

Cohomology rings of abelian arrangements

Roberto Pagaria

Joint with E. Bazzocchi and M. Pismataro

Hyperplane Arrangements 2023, Tokyo

December 14, 2023

Covered topics:

- Complex hyperplane arrangements
- 2 Real hyperplane arrangements
- 3 Real subspace arrangements
- 4 Toric arrangements

(a, b)-arrangements

Let $G = \mathbb{R}^b \times (S^1)^a$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^r \setminus \{0\}$ an integer vector.

Introduction

(a, b)-arrangements

Let $G = \mathbb{R}^b \times (S^1)^a$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^r \setminus \{0\}$ an integer vector. It defines a morphism $\alpha \colon G^r \to G$ sending $(g_i) \mapsto \sum_i \alpha_i g_i$. Consider $H_\alpha = \alpha^{-1}(e)$.

Introduction

(*a*, *b*)-arrangements

Let $G = \mathbb{R}^b \times (S^1)^a$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^r \setminus \{0\}$ an integer vector. It defines a morphism $\alpha \colon G^r \to G$ sending $(g_i) \mapsto \sum_i \alpha_i g_i$. Consider $H_\alpha = \alpha^{-1}(e)$. A (a, b)-arrangement is a finite collection $\mathcal{A} = \{\alpha_i\}_{i=1,...,n}$.

Introduction

(*a*, *b*)-arrangements

Let $G = \mathbb{R}^b \times (S^1)^a$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^r \setminus \{0\}$ an integer vector. It defines a morphism $\alpha \colon G^r \to G$ sending $(g_i) \mapsto \sum_i \alpha_i g_i$. Consider $H_\alpha = \alpha^{-1}(e)$. A (a, b)-arrangement is a finite collection $\mathcal{A} = \{\alpha_i\}_{i=1,...,n}$.

Example

(0,1) real hyperplane arrangement $G = \mathbb{R}$,

(0,2) complex hyperplane arrangement $G = \mathbb{C}$,

(1,1) toric arrangement $G = \mathbb{C}^*$.

Goal: describe the cohomology ring of the *complement* $M^{a,b}_{\mathcal{A}} := G^r \setminus \bigcup_{\alpha \in \mathcal{A}} H_{\alpha}.$

Goal: describe the cohomology ring of the *complement* $M^{a,b}_{\mathcal{A}} := G^r \setminus \bigcup_{\alpha \in \mathcal{A}} H_{\alpha}.$

Definition

For every *i* the map $\alpha_i \colon G^r \to G$ restricts to $\alpha_i \colon M^{\mathbf{a},b}_{\mathcal{A}} \to G \setminus \{e\}$ and for any class $\omega \in H^*(G \setminus \{e\})$ we define $\omega_i := \alpha_i^*(\omega) \in H^*(M^{\mathbf{a},b}_{\mathcal{A}}).$

Goal: describe the cohomology ring of the *complement* $M^{a,b}_{\mathcal{A}} := G^r \setminus \bigcup_{\alpha \in \mathcal{A}} H_{\alpha}.$

Definition

For every *i* the map $\alpha_i \colon G^r \to G$ restricts to $\alpha_i \colon M^{\mathbf{a},b}_{\mathcal{A}} \to G \setminus \{e\}$ and for any class $\omega \in H^*(G \setminus \{e\})$ we define $\omega_i := \alpha_i^*(\omega) \in H^*(M^{\mathbf{a},b}_{\mathcal{A}}).$

Hope: the classes ω_i generate $H^*(M_A^{a,b})$ and it is possible to describe the relations between them.

Complex hyperplane arrangements

We consider the case (0, 2) of complex hyperplane arrangements. The cohomology of $\mathbb{C} \setminus \{0\}$ is generated by the form $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ and $\omega_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log \alpha_i(\underline{z}).$

Complex hyperplane arrangements

We consider the case (0, 2) of complex hyperplane arrangements. The cohomology of $\mathbb{C} \setminus \{0\}$ is generated by the form $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ and $\omega_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log \alpha_i(\underline{z}).$

Theorem (Orlik-Solomon 1980)

$$H^*(M^{0,2}_{\mathcal{A}};\mathbb{Z})\simeq \mathbb{Z}[\omega_1,\omega_2,\ldots,\omega_n]/(\partial\omega_C\mid C \text{ circuit})$$

Complex hyperplane arrangements

We consider the case (0, 2) of complex hyperplane arrangements. The cohomology of $\mathbb{C} \setminus \{0\}$ is generated by the form $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ and $\omega_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log \alpha_i(\underline{z}).$

Theorem (Orlik-Solomon 1980)

$$H^*(M^{0,2}_{\mathcal{A}};\mathbb{Z})\simeq \mathbb{Z}[\omega_1,\omega_2,\ldots,\omega_n]/(\partial\omega_{\mathcal{C}}\mid \mathcal{C} ext{ circuit})$$

For each *circuit* C (i.e. minimal dependent set) of cardinality k = |C| the Arnold relation is

$$\partial \omega_{\mathcal{C}} := \sum_{i=1}^{\kappa} (-1)^{i} \omega_{c_{1}} \omega_{c_{2}} \dots \widehat{\omega_{c_{i}}} \dots \omega_{c_{k}} = 0$$

and it holds at level of differential forms.

Consider the complex arrangement in \mathbb{C}^2 given by the hyperplanes $H_1 = \{z_1 = 0\}, H_2 = \{z_2 = 0\}, H_3 = \{z_1 + z_2 = 0\}.$

There is a unique circuit $\{1,2,3\}$ and the associated Arnold relation is

$$\omega_2\omega_3-\omega_1\omega_3+\omega_1\omega_2=0.$$

The cohomology of $\mathbb{R} \setminus \{0\}$ is generated by the functions $\omega^+ = \delta_{\mathbb{R}^+}$ and $\omega^- = \delta_{\mathbb{R}^-}$ with relations $\omega^+ + \omega^- = 1$ and $\omega^+ \omega^- = 0$.

The cohomology of $\mathbb{R} \setminus \{0\}$ is generated by the functions $\omega^+ = \delta_{\mathbb{R}^+}$ and $\omega^- = \delta_{\mathbb{R}^-}$ with relations $\omega^+ + \omega^- = 1$ and $\omega^+ \omega^- = 0$. We $\omega_i^+ = \delta_{H_{\alpha_i}^+}$ and $\omega_i^- = \delta_{H_{\alpha_i}^-}$.

The cohomology of $\mathbb{R} \setminus \{0\}$ is generated by the functions $\omega^+ = \delta_{\mathbb{R}^+}$ and $\omega^- = \delta_{\mathbb{R}^-}$ with relations $\omega^+ + \omega^- = 1$ and $\omega^+ \omega^- = 0$. We $\omega_i^+ = \delta_{H_{\alpha_i}^+}$ and $\omega_i^- = \delta_{H_{\alpha_i}^-}$.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring
$$H^*(M^{0,1}_{\mathcal{A}};\mathbb{Z}) = H^0(M^{0,1}_{\mathcal{A}};\mathbb{Z}) = \mathbb{Z}^{\pi_0(M^{0,1}_{\mathcal{A}})}$$

The cohomology of $\mathbb{R} \setminus \{0\}$ is generated by the functions $\omega^+ = \delta_{\mathbb{R}^+}$ and $\omega^- = \delta_{\mathbb{R}^-}$ with relations $\omega^+ + \omega^- = 1$ and $\omega^+ \omega^- = 0$. We $\omega_i^+ = \delta_{H^+_{\alpha_i}}$ and $\omega_i^- = \delta_{H^-_{\alpha_i}}$.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring
$$H^*(M^{0,1}_{\mathcal{A}};\mathbb{Z}) = H^0(M^{0,1}_{\mathcal{A}};\mathbb{Z}) = \mathbb{Z}^{\pi_0(M^{0,1}_{\mathcal{A}})}$$
 is the ring $\mathbb{Z}[\omega_i^+, \omega_i^-]_i$ with relations:

$${f 0}~~\omega^+_i+\omega^-_i=1$$
 for all i,

2
$$\omega_i^+ \omega_i^- = 0$$
 for all *i*,

•
$$\prod_{i=1}^{k} \omega_{c_i}^{s_i} = 0$$
 for each signed circuit $C = (c_1, c_2, \dots, c_k)$.

The cohomology of $\mathbb{R} \setminus \{0\}$ is generated by the functions $\omega^+ = \delta_{\mathbb{R}^+}$ and $\omega^- = \delta_{\mathbb{R}^-}$ with relations $\omega^+ + \omega^- = 1$ and $\omega^+ \omega^- = 0$. We $\omega_i^+ = \delta_{H^+_{\alpha_i}}$ and $\omega_i^- = \delta_{H^-_{\alpha_i}}$.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring
$$H^*(M^{0,1}_{\mathcal{A}};\mathbb{Z}) = H^0(M^{0,1}_{\mathcal{A}};\mathbb{Z}) = \mathbb{Z}^{\pi_0(M^{0,1}_{\mathcal{A}})}$$
 is the ring $\mathbb{Z}[\omega_i^+, \omega_i^-]_i$ with relations:

$$\bullet \ \omega_i^+ + \omega_i^- = 1 \text{ for all } i,$$

2
$$\omega_i^+\omega_i^-=0$$
 for all i ,

$$\ \ \, \bigcup_{i=1}^k \omega_{c_i}^{s_i} = 0 \ \, \text{for each signed circuit} \ \ C = (c_1,c_2,\ldots,c_k).$$

A signed circuit C is a circuit with signs $s_i \in \{+, -\}$ such that $\sum_{i=1,...,k} s_i m_i \alpha_{c_i} = 0 \in \mathbb{Z}^r$

for some $m_i \in \mathbb{N}$.

Consider the real arrangement in \mathbb{R}^2 given by the hyperplanes $H_1 = \{z_1 = 0\}, H_2 = \{z_2 = 0\}, H_3 = \{z_1 + z_2 = 0\}.$

Consider the real arrangement in \mathbb{R}^2 given by the hyperplanes $H_1 = \{z_1 = 0\}, H_2 = \{z_2 = 0\}, H_3 = \{z_1 + z_2 = 0\}.$

(0, b)-arrangements

We consider the case (0, b)-arrangements; this is a particular instance of real subspace arrangement. Their posets of layers are geometric lattices.

(0, b)-arrangements

We consider the case (0, b)-arrangements; this is a particular instance of real subspace arrangement. Their posets of layers are geometric lattices.

Theorem (Feichtner-Ziegler '00, de Longueville-Schultz '01)

If b > 1, then $H^*(M^{0,b}_{\mathcal{A}}; \mathbb{Z}) \simeq \mathbb{Z}[\omega_1, \omega_2, \dots, \omega_n]/(\partial \omega_C \mid C \text{ circuit}) + (\omega_i^2)_i$ where the generators ω_i are in degree b - 1.

Unimodular arrangements

Assume a > 0.

Definition

An abelian arrangement is *unimodular* if for any $I \subseteq A$ the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is connected or empty.

Unimodular arrangements

Assume a > 0.

Definition

An abelian arrangement is *unimodular* if for any $I \subseteq A$ the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is connected or empty.

Example

Consider the toric arrangements in $(\mathbb{C}^*)^2$

Unimodular arrangements

Assume a > 0.

Definition

An abelian arrangement is *unimodular* if for any $I \subseteq A$ the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is connected or empty.

Example

Consider the toric arrangements in $(\mathbb{C}^*)^2$

The toric arrangement on the left is not unimodular, the right one is unimodular.

Roberto Pagaria

Consider the case of (1, 1)-arrangements. The cohomology of $\mathbb{C}^* \setminus \{1\}$ is generated by the forms $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(z-1)$ and $\psi = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ with relation $\omega \psi = 0$.

Consider the case of (1, 1)-arrangements. The cohomology of $\mathbb{C}^* \setminus \{1\}$ is generated by the forms $\omega = \frac{1}{2\pi\sqrt{-1}} d\log(z-1)$ and $\psi = \frac{1}{2\pi\sqrt{-1}} d\log z$ with relation $\omega \psi = 0$.

Consider the case of (1, 1)-arrangements. The cohomology of $\mathbb{C}^* \setminus \{1\}$ is generated by the forms $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(z-1)$ and $\psi = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ with relation $\omega \psi = 0$.

The cohomological basis $\{\omega, \psi\}$ is dual to the homological basis $\{W, Y\}$.

Consider the case of (1, 1)-arrangements. The cohomology of $\mathbb{C}^* \setminus \{1\}$ is generated by the forms $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(z-1)$ and $\psi = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ with relation $\omega \psi = 0$. Defines the elements $\omega_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(\alpha_i(\underline{z}) - 1)$ and $\psi_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log \alpha_i(\underline{z})$.

Consider the case of (1, 1)-arrangements. The cohomology of $\mathbb{C}^* \setminus \{1\}$ is generated by the forms $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(z-1)$ and $\psi = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ with relation $\omega \psi = 0$. Defines the elements $\omega_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(\alpha_i(\underline{z}) - 1)$ and $\psi_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log \alpha_i(\underline{z})$.

Theorem (De Concini-Procesi '05)

The cohomology ring $H^*(M^{1,1}_{\mathcal{A}}; \mathbb{C})$ of a unimodular toric arrangement is the ring $H^*((\mathbb{C}^*)^r)[\omega_i]_i$ with relations:

•
$$\omega_i \psi_i = 0$$
 for all i ,

2
$$\partial \omega_{C} + I.o.t. = 0$$
 for each signed circuit $C = (c_{1}, c_{2}, \dots, c_{k})$.

Consider the case of (1, 1)-arrangements. The cohomology of $\mathbb{C}^* \setminus \{1\}$ is generated by the forms $\omega = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(z-1)$ and $\psi = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log z$ with relation $\omega \psi = 0$. Defines the elements $\omega_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log(\alpha_i(\underline{z}) - 1)$ and $\psi_i = \frac{1}{2\pi\sqrt{-1}} \operatorname{d} \log \alpha_i(\underline{z})$.

Theorem (De Concini-Procesi '05)

The cohomology ring $H^*(M^{1,1}_{\mathcal{A}}; \mathbb{C})$ of a unimodular toric arrangement is the ring $H^*((\mathbb{C}^*)^r)[\omega_i]_i$ with relations:

•
$$\omega_i\psi_i=0$$
 for all i ,

2
$$\partial \omega_{C} + I.o.t. = 0$$
 for each signed circuit $C = (c_{1}, c_{2}, \dots, c_{k})$.

Unimodularity implies that the cohomology is generated in degree one.

Roberto Pagaria

Let $m(I) = |\pi_0(\bigcap_{\alpha \in I} H_\alpha)|$ be the number of connected components (i.e. the multiplicity function of the *arithmetic matroid*).

Let $m(I) = |\pi_0(\bigcap_{\alpha \in I} H_\alpha)|$ be the number of connected components (i.e. the multiplicity function of the *arithmetic matroid*).

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. '20)

The cohomology ring $H^*(M^{1,1}_{\mathcal{A}};\mathbb{Z})$ of a toric arrangement is the $H^*((\mathbb{C}^*)^r)$ -algebra generated by $\omega_{W,I}$ with I independent set and $W \in \pi_0(\bigcap_{\alpha \in I} H_{\alpha})$ with relations:

$$u_{W,I}\psi_i = 0 \text{ for all } I \ni i,$$

• $\sum_{\text{some } A \subsetneq X} \pm \frac{m(A)}{m(A \cup B)} \omega_{W,A} \psi_B = 0$, for each generalized circuit X and each $L \in \pi_0(\bigcap_{\alpha \in C} H_\alpha)$.

De Concini-Procesi result implies

$$\omega_1\omega_2 - \omega_1\omega_3 + \omega_2\omega_3 - \psi_2\omega_3 = 0,$$

$$\omega_1\omega_2' - \omega_1\omega_3' + \omega_2'\omega_3' - \psi_2\omega_3' = 0.$$

De Concini-Procesi result implies
$$\begin{split} & \omega_1\omega_2 - \omega_1\omega_3 + \omega_2\omega_3 - \psi_2\omega_3 = 0, \\ & \omega_1\omega'_2 - \omega_1\omega'_3 + \omega'_2\omega'_3 - \psi_2\omega'_3 = 0. \end{split}$$
Setting $\omega_{P,23}$ such that $\pi^*\omega_{P,23} = \omega_2\omega_3 + \omega'_2\omega'_3$,

Abelian arrangements

We consider the general case of non-compact abelian arrangements, i.e. b > 0.

Theorem (Liu, Tran, Yoshinaga '21)

If b > 0, the homology $H_*(M^{a,b}_{\mathcal{A}};\mathbb{Z})$ is torsion free and the Poincaré polynomial is

$$\mathsf{P}_{\mathsf{M}^{a,b}_{\mathcal{A}}}(t) = (-t^{a+b-1})^r \chi^a_{\mathcal{A}} \left(-\frac{(1+t)^a}{t^{a+b-1}} \right).$$

Theorem (Bazzocchi, P, Pismataro '24)

If b > 0, the cohomology $H^*(M^{a,b}_{\mathcal{A}};\mathbb{Z})$ is the $H^*(G^r)$ -algebra generated by $\omega_{W,I}$ with I independent set and $W \in \pi_0(\bigcup_{\alpha \in I} H_{\alpha})$ with relations:

Theorem (Bazzocchi, P, Pismataro '24)

If b > 0, the cohomology $H^*(M^{a,b}_{\mathcal{A}}; \mathbb{Z})$ is the $H^*(G^r)$ -algebra generated by $\omega_{W,I}$ with I independent set and $W \in \pi_0(\bigcup_{\alpha \in I} H_{\alpha})$ with relations:

•
$$\omega_{W,I}\psi_i^j = 0$$
 for all $I \ni i$ and $j = 1, \dots, a$,

Theorem (Bazzocchi, P, Pismataro '24)

If b > 0, the cohomology $H^*(M^{a,b}_{\mathcal{A}};\mathbb{Z})$ is the $H^*(G^r)$ -algebra generated by $\omega_{W,I}$ with I independent set and $W \in \pi_0(\bigcup_{\alpha \in I} H_{\alpha})$ with relations:

•
$$\omega_{W,I}\psi_i^j = 0$$
 for all $I \ni i$ and $j = 1, \dots, a$,

Theorem (Bazzocchi, P, Pismataro '24)

If b > 0, the cohomology $H^*(M^{a,b}_{\mathcal{A}};\mathbb{Z})$ is the $H^*(G^r)$ -algebra generated by $\omega_{W,I}$ with I independent set and $W \in \pi_0(\bigcup_{\alpha \in I} H_{\alpha})$ with relations:

•
$$\omega_{W,I}\psi_i^j = 0$$
 for all $I \ni i$ and $j = 1, \dots, a$,

Solution for each generalized circuit X = C ⊔ F and each
L ∈ π₀(∩_{α∈X} H_α)

$$\sum_{B ⊆ C^+} \pm \frac{m(A)}{m(A ∪ \widetilde{B})} ω_{W,A} ψ_{\widetilde{B}} - \sum_{B ⊆ C^-} \pm \frac{m(A)}{m(A ∪ \widetilde{B})} ω_{W,A} ψ_{\widetilde{B}} = 0,$$
where A = X \ B and B = B \ min(B).

Consider the embedding j: ℝ \ {0} → ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ - ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).

Consider the embedding j: ℝ \ {0} ↔ ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ − ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).

$$egin{aligned} & H^0(\mathbb{R}\setminus\{0\}) \xrightarrow{j_*} H^{a+b-1}(G\setminus\{e\}) \ & \mathbb{P} D iggert & & \uparrow^{\mathsf{P} D^{-1}} \ & H^{\mathsf{BM}}_1(\mathbb{R}\setminus\{0\}) \xrightarrow{j^{\mathsf{BM}}_*} H^{\mathsf{BM}}_1(G\setminus\{e\}) \end{aligned}$$

Consider the embedding j: ℝ \ {0} → ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ - ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).

$$egin{aligned} & H^0(\mathbb{R}\setminus\{0\}) \xrightarrow{j_*} H^{a+b-1}(G\setminus\{e\}) \ & \mathbb{P} D igg \downarrow & \uparrow^{\mathbb{P} D^{-1}} \ & H_1^{\mathsf{BM}}(\mathbb{R}\setminus\{0\}) \xrightarrow{j_*^{\mathsf{BM}}} H_1^{\mathsf{BM}}(G\setminus\{e\}) \end{aligned}$$

Consider the embedding j: ℝ \ {0} ↔ ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ − ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).

- Consider the embedding j: ℝ \ {0} → ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).
- Consider a unimodular arrangement \mathcal{A} and use Künneth formula for $j: M_{\mathcal{A}}^{0,1} \to M_{\mathcal{A}}^{a,b}$: $i (\Pi \omega^+) - +\omega \omega_{\mathcal{A}} \omega_{\mathcal{D}}$

$$j_*(\prod_{i\in I}\omega_i^+)=\pm\omega_I\psi_{B\setminus I}$$

where $B \supseteq I$ is any basis.

- Consider the embedding j: ℝ \ {0} ↔ ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ − ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).
- ② Consider a unimodular arrangement A and use Künneth formula for j: M^{0,1}_A → M^{a,b}_A: j_{*}(∏ ω⁺_i) = ±ω_Iψ_{B\I}

where $B \supset I$ is any basis.

Pushforward the Gelfand-Varchenko relations to obtain relations in cohomology.

- Consider the embedding j: ℝ \ {0} ↔ ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ − ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).
- ② Consider a unimodular arrangement A and use Künneth formula for j: M^{0,1}_A → M^{a,b}_A: j_{*}(∏ ω⁺_i) = ±ω_Iψ_{B\I}

where $B \supseteq I$ is any basis.

Pushforward the Gelfand-Varchenko relations to obtain relations in cohomology.

i∈I

Use separating covers to extend the relations to general arrangements.

- Consider the embedding j: ℝ \ {0} ↔ ℝ^b × (S¹)^a \ {e}. Its pushforward in cohomology is j_{*}(ω⁺) = ω, j_{*}(ω⁻) = ψ − ω, and j_{*}(1) = ψ (if b > 1 we set ψ ≡ 0).
- ② Consider a unimodular arrangement A and use Künneth formula for j: M^{0,1}_A → M^{a,b}_A: j_{*}(∏ ω⁺_i) = ±ω_Iψ_{B\I}

where $B \supseteq I$ is any basis.

Pushforward the Gelfand-Varchenko relations to obtain relations in cohomology.

i∈I

- Use separating covers to extend the relations to general arrangements.
- Use a variation of the Briskorn lemma and deletion-contraction argument.

The Gelfand-Varchenko relations are: $\omega_1^+ \omega_2^- \omega_3^- = 0$ $\omega_1^- \omega_2^- \omega_3^+ = 0$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{2} = \{x_{2} = 0\}$$

$$\begin{split} \omega_1^+ \omega_2^+ \omega_3^- &= 0 & \omega_1^- \omega_2^- \omega_3^+ &= 0 \\ \omega_1^+ \omega_2^+ (1 - \omega_3^+) &= 0 & (1 - \omega_1^+)(1 - \omega_2^+) \omega_3^+ &= 0 \end{split}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{2} = \{x_{2} = 0\}$$

$$\begin{split} \omega_1^+ \omega_2^+ \omega_3^- &= 0 & \omega_1^- \omega_2^- \omega_3^+ = 0 \\ \omega_1^+ \omega_2^+ (1 - \omega_3^+) &= 0 & (1 - \omega_1^+)(1 - \omega_2^+) \omega_3^+ = 0 \\ \omega_1^+ \omega_2^+ - \omega_1^+ \omega_3^+ - \omega_2^+ \omega_3^+ + \omega_3^+ &= 0 \end{split}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{2} = \{x_{2} = 0\}$$

$$\begin{split} \omega_1^+ \omega_2^+ \omega_3^- &= 0 & \omega_1^- \omega_2^- \omega_3^+ = 0 \\ \omega_1^+ \omega_2^+ (1 - \omega_3^+) &= 0 & (1 - \omega_1^+)(1 - \omega_2^+) \omega_3^+ = 0 \\ \omega_1^+ \omega_2^+ - \omega_1^+ \omega_3^+ - \omega_2^+ \omega_3^+ + \omega_3^+ &= 0 \end{split}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{2} = \{x_{2} = 0\}$$

$$\omega_1\omega_2 - \omega_1\omega_3 + \omega_2\omega_3 = 0 \qquad \qquad \text{if } b > 1$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{3} = \{x_{1} + x_{2} = 0\}$$

$$H_{2} = \{x_{2} = 0\}$$

$$\begin{split} & \omega_1^+ \omega_2^+ \omega_3^- = 0 & \omega_1^- \omega_2^- \omega_3^+ = 0 \\ & \omega_1^+ \omega_2^+ (1 - \omega_3^+) = 0 & (1 - \omega_1^+)(1 - \omega_2^+) \omega_3^+ = 0 \\ & \omega_1^+ \omega_2^+ - \omega_1^+ \omega_3^+ - \omega_2^+ \omega_3^+ + \omega_3^+ = 0 \\ \end{split}$$
 By pushforward we obtain:

$$\omega_1\omega_2 - \omega_1\omega_3 + \omega_2\omega_3 = 0 \qquad \text{if } b > 1$$

$$\omega_1\omega_2 - \omega_1\omega_3 + \omega_2\omega_3 - \psi_2\omega_3 = 0 \qquad \text{if } b = 1$$

Theorem (Cohen, Taylor '78)

Describe the associated graded with respect to a certain filtration $\operatorname{gr}_{\mathcal{F}} H^*(\operatorname{Conf}_n(X \times \mathbb{R}))$

as a ring by using the Arnold relations.

Theorem (Cohen, Taylor '78)

Describe the associated graded with respect to a certain filtration $\operatorname{gr}_{\mathcal{F}} H^*(\operatorname{Conf}_n(X \times \mathbb{R}))$

as a ring by using the Arnold relations.

Corollary (Bazzocchi, P, Pismataro '24)

For b > 0, description of $H^*(Conf_n(\mathbb{R}^b \times (S^1)^a))$

by generators and relations.

Theorem (Cohen, Taylor '78)

Describe the associated graded with respect to a certain filtration $\operatorname{gr}_{\mathcal{F}} H^*(\operatorname{Conf}_n(X \times \mathbb{R}))$

as a ring by using the Arnold relations.

Corollary (Bazzocchi, P, Pismataro '24)

For b > 0, description of

$$H^*(\operatorname{Conf}_n(\mathbb{R}^b \times (S^1)^a)))$$

by generators and relations.

In particular, $H^*(\operatorname{Conf}_n(\mathbb{R}\times(S^1)^a)) \not\simeq \operatorname{gr}_{\mathcal{F}} H^*(\operatorname{Conf}_n(\mathbb{R}\times(S^1)^a))$ as rings.

Other applications

Formality of abelian arrangements. It is already known in the cases (0, b) [Brieskorn '73, Feichtner, Yuzvinsky '05] and (1,1) [De Concini, Procesi '05, Dupont '16]

Other applications

- Formality of abelian arrangements. It is already known in the cases (0, b) [Brieskorn '73, Feichtner, Yuzvinsky '05] and (1,1) [De Concini, Procesi '05, Dupont '16]
- Cohomology of $M_{\mathcal{A}}^{a,0}$ from the cohomology of $M_{\mathcal{A}}^{1,0}$ (real toric arrangement). In 2018, Bibby constructed a spectral sequence for $M_{\mathcal{A}}^{2,0}$, but the Betti numbers are unknown.

Other applications

- Formality of abelian arrangements. It is already known in the cases (0, b) [Brieskorn '73, Feichtner, Yuzvinsky '05] and (1,1) [De Concini, Procesi '05, Dupont '16]
- Cohomology of $M_{\mathcal{A}}^{a,0}$ from the cohomology of $M_{\mathcal{A}}^{1,0}$ (real toric arrangement). In 2018, Bibby constructed a spectral sequence for $M_{\mathcal{A}}^{2,0}$, but the Betti numbers are unknown.
- Explicit basis for Borel-Moore homology of abelian arrangements.

Thanks for listening!

roberto.pagaria@unibo.it