Roberto Pagaria

Università di Bologna

The S_n -action on the Orlik-Terao algebra of type A_{n-1}

Arrangements in Ticino

June, 2022

A short story:

Moseley-Proudfoot-Young conjecture

Failing approaches

Orlik-Terao algebra of type A_n

Once upon a time

On last Christmas'Eve I've done a post-review for MathSciNet of Proudfoot, Ramos, *Stability phenomena for resonance arrangements*.

Once upon a time

On last Christmas'Eve I've done a post-review for MathSciNet of Proudfoot, Ramos, *Stability phenomena for resonance arrangements*.

documenting myself, I discovered the article

Matherne, Miyata, Proudfoot, Ramos *Equivariant log concavity and representation stability*

Once upon a time

On last Christmas'Eve I've done a post-review for MathSciNet of Proudfoot, Ramos, *Stability phenomena for resonance arrangements*.

documenting myself, I discovered the article

Matherne, Miyata, Proudfoot, Ramos *Equivariant log concavity and representation stability*

in which they report a conjecture of

Moseley, Proudfoot, Young *The Orlik-Terao algebra and the cohomology of configuration space*

Definition (M_n)

Is the algebra $\mathbb{Q}[x_{i,j}]_{i\neq j}$ with relations

- 1. $x_{i,j} + x_{j,i}$
- 2. $\sum_{j \neq i} x_{i,j}$ for all $i = 1, \ldots, n$
- 3. $x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$

Definition (M_n)

Is the algebra $\mathbb{Q}[x_{i,j}]_{i\neq j}$ with relations

1. $x_{i,j} + x_{j,i}$

2.
$$\sum_{j\neq i} x_{i,j}$$
 for all $i = 1, \ldots, n$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Definition (D_n)

Is the algebra $\mathbb{Q}[x_{i,j}]_{i\neq j}$ with relations

1.
$$x_{i,j} + x_{j,i}$$

2. $\sum_{j \neq i} x_{i,j}$ for all $i = 1, \dots, n$

3'.
$$(x_{i,j} + x_{j,k} + x_{k,i})^2$$

Definition (M_n)

Is the algebra $\mathbb{Q}[x_{i,j}]_{i\neq j}$ with relations

1. $x_{i,j} + x_{j,i}$

2.
$$\sum_{j\neq i} x_{i,j}$$
 for all $i = 1, \ldots, n$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

with the natural action of S_n :

$$\sigma(x_{i,j}) = x_{\sigma(i),\sigma(j)}$$

Definition (D_n)

Is the algebra $\mathbb{Q}[x_{i,j}]_{i\neq j}$ with relations

1.
$$x_{i,j} + x_{j,i}$$

2.
$$\sum_{j \neq i} x_{i,j}$$
 for all $i = 1, ..., n$
3'. $(x_{i,j} + x_{j,k} + x_{k,i})^2$

Definition (M_n)

1. $x_{i,i} + x_{i,i}$

Is the algebra $\mathbb{Q}[x_{i,i}]_{i\neq i}$ with relations

Definition (D_n)

Is the algebra $\mathbb{Q}[x_{i,i}]_{i\neq i}$ with relations

1.
$$x_{i,j} + x_{j,i}$$

2.
$$\sum_{j\neq i} x_{i,j}$$
 for all $i = 1, \ldots, n$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

2.
$$\sum_{j \neq i} x_{i,j}$$
 for all $i = 1, .$
3'. $(x_{i,j} + x_{j,k} + x_{k,j})^2$

3'.
$$(x_{i,j} + x_{j,k} + x_k)$$

with the natural action of S_n :

$$\sigma(x_{i,j}) = x_{\sigma(i),\sigma(j)}$$

Conjecture (Moseley-Proudfoot-Young '16) There exists an isomorphism of graded S_n -representations

$$M_n \simeq_{S_n} D_n$$

Roberto Pagaria

.., *n*

Let SU_2 be the special unitary group

$$SU_2 = \left\{ \left(egin{array}{cc} lpha & -ar{eta} \ eta & ar{lpha} \end{array}
ight) \mid |lpha|^2 + |eta|^2 = 1
ight\} \simeq S^3$$

Let SU_2 be the special unitary group $SU_2 = \left\{ \begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \mid |\alpha|^2 + |\beta|^2 = 1 \right\} \simeq S^3$

Let $\operatorname{Conf}_n(X)$ be the ordered configuration space of n points in X $\operatorname{Conf}_n(X) = \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}.$

Let SU_2 be the special unitary group $SU_2 = \left\{ \begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \mid |\alpha|^2 + |\beta|^2 = 1 \right\} \simeq S^3$

Let $\operatorname{Conf}_n(X)$ be the ordered configuration space of n points in X $\operatorname{Conf}_n(X) = \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}.$

Proposition

The algebra D_n is the cohomology of $\operatorname{Conf}_n(SU_2)/SU_2$ $D_n \simeq H^{2\cdot}(\operatorname{Conf}_n(SU_2)/SU_2;\mathbb{Q})$

where SU_2 acts freely by group multiplication.

Let SU_2 be the special unitary group $SU_2 = \left\{ \begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \mid |\alpha|^2 + |\beta|^2 = 1 \right\} \simeq S^3$

Let $\operatorname{Conf}_n(X)$ be the ordered configuration space of n points in X $\operatorname{Conf}_n(X) = \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}.$

Proposition

The algebra D_n is the cohomology of $\operatorname{Conf}_n(SU_2)/SU_2$ $D_n \simeq H^{2 \cdot}(\operatorname{Conf}_n(SU_2)/SU_2;\mathbb{Q})$

where SU_2 acts freely by group multiplication.

 D_n^i is the Whitehouse representation, the top grade D_n^{n-2} is

- the multilinear part of the free Lie algebra Lie_{n-1} ,
- the homology of nonmodular partitions,
- the homology of homeomorphically irreducible trees...

Let $T^a = (\mathbb{C}^*)^a$ be an algebraic torus. Consider $T^{\binom{n}{2}} \to T^{n-1} \to 0$ $x_{i,j} \mapsto z_i z_j^{-1}$

Let
$$T^a = (\mathbb{C}^*)^a$$
 be an algebraic torus. Consider
 $0 \to T^k \to T^{\binom{n}{2}} \to T^{n-1} \to 0$
 $x_{i,j} \mapsto z_i z_j^{-1}$

Let
$$T^a = (\mathbb{C}^*)^a$$
 be an algebraic torus. Consider
 $0 \to T^k \to T^{\binom{n}{2}} \to T^{n-1} \to 0$
 $x_{i,j} \mapsto z_i z_j^{-1}$

and define the hypertoric variety

$$X_n = T^* \mathbb{C}^{\binom{n}{2}} / / _0 T^k$$

with the natural action of T^{n-1} .

Let
$$T^a = (\mathbb{C}^*)^a$$
 be an algebraic torus. Consider
 $0 \to T^k \to T^{\binom{n}{2}} \to T^{n-1} \to 0$
 $x_{i,j} \mapsto z_i z_j^{-1}$

and define the hypertoric variety

$$X_n = T^* \mathbb{C}^{\binom{n}{2}} / / _0 T^k$$

with the natural action of T^{n-1} .

Theorem (Braden Proudfoot '09)

There exists an S_n -isomorphism of graded ring $M_n \simeq IH^{2}(X_n; \mathbb{Q}).$

Conjecture (Moseley-Proudfoot-Young '16)

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_n -representations $M_n \simeq_{S_n} D_n$.

• M_n and D_n has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+kt)$

Conjecture (Moseley-Proudfoot-Young '16)

- M_n and D_n has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+kt)$
- $M_n = D_n$ for $n \le 10$ using SageMath (MPY '16)

Conjecture (Moseley-Proudfoot-Young '16)

- M_n and D_n has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+kt)$
- $M_n = D_n$ for $n \le 10$ using SageMath (MPY '16)
- M_n = D_n for n ≤ 22 using SageMath (Matherne, Miyata, Proudfoot, Ramos '21)

Conjecture (Moseley-Proudfoot-Young '16)

- M_n and D_n has the same Poincaré polynomial $\prod_{k=1}^{n-2}(1+kt)$
- $M_n = D_n$ for $n \le 10$ using SageMath (MPY '16)
- M_n = D_n for n ≤ 22 using SageMath (Matherne, Miyata, Proudfoot, Ramos '21)
- $M_n^i = D_n^i$ is true for $i \le 7$ using representation stability (MMPR '21)

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Are M_n and D_n two presentation of the same algebra?

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Are M_n and D_n two presentation of the same algebra?

Remark

The algebras M_n and D_n are not isomorphic for $n \ge 5$.

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Is there an easy deformation between M_n and D_n ?

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Is there an easy deformation between M_n and D_n ?

Remark

The family $\mathbb{Q}[x_{i,j}, t]_{i \neq j}$ with relations

1.
$$x_{i,j} + x_{j,i}$$

2. $\sum_{j \neq i} x_{i,j}$ for all $i = 1, ..., n$
3. $2(x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}) + t(x_{i,j}^2 + x_{j,k}^2 + x_{k,i}^2)$
is equal to M_n for $t = 0$ and to D_n for $t = 1$. However, SageMath
shows that these two points are not in the flat locus for $n \ge 5$.

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Is there an easy deformation between M_n and D_n ?

Remark

The family $\mathbb{Q}[x_{i,j}, t]_{i \neq j}$ with relations

1.
$$x_{i,j} + x_{j,i}$$

2. $\sum_{j \neq i} x_{i,j}$ for all $i = 1, ..., n$
3. $2(x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}) + t(x_{i,j}^2 + x_{j,k}^2 + x_{k,i}^2)$
is equal to M_n for $t = 0$ and to D_n for $t = 1$. However, SageMath
shows that these two points are not in the flat locus for $n \ge 5$.

Q: Is there any deformation between M_n and D_n ?

Fact 1: The irreducible representation of S_n are parametrized by the *partition* of *n*. Let \mathbb{V}_{λ} be the irreducible representation associated with $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k$ and $\sum_i \lambda_i = n$.

Fact 1: The irreducible representation of S_n are parametrized by the *partition* of *n*. Let \mathbb{V}_{λ} be the irreducible representation associated with $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k$ and $\sum_i \lambda_i = n$.

Fact 2: There exists a Frobenius characteristic function ch : $\{S_n \text{ representations}\} \rightarrow \{\text{symmetric polynomials}\}$ $\mathbb{V}_{\lambda} \longmapsto s_{\lambda}$

where s_{λ} is the *Schur symmetric* polynomial.

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Is there any deformation between M_n and D_n ?

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Is there any deformation between M_n and D_n ?

Remark

$$\begin{split} M_n^1 &= D_n^1 = \mathbb{V}_{n-2,1,1} \\ S^2 \mathbb{V}_{n-2,1,1} &= \mathbb{V}_{n-4,1,1,1,1} + \mathbb{V}_{n-4,2,2} + \mathbb{V}_{n-3,2,1} \\ &+ \mathbb{V}_{n-3,3} + 2 \mathbb{V}_{n-2,2} + \mathbb{V}_{n-1,1} + \mathbb{V}_n \\ M_n^2 &= D_n^2 = \mathbb{V}_{n-4,1,1,1,1} + \mathbb{V}_{n-4,2,2} + \mathbb{V}_{n-3,2,1} + \mathbb{V}_{n-2,2} \end{split}$$

Conjecture (Moseley-Proudfoot-Young '16)

There exists an isomorphism of graded S_n -representations $M_n \simeq_{S_n} D_n$.

Q: Is there any deformation between M_n and D_n ?

Remark

$$\begin{split} M_n^1 &= D_n^1 = \mathbb{V}_{n-2,1,1} \\ S^2 \mathbb{V}_{n-2,1,1} &= \mathbb{V}_{n-4,1,1,1,1} + \mathbb{V}_{n-4,2,2} + \mathbb{V}_{n-3,2,1} \\ &+ \mathbb{V}_{n-3,3} + 2 \mathbb{V}_{n-2,2} + \mathbb{V}_{n-1,1} + \mathbb{V}_n \\ M_n^2 &= D_n^2 = \mathbb{V}_{n-4,1,1,1,1} + \mathbb{V}_{n-4,2,2} + \mathbb{V}_{n-3,2,1} + \mathbb{V}_{n-2,2} \\ \text{hence there is a unique graded } S_n \text{-equivariant "deformation"} \\ \text{between } M_n \text{ and } D_n \text{ with the desired properties in degree one and} \end{split}$$

two. It is parametrized by \mathbb{P}^1 .

henc

Goal: describe D_n as graded S_n -representation.

Definition (Artinian Orlik-Terao algebra of type A_n) Define C_n as the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

1.
$$x_{i,j} + x_{j,i}$$

2.
$$x_{i,j}^2$$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Goal: describe D_n as graded S_n -representation.

Definition (Artinian Orlik-Terao algebra of type A_n)

Define C_n as the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

1.
$$x_{i,j} + x_{j,i}$$

2. $x_{i,j}^2$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Theorem (Cohen '76)

The cohomology of the configuration space on \mathbb{R}^3 is $C_n = H^{2\cdot}(Conf_n(\mathbb{R}^3); \mathbb{Q}).$

Goal: describe D_n as graded S_n -representation.

Definition (Artinian Orlik-Terao algebra of type A_n)

Define C_n as the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

1.
$$x_{i,j} + x_{j,i}$$

2. $x_{i,j}^2$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Theorem (Cohen '76)

The cohomology of the configuration space on \mathbb{R}^3 is $C_n = H^{2\cdot}(\operatorname{Conf}_n(\mathbb{R}^3); \mathbb{Q}).$

• C_n^i is the Eulerian representation (up to the sign),

Goal: describe D_n as graded S_n -representation.

Definition (Artinian Orlik-Terao algebra of type A_n)

Define C_n as the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

1.
$$x_{i,j} + x_{j,i}$$

2. $x_{i,j}^2$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Theorem (Cohen '76)

The cohomology of the configuration space on \mathbb{R}^3 is $C_n = H^{2 \cdot}(\operatorname{Conf}_n(\mathbb{R}^3); \mathbb{Q}).$

Cⁱ_n is the Eulerian representation (up to the sign),
 Res^{S_{n+1}}_{S_n} D_{n+1} = C_n,
The first assistant C_n

Goal: describe D_n as graded S_n -representation.

Definition (Artinian Orlik-Terao algebra of type A_n)

Define C_n as the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

1.
$$x_{i,j} + x_{j,i}$$

2. $x_{i,j}^2$

3.
$$x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Theorem (Cohen '76)

The cohomology of the configuration space on \mathbb{R}^3 is $C_n = H^{2 \cdot}(\operatorname{Conf}_n(\mathbb{R}^3); \mathbb{Q}).$

Theorem (Sundaram, Welker '97)

As S_n-representation

$$C_n^i = \bigoplus_{\substack{\lambda \vdash n \\ l(\lambda) = n-i}} \operatorname{Ind}_{\times_i Z_i \wr S_{m_i}}^{S_n} \boxtimes \zeta_i$$
where $\lambda = (1^{m_1}, 2^{m_2}, \dots)$.

Roberto Pagaria

Theorem (Sundaram, Welker '97)

As S_n -representation

$$C_n^i = \bigoplus_{\substack{\lambda \vdash n \ l(\lambda) = n-i}} \operatorname{Ind}_{\times_i Z_i \wr S_{m_i}}^{S_n} \boxtimes \zeta_i$$

where $\lambda = (1^{m_1}, 2^{m_2}, ...)$. The graded Frobenius characteristic of C_n is

ch
$$C_n = \sum_{\lambda \vdash n} q^{\sum_i (i-1)m_i} \prod_{i=1}^n h_{m_i}[\ell_i],$$

where $\ell_i = \operatorname{ch} \operatorname{Ind}_{Z_i}^{S_i} \zeta_i$ is the Lyndon/Gessel-Reutenauer symmetric function, ie the character of the multilinear component of the free Lie algebra.

Theorem (Sundaram, Welker '97)

As S_n -representation

$$C_n^i = igoplus_{\substack{\lambda \vdash n \ l(\lambda) = n-i}} \operatorname{Ind}_{ imes_i Z_i \wr S_{m_i}}^{S_n} oxpeck_{\zeta_i}$$

where $\lambda = (1^{m_1}, 2^{m_2}, ...)$. The graded Frobenius characteristic of C_n is

ch
$$C_n = \sum_{\lambda \vdash n} q^{\sum_i (i-1)m_i} \prod_{i=1}^n h_{m_i}[\ell_i],$$

where $\ell_i = \operatorname{ch} \operatorname{Ind}_{Z_i}^{S_i} \zeta_i$ is the Lyndon/Gessel-Reutenauer symmetric function, ie the character of the multilinear component of the free Lie algebra.

The *plethysm* f[g] is an operation on symmetric functions such that ch $W[ch V] = ch \operatorname{Ind}_{S_{k} \setminus S_{h}}^{S_{hk}}(V^{\boxtimes h} \otimes W)$

The second assistant R_n

Goal: describe M_n as graded S_n -representation.

Definition

Let $R_n = S^{\cdot} \mathbb{V}_{n-1,1}$ be the symmetric algebra on the standard representation.

The second assistant R_n

Goal: describe M_n as graded S_n -representation.

Definition

Let $R_n = S^{\cdot} \mathbb{V}_{n-1,1}$ be the symmetric algebra on the standard representation.

Theorem (Moseley, Proudfoot, Young '16)

The following holds: $M_n \otimes R_n = \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times S_i \wr S_{m_i}}^{S_n} \left(C_{I(\lambda)} \otimes \boxtimes_i (M_i^c \otimes R_i) \boxtimes (\mathbb{V}_{m_i} \oplus \mathbb{V}_{m_i-1,1}) \right)$ where $\lambda = (1^{m_1}, 2^{m_2}, \dots)$ and $(M_n^c)^i = M_n^{2n-2-i}$.

The representation D_n can be described from $C_n = D_n \otimes (\mathbb{V}_n + q \mathbb{V}_{n-1,1}),$ $C_n = \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times_i Z_i \wr S_{m_i}}^{S_n} \boxtimes \zeta_i.$

The representation D_n can be described from

$$C_n = D_n \otimes (\mathbb{V}_n + q \mathbb{V}_{n-1,1}),$$

$$C_n = \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times_i Z_i \wr S_{m_i}}^{S_n} \boxtimes \zeta_i.$$

The MPY-conjecture follows by showing that D_n satisfies the recurrence relation

$$M_n \otimes R_n = \bigoplus_{\lambda \vdash n} \operatorname{Ind}_{\times S_i \wr S_{m_i}}^{S_n} \left(C_{l(\lambda)} \otimes \boxtimes_i (M_i^c \otimes R_i) \boxtimes (\mathbb{V}_{m_i} \oplus \mathbb{V}_{m_i-1,1}) \right),$$

where $R_n = S \cdot \mathbb{V}_{n-1,1}$.

The Frobenius characteristic of D_n can be described from ch $C_n = \text{ch } D_n * (s_n + qs_{n-1,1}),$ ch $C_n = \sum_{\lambda \vdash n} q^{\sum_i (i-1)m_i} \prod_{i=1}^n h_{m_i}[\ell_i].$

The Frobenius characteristic of D_n can be described from

ch
$$C_n$$
 = ch $D_n * (s_n + qs_{n-1,1})$,
ch $C_n = \sum_{\lambda \vdash n} q^{\sum_i (i-1)m_i} \prod_{i=1}^n h_{m_i}[\ell_i]$.

The MPY-conjecture follows by showing that $ch D_n$ satisfies the recurrence relation

$$\operatorname{ch} M_{n} * \operatorname{ch} R_{n} =$$

$$= \sum_{\substack{\nu_{1}, \dots, \nu_{n} \\ \sum_{i} i\nu_{i} = n}} \langle s_{\nu_{1}} \dots s_{\nu_{n}}, \operatorname{ch} C_{\sum \nu_{i}} \rangle \prod_{i} s_{\nu_{i}} \left[q^{2i-2} (\operatorname{ch} M_{i})_{|q=q^{-1}} * \operatorname{ch} R_{i} \right]$$

where

$$\operatorname{ch} R_n = (1-q)h_n\left[rac{X}{1-q}
ight].$$

The Frobenius characteristic of D_n can be described from

ch
$$C_n$$
 = ch $D_n * (s_n + qs_{n-1,1})$,
ch $C_n = \sum_{\lambda \vdash n} q^{\sum_i (i-1)m_i} \prod_{i=1}^n h_{m_i}[\ell_i]$.

The MPY-conjecture follows by showing that $ch D_n$ satisfies the recurrence relation

$$\operatorname{ch} M_{n} * \operatorname{ch} R_{n} = \sum_{\substack{\nu_{1}, \dots, \nu_{n} \\ \sum_{i} i \nu_{i} = n}} \langle s_{\nu_{1}} \dots s_{\nu_{n}}, \operatorname{ch} C_{\sum \nu_{i}} \rangle \prod_{i} s_{\nu_{i}} \left[q^{2i-2} (\operatorname{ch} M_{i})_{|q=q^{-1}} * \operatorname{ch} R_{i} \right]$$
where

$$\operatorname{ch} R_n = (1-q)h_n \left[rac{X}{1-q}
ight].$$

Idea: use spectral sequence to compute the S_n action on D_n .

Idea: use spectral sequence to compute the S_n action on D_n .

Theorem (Cohen, Taylor '78)

There exists a spectral sequence

 $E_r^{p,q}(SU_2,n) \Rightarrow H^{p+q}(\operatorname{Conf}_n(SU_2);\mathbb{Q})$

Idea: use spectral sequence to compute the S_n action on D_n .

Theorem (Cohen, Taylor '78)

There exists a spectral sequence

$$\Xi_r^{p,q}(SU_2,n) \Rightarrow H^{p+q}(\operatorname{Conf}_n(SU_2);\mathbb{Q})$$

whose second page is

$$E_2^{\cdot,q}(SU_2,n) = \bigoplus_{\substack{S \vdash [n] \\ l(S) = n-q}} \bigotimes_i \left(C_{|S_i|}^{\mathsf{top}} \otimes H^{\cdot}(SU_2;\mathbb{Q}) \right).$$

Idea: use spectral sequence to compute the S_n action on D_n .

Theorem (Cohen, Taylor '78)

There exists a spectral sequence

$$\Xi_r^{p,q}(SU_2,n) \Rightarrow H^{p+q}(\operatorname{Conf}_n(SU_2);\mathbb{Q})$$

whose second page is

$$E_2^{\cdot,q}(SU_2,n) = \bigoplus_{\substack{S \vdash [n] \\ l(S) = n-q}} \bigotimes_i \left(C_{|S_i|}^{\mathsf{top}} \otimes H^{\cdot}(SU_2; \mathbb{Q}) \right).$$

It degenerates at the fourth page by comparison with the SS $E_r^{p,q}(\mathbb{R}^3, n) \Rightarrow H^{p+q}(\operatorname{Conf}_n(\mathbb{R}^3)).$

$$E_r^{p,q}(SU_2,n) \Rightarrow H^{p+q}(\operatorname{Conf}_n(SU_2);\mathbb{Q})$$

$$E_r^{p,q}(SU_2,n) \Rightarrow H^{p+q}(\operatorname{Conf}_n(SU_2);\mathbb{Q})$$

We also used

 $H^{\cdot}(\operatorname{Conf}_{n}(SU_{2}); \mathbb{Q}) = H^{\cdot}(\operatorname{Conf}_{n}(SU_{2})/SU_{2}; \mathbb{Q}) \otimes H^{\cdot}(SU_{2}; \mathbb{Q})$ by the Leray-Hirsch theorem.

By taking the "refined" Euler characteristic of $E_2^{p,q}(SU_2, n)$ and of $E_{\infty}^{p,q}(SU_2, n)$ we obtain:

Corollary (P. '22)

The Frobeinus characteristic of D_n is

$$\begin{split} \mathsf{ch}\, D_n &= \sum_{\lambda \vdash n} \frac{q^{n-l(\lambda)}}{1-q} \prod_i h_{m_i} [(1-q)\ell_i] \\ &= \frac{1}{1-q} \sum_{\lambda \vdash n} \prod_i h_{m_i} [q^{i-1}(1-q)\ell_i], \\ \end{split} \\ \textit{where } \lambda &= (1^{m_1}, 2^{m_2}, \dots). \end{split}$$

Definition (Terao '02)

The Orlik-Terao algebra OT_n of type A_n is the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

- 1. $x_{i,j} + x_{j,i}$
- 2. $x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$

Definition (Terao '02)

The Orlik-Terao algebra OT_n of type A_n is the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

1. $x_{i,j} + x_{j,i}$

$$2. \quad x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$$

Remark

• OT_n is the subalgebra of rational functions on \mathbb{C}^n generated by $\frac{1}{z_i - z_j}$.

Definition (Terao '02)

The Orlik-Terao algebra OT_n of type A_n is the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

- 1. $x_{i,j} + x_{j,i}$
- 2. $x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$

Remark

- OT_n is the subalgebra of rational functions on \mathbb{C}^n generated by $\frac{1}{z_i z_j}$.
- ▶ *OT_n* is the coordinate ring of the *reciprocal plane*.

Definition (Terao '02)

The Orlik-Terao algebra OT_n of type A_n is the quotient of $\mathbb{Q}[x_{i,j}]_{i\neq j}$ by the relations

- 1. $x_{i,j} + x_{j,i}$
- 2. $x_{i,j}x_{j,k} + x_{j,k}x_{k,i} + x_{k,i}x_{i,j}$

Remark

- OT_n is the subalgebra of rational functions on \mathbb{C}^n generated by $\frac{1}{z_i z_j}$.
- ▶ *OT_n* is the coordinate ring of the *reciprocal plane*.
- OT_n degenerates flatly to the Stanley-Reisner ring of the broken circuit complex.

Goal: a non-recursive description of M_n .

Theorem (Braden, Proudfoot '09) They prove

$$\begin{split} M_n &= IH^{2\cdot}(X_n;\mathbb{Q}),\\ R_n &= IH^{2\cdot}_{T^{n-1}}(*;\mathbb{Q}),\\ OT_n &= IH^{2\cdot}_{T^{n-1}}(X_n;\mathbb{Q}).\\ \end{split}$$
 Hence, $OT_n &= M_n \otimes R_n$ as graded S_n -representations.

Goal: a non-recursive description of M_n .

Theorem (Braden, Proudfoot '09)

They prove

$$M_n = IH^{2\cdot}(X_n; \mathbb{Q}),$$

$$R_n = IH^{2\cdot}_{T^{n-1}}(*; \mathbb{Q}),$$

$$OT_n = IH^{2\cdot}_{T^{n-1}}(X_n; \mathbb{Q}).$$

Hence, $OT_n = M_n \otimes R_n$ as graded S_n -representations.

We want to invert R_n : by the exactness of the *Kozsul complex* we have

$$\operatorname{ch} R_n * (\operatorname{ch} \Lambda^{\cdot} \mathbb{V}_{n-1,1})_{|q=-q} = h_n.$$

Goal: a non-recursive description of M_n .

Theorem (Braden, Proudfoot '09)

They prove

$$M_n = IH^{2 \cdot}(X_n; \mathbb{Q}),$$

$$R_n = IH^{2 \cdot}_{T^{n-1}}(*; \mathbb{Q}),$$

$$OT_n = IH^{2 \cdot}_{T^{n-1}}(X_n; \mathbb{Q}).$$

Hence, $OT_n = M_n \otimes R_n$ as graded S_n -representations.

We want to invert R_n : by the exactness of the *Kozsul complex* we have

$$\operatorname{ch} R_n * (\operatorname{ch} \Lambda^{\cdot} \mathbb{V}_{n-1,1})|_{q=-q} = h_n.$$

Finally ch M_n = ch $OT_n * \frac{h_n[(1-q)X]}{1-q}$.

Goal: a non-recursive description of M_n .

Theorem (Braden, Proudfoot '09)

They prove

$$M_n = IH^{2 \cdot}(X_n; \mathbb{Q}),$$

$$R_n = IH^{2 \cdot}_{T^{n-1}}(*; \mathbb{Q}),$$

$$OT_n = IH^{2 \cdot}_{T^{n-1}}(X_n; \mathbb{Q}).$$

Hence, $OT_n = M_n \otimes R_n$ as graded S_n -representations.

We want to invert R_n : by the exactness of the *Kozsul complex* we have

$$\operatorname{ch} R_n * (\operatorname{ch} \Lambda^{\cdot} \mathbb{V}_{n-1,1})|_{q=-q} = h_n.$$

Finally ch $M_n = \operatorname{ch} OT_n * \frac{h_n[(1-q)X]}{1-q}$.

The King's cohort

We filter OT_n by the *support* of the monomials. Let T_n be the submodule of OT_n generated by monomials with full support.

Lemma (P. '22)

We have

$$OT_n = \bigoplus_{S \vdash [n]} \bigotimes_i T_{S_i}$$

and

$$\operatorname{ch} OT_n = \sum_{\lambda \vdash n} \prod_i h_{m_i} [\operatorname{ch} T_i].$$

The final battle

Theorem (P. '22) *We have*

ch
$$M_n = \operatorname{ch} D_n$$
,
ch $T_n = q^{n-1}\ell_n * \operatorname{ch} R_n = (1-q)q^{n-1}\ell_n * h_n \left[\frac{X}{1-q}\right]$.

The final battle

Theorem (P. '22) *We have*

ch
$$M_n = \operatorname{ch} D_n$$
,
ch $T_n = q^{n-1}\ell_n * \operatorname{ch} R_n = (1-q)q^{n-1}\ell_n * h_n \left[\frac{\chi}{1-q}\right]$

٠

By a simultaneous induction: ch M_n - ch $T_n * \frac{h_n[(1-q)X]}{1-q}$

By a simultaneous induction:

$$\operatorname{ch} M_n - \operatorname{ch} T_n * \frac{h_n[(1-q)X]}{1-q} = (\operatorname{ch} OT_n - \operatorname{ch} T_n) * \frac{h_n[(1-q)X]}{1-q}$$

By a simultaneous induction:

$$\operatorname{ch} M_n - \operatorname{ch} T_n * \frac{h_n[(1-q)X]}{1-q} = (\operatorname{ch} OT_n - \operatorname{ch} T_n) * \frac{h_n[(1-q)X]}{1-q}$$
$$= \left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq (n)}} \prod_i h_{m_i}[\operatorname{ch} T_i]\right) * \frac{h_n[(1-q)X]}{1-q}$$

By a simultaneous induction: $\operatorname{ch} M_{n} - \operatorname{ch} T_{n} * \frac{h_{n}[(1-q)X]}{1-q} = (\operatorname{ch} OT_{n} - \operatorname{ch} T_{n}) * \frac{h_{n}[(1-q)X]}{1-q}$ $= \left(\sum_{\substack{\lambda \vdash n \\ \lambda \neq (n)}} \prod_{i} h_{m_{i}}[\operatorname{ch} T_{i}]\right) * \frac{h_{n}[(1-q)X]}{1-q}$ $= \frac{1}{1-q} \sum_{\substack{\lambda \vdash n \\ \lambda \neq (n)}} \prod_{i} h_{m_{i}}[\operatorname{ch} T_{i} * h_{i}[(1-q)X]]$

By a simultaneous induction: ch M_n - ch $T_n * \frac{h_n[(1-q)X]}{1-q} = (\text{ch } OT_n - \text{ch } T_n) * \frac{h_n[(1-q)X]}{1-q}$ $= \left(\sum \prod h_{m_i}[\operatorname{ch} T_i]\right) * \frac{h_n[(1-q)X]}{1-q}$ $\lambda \vdash n \quad i$ $= \frac{1}{1-q} \sum_{\lambda \vdash n} \prod_{i} h_{m_i} [\operatorname{ch} T_i * h_i [(1-q)X]]$ $=\frac{1}{1-q}\sum_{\lambda\vdash n}\prod_i h_{m_i}\left[(1-q)q^{i-1}\ell_i*h_i\left[\frac{X}{1-q}\right]*h_i[(1-q)X]\right]$

By a simultaneous induction: ch M_n - ch $T_n * \frac{h_n[(1-q)X]}{1-q} = (\text{ch } OT_n - \text{ch } T_n) * \frac{h_n[(1-q)X]}{1-q}$ $= \left(\sum \prod h_{m_i}[\operatorname{ch} T_i]\right) * \frac{h_n[(1-q)X]}{1-q}$ $\lambda \neq (n)$ $=\frac{1}{1-q}\sum_{\lambda\vdash n}\prod_{i}h_{m_{i}}\left[\operatorname{ch} T_{i}*h_{i}\left[(1-q)X\right]\right]$ $=\frac{1}{1-q}\sum_{\lambda\vdash n}\prod_i h_{m_i}\left[(1-q)q^{i-1}\ell_i*h_i\left[\frac{X}{1-q}\right]*h_i[(1-q)X]\right]$ $=rac{1}{1-q}\sum_{\lambdadash n}\prod_i h_{m_i}[(1-q)q^{i-1}\ell_i]$

By a simultaneous induction: $\operatorname{ch} M_n - \operatorname{ch} T_n * \frac{h_n[(1-q)X]}{1-q} = (\operatorname{ch} OT_n - \operatorname{ch} T_n) * \frac{h_n[(1-q)X]}{1-q}$ $= \left(\sum \prod h_{m_i}[\operatorname{ch} T_i]\right) * \frac{h_n[(1-q)X]}{1-q}$ $\lambda \neq (n)$ $=\frac{1}{1-q}\sum_{\lambda\vdash n}\prod_{i}h_{m_{i}}\left[\operatorname{ch} T_{i}*h_{i}\left[(1-q)X\right]\right]$ $=\frac{1}{1-q}\sum_{\lambda\vdash n}\prod_i h_{m_i}\left[(1-q)q^{i-1}\ell_i*h_i\left[\frac{X}{1-q}\right]*h_i[(1-q)X]\right]$ $=rac{1}{1-q} \sum_{\lambda \vdash n} \prod_i h_{m_i} [(1-q)q^{i-1}\ell_i]$ $= \operatorname{ch} D_n - q^{n-1} \ell_n$
The final battle

Proof. From

$$\operatorname{ch} M_n - \operatorname{ch} T_n * \frac{h_n[(1-q)X]}{1-q} = \operatorname{ch} D_n - q^{n-1}\ell_n$$

The final battle

Proof. From

$$\operatorname{ch} M_n - \operatorname{ch} T_n * \frac{h_n[(1-q)X]}{1-q} = \operatorname{ch} D_n - q^{n-1}\ell_n$$

we deduce

ch
$$M_n$$
 = ch D_n
ch $T_n * \frac{h_n[(1-q)X]}{1-q} = q^{n-1}\ell_n$

The final battle

Proof. From

$$\operatorname{ch} M_n - \operatorname{ch} T_n * \frac{h_n[(1-q)X]}{1-q} = \operatorname{ch} D_n - q^{n-1}\ell_n$$

we deduce

ch
$$M_n =$$
 ch D_n
ch $T_n * \frac{h_n[(1-q)X]}{1-q} = q^{n-1}\ell_n$

and so

ch
$$T_n = (1-q)q^{n-1}\ell_n * h_n\left[\frac{X}{1-q}\right].$$

The treasure

Corollary (P. '22)
We have
$$\operatorname{ch} OT_n = \sum_{\lambda \vdash n} q^{n-l(\lambda)} \prod_i h_{m_i} [\ell_i * \operatorname{ch} R_i].$$

The treasure

· --

. . . .

Corollary (P. '22)
We have

$$ch OT_n = \sum_{\lambda \vdash n} q^{n-l(\lambda)} \prod_i h_{m_i} [\ell_i * ch R_i].$$
Define $L = \sum_{n \ge 1} q^{n-1} t^n \ell_n = -\frac{\log(1-qtX)}{q}.$

The treasure

Corollary (P. '22) We have $\operatorname{ch} OT_n = \sum_{\lambda \vdash n} q^{n-l(\lambda)} \prod_i h_{m_i} [\ell_i * \operatorname{ch} R_i].$ Define $L = \sum_{n \geq 1} q^{n-1} t^n \ell_n = -\frac{\log(1-qtX)}{q}.$

Corollary

The generating functions are

$$\sum_{n\geq 1} \operatorname{ch}_{D_n}(q) t^n = \sum_{n\geq 1} \operatorname{ch}_{M_n}(q) t^n = \frac{1}{1-q} (\operatorname{Exp}((1-q)L) - 1),$$
$$\sum_{n\geq 1} \operatorname{ch}_{OT_n}(q) t^n = \operatorname{Exp}\left((1-q)L * \operatorname{Exp}\left(\frac{X}{1-q}\right)\right) - 1.$$

...and they lived happily ever after

Proudfoot gave to his PhD student Moseley the problem of computing ch OT_n in 2008. He hasn't solved it, but long after they come up with the MPY conjecture $D_n = M_n$. Finally, the circle is closed.

...and they lived happily ever after

Proudfoot gave to his PhD student Moseley the problem of computing ch OT_n in 2008. He hasn't solved it, but long after they come up with the MPY conjecture $D_n = M_n$. Finally, the circle is closed.

full story in *The Frobenius characteristic of the Orlik-Terao algebra of type A* arXiv:2203.08265 March 15th, 2022 submitted to IMRN on April 12th, 2022 accepted in IMRN on May 26th, 2022 published in IMRN on June 14th, 2022

to be continued...

Future works:

to be continued...

Future works:

The MPY conjecture is stated also for graphical arrangements D_Γ ~ M_Γ as graded representations of Aut(Γ), but we cannot use symmetric function!

to be continued...

Future works:

- The MPY conjecture is stated also for graphical arrangements D_Γ ~ M_Γ as graded representations of Aut(Γ), but we cannot use symmetric function!
- Does a similar statement holds for finite Coxeter arrangements? How to define D_W? maybe D_{B_n} is the cohomology of an orbit configuration space.

Contact me if you are interested!

The end

roberto.pagaria@unibo.it