aut($\left.\Gamma\right)$, but we cannot use symmetric function!

to be continued...

Future works:

- The MPY conjecture is stated also for graphical arrangements $D_{\Gamma} \simeq M_{\Gamma}$ as graded representations of $\operatorname{Aut}(\Gamma)$, but we cannot use symmetric function!
- Does a similar statement holds for finite Coxeter arrangements? How to define D_{W} ? maybe $D_{B_{n}}$ is the cohomology of an orbit configuration space.
Contact me if you are interested!

The end

roberto.pagaria@unibo.it

