Cohomology rings of abelian arrangements

Roberto Pagaria
Joint with E. Bazzocchi and M. Pismataro

Hyperplane Arrangements 2023, Tokyo

December 14, 2023

Covered topics:

(1) Complex hyperplane arrangements
(2) Real hyperplane arrangements
(3) Real subspace arrangements

4 Toric arrangements
(5) Abelian arrangements

(a, b)-arrangements

Let $G=\mathbb{R}^{b} \times\left(S^{1}\right)^{a}$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^{r} \backslash\{0\}$ an integer vector.

(a, b)-arrangements

Let $G=\mathbb{R}^{b} \times\left(S^{1}\right)^{a}$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^{r} \backslash\{0\}$ an integer vector. It defines a morphism

$$
\alpha: G^{r} \rightarrow G
$$

sending $\left(g_{i}\right) \mapsto \sum_{i} \alpha_{i} g_{i}$. Consider

$$
H_{\alpha}=\alpha^{-1}(e)
$$

(a, b)-arrangements

Let $G=\mathbb{R}^{b} \times\left(S^{1}\right)^{a}$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^{r} \backslash\{0\}$ an integer vector. It defines a morphism

$$
\alpha: G^{r} \rightarrow G
$$

sending $\left(g_{i}\right) \mapsto \sum_{i} \alpha_{i} g_{i}$. Consider

$$
H_{\alpha}=\alpha^{-1}(e) .
$$

A (a, b)-arrangement is a finite collection

$$
\mathcal{A}=\left\{\alpha_{i}\right\}_{i=1, \ldots, n}
$$

(a, b)-arrangements

Let $G=\mathbb{R}^{b} \times\left(S^{1}\right)^{a}$ be an abelian connected Lie group, $\alpha \in \mathbb{Z}^{r} \backslash\{0\}$ an integer vector. It defines a morphism

$$
\alpha: G^{r} \rightarrow G
$$

sending $\left(g_{i}\right) \mapsto \sum_{i} \alpha_{i} g_{i}$. Consider

$$
H_{\alpha}=\alpha^{-1}(e) .
$$

A (a, b)-arrangement is a finite collection

$$
\mathcal{A}=\left\{\alpha_{i}\right\}_{i=1, \ldots, n}
$$

Example

$(0,1)$ real hyperplane arrangement $G=\mathbb{R}$,
$(0,2)$ complex hyperplane arrangement $G=\mathbb{C}$,
$(1,1)$ toric arrangement $G=\mathbb{C}^{*}$.

Goal: describe the cohomology ring of the complement $M_{\mathcal{A}}^{a, b}:=G^{r} \backslash \bigcup_{\alpha \in \mathcal{A}} H_{\alpha}$.

Goal: describe the cohomology ring of the complement $M_{\mathcal{A}}^{a, b}:=G^{r} \backslash \bigcup_{\alpha \in \mathcal{A}} H_{\alpha}$.

Definition

For every i the map $\alpha_{i}: G^{r} \rightarrow G$ restricts to

$$
\alpha_{i}: M_{\mathcal{A}}^{a, b} \rightarrow G \backslash\{e\}
$$

and for any class $\omega \in H^{*}(G \backslash\{e\})$ we define

$$
\omega_{i}:=\alpha_{i}^{*}(\omega) \in H^{*}\left(M_{\mathcal{A}}^{a, b}\right) .
$$

Goal: describe the cohomology ring of the complement $M_{\mathcal{A}}^{a, b}:=G^{r} \backslash \bigcup_{\alpha \in \mathcal{A}} H_{\alpha}$.

Definition

For every i the map $\alpha_{i}: G^{r} \rightarrow G$ restricts to

$$
\alpha_{i}: M_{\mathcal{A}}^{a, b} \rightarrow G \backslash\{e\}
$$

and for any class $\omega \in H^{*}(G \backslash\{e\})$ we define

$$
\omega_{i}:=\alpha_{i}^{*}(\omega) \in H^{*}\left(M_{\mathcal{A}}^{a, b}\right)
$$

Hope: the classes ω_{i} generate $H^{*}\left(M_{\mathcal{A}}^{a, b}\right)$ and it is possible to describe the relations between them.

Complex hyperplane arrangements

We consider the case $(0,2)$ of complex hyperplane arrangements. The cohomology of $\mathbb{C} \backslash\{0\}$ is generated by the form $\omega=\frac{1}{2 \pi \sqrt{-1}} d \log z$ and

$$
\omega_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \alpha_{i}(\underline{z})
$$

Complex hyperplane arrangements

We consider the case $(0,2)$ of complex hyperplane arrangements. The cohomology of $\mathbb{C} \backslash\{0\}$ is generated by the form $\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ and

$$
\omega_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \alpha_{i}(\underline{z})
$$

Theorem (Orlik-Solomon 1980)

$$
H^{*}\left(M_{\mathcal{A}}^{0,2} ; \mathbb{Z}\right) \simeq \mathbb{Z}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right] /\left(\partial \omega_{C} \mid C \text { circuit }\right)
$$

Complex hyperplane arrangements

We consider the case $(0,2)$ of complex hyperplane arrangements.
The cohomology of $\mathbb{C} \backslash\{0\}$ is generated by the form
$\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ and

$$
\omega_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \alpha_{i}(\underline{z})
$$

Theorem (Orlik-Solomon 1980)

$$
H^{*}\left(M_{\mathcal{A}}^{0,2} ; \mathbb{Z}\right) \simeq \mathbb{Z}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right] /\left(\partial \omega_{C} \mid C \text { circuit }\right)
$$

For each circuit C (i.e. minimal dependent set) of cardinality $k=|C|$ the Arnold relation is

$$
\partial \omega_{C}:=\sum_{i=1}^{k}(-1)^{i} \omega_{c_{1}} \omega_{c_{2}} \ldots \widehat{\omega_{c_{i}}} \ldots \omega_{c_{k}}=0
$$

and it holds at level of differential forms.

Example

Consider the complex arrangement in \mathbb{C}^{2} given by the hyperplanes $H_{1}=\left\{z_{1}=0\right\}, H_{2}=\left\{z_{2}=0\right\}, H_{3}=\left\{z_{1}+z_{2}=0\right\}$.

There is a unique circuit $\{1,2,3\}$ and the associated Arnold relation is

$$
\omega_{2} \omega_{3}-\omega_{1} \omega_{3}+\omega_{1} \omega_{2}=0
$$

Real hyperplane arrangements

The cohomology of $\mathbb{R} \backslash\{0\}$ is generated by the functions $\omega^{+}=\delta_{\mathbb{R}^{+}}$ and $\omega^{-}=\delta_{\mathbb{R}^{-}}$with relations $\omega^{+}+\omega^{-}=1$ and $\omega^{+} \omega^{-}=0$.

Real hyperplane arrangements

The cohomology of $\mathbb{R} \backslash\{0\}$ is generated by the functions $\omega^{+}=\delta_{\mathbb{R}^{+}}$ and $\omega^{-}=\delta_{\mathbb{R}^{-}}$with relations $\omega^{+}+\omega^{-}=1$ and $\omega^{+} \omega^{-}=0$. We

$$
\omega_{i}^{+}=\delta_{H_{\alpha_{i}}^{+}} \text {and } \omega_{i}^{-}=\delta_{\boldsymbol{H}_{\alpha_{i}}^{-}}
$$

Real hyperplane arrangements

The cohomology of $\mathbb{R} \backslash\{0\}$ is generated by the functions $\omega^{+}=\delta_{\mathbb{R}^{+}}$ and $\omega^{-}=\delta_{\mathbb{R}^{-}}$with relations $\omega^{+}+\omega^{-}=1$ and $\omega^{+} \omega^{-}=0$. We

$$
\omega_{i}^{+}=\delta_{H_{\alpha_{i}}^{+}} \text {and } \omega_{i}^{-}=\delta_{H_{\alpha_{i}}^{-}}
$$

Theorem (Gelfand-Varchenko 1986)

The cohomology ring $H^{*}\left(M_{\mathcal{A}}^{0,1} ; \mathbb{Z}\right)=H^{0}\left(M_{\mathcal{A}}^{0,1} ; \mathbb{Z}\right)=\mathbb{Z}^{\pi_{0}\left(M_{\mathcal{A}}^{0,1}\right)}$

Real hyperplane arrangements

The cohomology of $\mathbb{R} \backslash\{0\}$ is generated by the functions $\omega^{+}=\delta_{\mathbb{R}^{+}}$ and $\omega^{-}=\delta_{\mathbb{R}^{-}}$with relations $\omega^{+}+\omega^{-}=1$ and $\omega^{+} \omega^{-}=0$. We

$$
\omega_{i}^{+}=\delta_{H_{\alpha_{i}}^{+}} \text {and } \omega_{i}^{-}=\delta_{H_{\alpha_{i}}^{-}}
$$

Theorem (Gelfand-Varchenko 1986)

The cohomology ring $H^{*}\left(M_{\mathcal{A}}^{0,1} ; \mathbb{Z}\right)=H^{0}\left(M_{\mathcal{A}}^{0,1} ; \mathbb{Z}\right)=\mathbb{Z}^{\pi_{0}\left(M_{\mathcal{A}}^{0,1}\right)}$ is the ring $\mathbb{Z}\left[\omega_{i}^{+}, \omega_{i}^{-}\right]_{i}$ with relations:
(1) $\omega_{i}^{+}+\omega_{i}^{-}=1$ for all i,
(2) $\omega_{i}^{+} \omega_{i}^{-}=0$ for all i,
(3) $\prod_{i=1}^{k} \omega_{c_{i}}^{s_{i}}=0$ for each signed circuit $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$.

Real hyperplane arrangements

The cohomology of $\mathbb{R} \backslash\{0\}$ is generated by the functions $\omega^{+}=\delta_{\mathbb{R}^{+}}$ and $\omega^{-}=\delta_{\mathbb{R}^{-}}$with relations $\omega^{+}+\omega^{-}=1$ and $\omega^{+} \omega^{-}=0$. We

$$
\omega_{i}^{+}=\delta_{H_{\alpha_{i}}^{+}} \text {and } \omega_{i}^{-}=\delta_{H_{\alpha_{i}}^{-}}
$$

Theorem (Gelfand-Varchenko 1986)

The cohomology ring $H^{*}\left(M_{\mathcal{A}}^{0,1} ; \mathbb{Z}\right)=H^{0}\left(M_{\mathcal{A}}^{0,1} ; \mathbb{Z}\right)=\mathbb{Z}^{\pi_{0}\left(M_{\mathcal{A}}^{0,1}\right)}$ is the ring $\mathbb{Z}\left[\omega_{i}^{+}, \omega_{i}^{-}\right]_{i}$ with relations:
(1) $\omega_{i}^{+}+\omega_{i}^{-}=1$ for all i,
(2) $\omega_{i}^{+} \omega_{i}^{-}=0$ for all i,
(3) $\prod_{i=1}^{k} \omega_{c_{i}}^{s_{i}}=0$ for each signed circuit $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$.

A signed circuit C is a circuit with signs $s_{i} \in\{+,-\}$ such that

$$
\sum_{i=1, \ldots, k} s_{i} m_{i} \alpha_{c_{i}}=0 \in \mathbb{Z}^{r}
$$

for some $m_{i} \in \mathbb{N}$.

Example

Consider the real arrangement in \mathbb{R}^{2} given by the hyperplanes $H_{1}=\left\{z_{1}=0\right\}, H_{2}=\left\{z_{2}=0\right\}, H_{3}=\left\{z_{1}+z_{2}=0\right\}$.

Example

Consider the real arrangement in \mathbb{R}^{2} given by the hyperplanes $H_{1}=\left\{z_{1}=0\right\}, H_{2}=\left\{z_{2}=0\right\}, H_{3}=\left\{z_{1}+z_{2}=0\right\}$.

The circuit relations are $\omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0$ and $\omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0$

$(0, b)$-arrangements

We consider the case $(0, b)$-arrangements; this is a particular instance of real subspace arrangement. Their posets of layers are geometric lattices.

$(0, b)$-arrangements

We consider the case $(0, b)$-arrangements; this is a particular instance of real subspace arrangement. Their posets of layers are geometric lattices.

Theorem (Feichtner-Ziegler '00, de Longueville-Schultz '01)
If $b>1$, then

$$
H^{*}\left(M_{\mathcal{A}}^{0, b} ; \mathbb{Z}\right) \simeq \mathbb{Z}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right] /\left(\partial \omega_{C} \mid C \text { circuit }\right)+\left(\omega_{i}^{2}\right)_{i}
$$

where the generators ω_{i} are in degree $b-1$.

Unimodular arrangements

Assume $a>0$.

Definition
An abelian arrangement is unimodular if for any $I \subseteq \mathcal{A}$ the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is connected or empty.

Unimodular arrangements

Assume $a>0$.

Definition

An abelian arrangement is unimodular if for any $I \subseteq \mathcal{A}$ the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is connected or empty.

Example

Consider the toric arrangements in $\left(\mathbb{C}^{*}\right)^{2}$

Unimodular arrangements

Assume $a>0$.

Definition

An abelian arrangement is unimodular if for any $I \subseteq \mathcal{A}$ the intersection $\bigcap_{\alpha \in I} H_{\alpha}$ is connected or empty.

Example

Consider the toric arrangements in $\left(\mathbb{C}^{*}\right)^{2}$

The toric arrangement on the left is not unimodular, the right one is unimodular.

Toric arrangements

Consider the case of $(1,1)$-arrangements. The cohomology of $\mathbb{C}^{*} \backslash\{1\}$ is generated by the forms $\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log (z-1)$ and $\psi=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ with relation $\omega \psi=0$.

Toric arrangements

Consider the case of $(1,1)$-arrangements.
The cohomology of $\mathbb{C}^{*} \backslash\{1\}$ is generated by the forms $\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log (z-1)$ and $\psi=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ with relation $\omega \psi=0$.

Toric arrangements

Consider the case of $(1,1)$-arrangements.
The cohomology of $\mathbb{C}^{*} \backslash\{1\}$ is generated by the forms $\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log (z-1)$ and $\psi=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ with relation $\omega \psi=0$.

The cohomological basis $\{\omega, \psi\}$ is dual to the homological basis $\{W, Y\}$.

Toric arrangements

Consider the case of $(1,1)$-arrangements.
The cohomology of $\mathbb{C}^{*} \backslash\{1\}$ is generated by the forms $\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log (z-1)$ and $\psi=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ with relation $\omega \psi=0$.
Defines the elements

$$
\omega_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \left(\alpha_{i}(\underline{z})-1\right) \text { and } \psi_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \alpha_{i}(\underline{z})
$$

Toric arrangements

Consider the case of $(1,1)$-arrangements.
The cohomology of $\mathbb{C}^{*} \backslash\{1\}$ is generated by the forms $\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log (z-1)$ and $\psi=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ with relation $\omega \psi=0$.
Defines the elements

$$
\omega_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \left(\alpha_{i}(\underline{z})-1\right) \text { and } \psi_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \alpha_{i}(\underline{z})
$$

Theorem (De Concini-Procesi '05)

The cohomology ring $H^{*}\left(M_{\mathcal{A}}^{1,1} ; \mathbb{C}\right)$ of a unimodular toric arrangement is the ring $H^{*}\left(\left(\mathbb{C}^{*}\right)^{r}\right)\left[\omega_{i}\right]_{i}$ with relations:
(1) $\omega_{i} \psi_{i}=0$ for all i,
(2) $\partial \omega_{C}+$ l.o.t. $=0$ for each signed circuit $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$.

Toric arrangements

Consider the case of $(1,1)$-arrangements.
The cohomology of $\mathbb{C}^{*} \backslash\{1\}$ is generated by the forms
$\omega=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log (z-1)$ and $\psi=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log z$ with relation
$\omega \psi=0$.
Defines the elements

$$
\omega_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \left(\alpha_{i}(\underline{z})-1\right) \text { and } \psi_{i}=\frac{1}{2 \pi \sqrt{-1}} \mathrm{~d} \log \alpha_{i}(\underline{z})
$$

Theorem (De Concini-Procesi '05)

The cohomology ring $H^{*}\left(M_{\mathcal{A}}^{1,1} ; \mathbb{C}\right)$ of a unimodular toric arrangement is the ring $H^{*}\left(\left(\mathbb{C}^{*}\right)^{r}\right)\left[\omega_{i}\right]_{i}$ with relations:
(1) $\omega_{i} \psi_{i}=0$ for all i,
(2) $\partial \omega_{C}+$ l.o.t. $=0$ for each signed circuit $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$.

Unimodularity implies that the cohomology is generated in degree one.

Let $m(I)=\left|\pi_{0}\left(\bigcap_{\alpha \in I} H_{\alpha}\right)\right|$ be the number of connected components (i.e. the multiplicity function of the arithmetic matroid).

Let $m(I)=\left|\pi_{0}\left(\bigcap_{\alpha \in I} H_{\alpha}\right)\right|$ be the number of connected components (i.e. the multiplicity function of the arithmetic matroid).

Theorem (Callegaro, D'Adderio, Delucchi, Migliorini, P. '20)

The cohomology ring $H^{*}\left(M_{\mathcal{A}}^{1,1} ; \mathbb{Z}\right)$ of a toric arrangement is the $H^{*}\left(\left(\mathbb{C}^{*}\right)^{r}\right)$-algebra generated by $\omega_{W, I}$ with I independent set and $W \in \pi_{0}\left(\bigcap_{\alpha \in I} H_{\alpha}\right)$ with relations:
(1) $\omega_{W, I} \psi_{i}=0$ for all $I \ni i$,
(2) $\omega_{W, I} \omega_{Z, J}= \pm \sum_{L \in \pi_{0}(W \cap Z)} \omega_{L, I \sqcup J}$
(3) $\sum_{\text {some } A \subsetneq X} \pm \frac{m(A)}{m(A \cup B)} \omega_{W, A} \psi_{B}=0$, for each generalized circuit X and each $L \in \pi_{0}\left(\bigcap_{\alpha \in C} H_{\alpha}\right)$.

De Concini-Procesi result implies

$$
\begin{aligned}
& \omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{2} \omega_{3}-\psi_{2} \omega_{3}=0 \\
& \omega_{1} \omega_{2}^{\prime}-\omega_{1} \omega_{3}^{\prime}+\omega_{2}^{\prime} \omega_{3}^{\prime}-\psi_{2} \omega_{3}^{\prime}=0
\end{aligned}
$$

De Concini-Procesi result implies

$$
\begin{aligned}
& \omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{2} \omega_{3}-\psi_{2} \omega_{3}=0 \\
& \omega_{1} \omega_{2}^{\prime}-\omega_{1} \omega_{3}^{\prime}+\omega_{2}^{\prime} \omega_{3}^{\prime}-\psi_{2} \omega_{3}^{\prime}=0
\end{aligned}
$$

Setting $\omega_{P, 23}$ such that $\pi^{*} \omega_{P, 23}=\omega_{2} \omega_{3}+\omega_{2}^{\prime} \omega_{3}^{\prime}$,

De Concini-Procesi result implies

$$
\begin{aligned}
& \omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{2} \omega_{3}-\psi_{2} \omega_{3}=0 \\
& \omega_{1} \omega_{2}^{\prime}-\omega_{1} \omega_{3}^{\prime}+\omega_{2}^{\prime} \omega_{3}^{\prime}-\psi_{2} \omega_{3}^{\prime}=0
\end{aligned}
$$

Setting $\omega_{P, 23}$ such that $\pi^{*} \omega_{P, 23}=\omega_{2} \omega_{3}+\omega_{2}^{\prime} \omega_{3}^{\prime}$, the CDDMP construction yields

$$
\omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{P, 23}-\frac{1}{2} \psi_{2} \omega_{3}=0
$$

Abelian arrangements

We consider the general case of non-compact abelian arrangements, i.e. $b>0$.

Theorem (Liu, Tran, Yoshinaga '21)

If $b>0$, the homology $H_{*}\left(M_{\mathcal{A}}^{a, b} ; \mathbb{Z}\right)$ is torsion free and the Poincaré polynomial is

$$
P_{M_{\mathcal{A}}^{a, b}}(t)=\left(-t^{a+b-1}\right)^{r} \chi_{\mathcal{A}}^{a}\left(-\frac{(1+t)^{a}}{t^{a+b-1}}\right) .
$$

A generalized circuit is a set X such that $\operatorname{rk}(X)=|X|-1$.

A generalized circuit is a set X such that $\operatorname{rk}(X)=|X|-1$.

Theorem (Bazzocchi, P, Pismataro '24)

If $b>0$, the cohomology $H^{*}\left(M_{\mathcal{A}}^{a, b} ; \mathbb{Z}\right)$ is the $H^{*}\left(G^{r}\right)$-algebra generated by $\omega_{W, I}$ with I independent set and $W \in \pi_{0}\left(\bigcup_{\alpha \in I} H_{\alpha}\right)$ with relations:

A generalized circuit is a set X such that $\operatorname{rk}(X)=|X|-1$.

Theorem (Bazzocchi, P, Pismataro '24)

If $b>0$, the cohomology $H^{*}\left(M_{\mathcal{A}}^{a, b} ; \mathbb{Z}\right)$ is the $H^{*}\left(G^{r}\right)$-algebra generated by $\omega_{W, I}$ with I independent set and $W \in \pi_{0}\left(\bigcup_{\alpha \in I} H_{\alpha}\right)$ with relations:
(1) $\omega_{W, I} \psi_{i}^{j}=0$ for all $I \ni i$ and $j=1, \ldots, a$,

A generalized circuit is a set X such that $\operatorname{rk}(X)=|X|-1$.

Theorem (Bazzocchi, P, Pismataro '24)

If $b>0$, the cohomology $H^{*}\left(M_{\mathcal{A}}^{a, b} ; \mathbb{Z}\right)$ is the $H^{*}\left(G^{r}\right)$-algebra generated by $\omega_{W, I}$ with I independent set and $W \in \pi_{0}\left(\bigcup_{\alpha \in I} H_{\alpha}\right)$ with relations:
(1) $\omega_{W, I} \psi_{i}^{j}=0$ for all $I \ni i$ and $j=1, \ldots, a$,
(2) $\omega_{W, I} \omega_{Z, J}= \pm \sum_{L \in \pi_{0}(W \cap Z)} \omega_{L, I \sqcup J}$

A generalized circuit is a set X such that $\operatorname{rk}(X)=|X|-1$.

Theorem (Bazzocchi, P, Pismataro '24)

If $b>0$, the cohomology $H^{*}\left(M_{\mathcal{A}}^{a, b} ; \mathbb{Z}\right)$ is the $H^{*}\left(G^{r}\right)$-algebra generated by $\omega_{W, I}$ with I independent set and $W \in \pi_{0}\left(\bigcup_{\alpha \in I} H_{\alpha}\right)$ with relations:
(1) $\omega_{W, I} \psi_{i}^{j}=0$ for all $I \ni i$ and $j=1, \ldots, a$,
(2) $\omega_{W, I} \omega_{Z, J}= \pm \sum_{L \in \pi_{0}(W \cap Z)} \omega_{L, I \sqcup J}$
(3) for each generalized circuit $X=C \sqcup F$ and each $L \in \pi_{0}\left(\bigcap_{\alpha \in X} H_{\alpha}\right)$
$\sum_{B \subseteq C^{+}} \pm \frac{m(A)}{m(A \cup \widetilde{B})} \omega_{W, A} \psi_{\widetilde{B}}-\sum_{B \subseteq C^{-}} \pm \frac{m(A)}{m(A \cup \widetilde{B})} \omega_{W, A} \psi_{\widetilde{B}}=0$, where $A=X \backslash B$ and $\widetilde{B}=B \backslash \min (B)$.

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).

$$
\begin{gathered}
H^{0}(\mathbb{R} \backslash\{0\}) \xrightarrow{j_{*}} H^{a+b-1}(G \backslash\{e\}) \\
\quad \prod_{\mathrm{PD}} \downarrow \\
H_{1}^{\mathrm{BM}}(\mathbb{R} \backslash\{0\}) \xrightarrow[j_{*}^{\mathrm{BM}}]{\longrightarrow} H_{1}^{\mathrm{BM}}(G \backslash\{e\})
\end{gathered}
$$

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).

$$
\begin{gathered}
H^{0}(\mathbb{R} \backslash\{0\}) \xrightarrow{j_{*}} H^{a+b-1}(G \backslash\{e\}) \\
\quad \prod_{\mathrm{PD}} \downarrow \\
H_{1}^{\mathrm{BM}}(\mathbb{R} \backslash\{0\}) \xrightarrow[j^{-1}]{\mathrm{BM}} H_{1}^{\mathrm{BM}}(G \backslash\{e\})
\end{gathered}
$$

$\mathbb{R} \times S^{1} \backslash(0,1)$

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).
(2) Consider a unimodular arrangement \mathcal{A} and use Künneth formula for $j: M_{\mathcal{A}}^{0,1} \rightarrow M_{\mathcal{A}}^{a, b}:$

$$
j_{*}\left(\prod_{i \in I} \omega_{i}^{+}\right)= \pm \omega_{I} \psi_{B \backslash I}
$$

where $B \supseteq I$ is any basis.

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).
(2) Consider a unimodular arrangement \mathcal{A} and use Künneth formula for $j: M_{\mathcal{A}}^{0,1} \rightarrow M_{\mathcal{A}}^{a, b}:$

$$
j_{*}\left(\prod_{i \in I} \omega_{i}^{+}\right)= \pm \omega_{I} \psi_{B \backslash I}
$$

where $B \supseteq I$ is any basis.
(3) Pushforward the Gelfand-Varchenko relations to obtain relations in cohomology.

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).
(2) Consider a unimodular arrangement \mathcal{A} and use Künneth formula for $j: M_{\mathcal{A}}^{0,1} \rightarrow M_{\mathcal{A}}^{a, b}:$

$$
j_{*}\left(\prod_{i \in I} \omega_{i}^{+}\right)= \pm \omega_{I} \psi_{B \backslash I}
$$

where $B \supseteq I$ is any basis.
(3) Pushforward the Gelfand-Varchenko relations to obtain relations in cohomology.
(9) Use separating covers to extend the relations to general arrangements.

Sketch of proof

(1) Consider the embedding $j: \mathbb{R} \backslash\{0\} \hookrightarrow \mathbb{R}^{b} \times\left(S^{1}\right)^{a} \backslash\{e\}$. Its pushforward in cohomology is $j_{*}\left(\omega^{+}\right)=\omega, j_{*}\left(\omega^{-}\right)=\psi-\omega$, and $j_{*}(1)=\psi$ (if $b>1$ we set $\psi \equiv 0$).
(2) Consider a unimodular arrangement \mathcal{A} and use Künneth formula for $j: M_{\mathcal{A}}^{0,1} \rightarrow M_{\mathcal{A}}^{a, b}:$

$$
j_{*}\left(\prod_{i \in I} \omega_{i}^{+}\right)= \pm \omega_{I} \psi_{B \backslash I}
$$

where $B \supseteq I$ is any basis.
(3) Pushforward the Gelfand-Varchenko relations to obtain relations in cohomology.
(9) Use separating covers to extend the relations to general arrangements.
(5) Use a variation of the Briskorn lemma and deletion-contraction argument.

Example

The Gelfand-Varchenko relations are:
$\omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0$

$$
\omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0
$$

Example

The Gelfand-Varchenko relations are:

$$
\begin{aligned}
& \omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0 \\
& \omega_{1}^{+} \omega_{2}^{+}\left(1-\omega_{3}^{+}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0 \\
& \left(1-\omega_{1}^{+}\right)\left(1-\omega_{2}^{+}\right) \omega_{3}^{+}=0
\end{aligned}
$$

Example

The Gelfand-Varchenko relations are:

$$
\begin{array}{ll}
\omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0 & \omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}\left(1-\omega_{3}^{+}\right)=0 & \left(1-\omega_{1}^{+}\right)\left(1-\omega_{2}^{+}\right) \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}-\omega_{1}^{+} \omega_{3}^{+}-\omega_{2}^{+} \omega_{3}^{+}+\omega_{3}^{+}=0 &
\end{array}
$$

Example

The Gelfand-Varchenko relations are:

$$
\begin{array}{ll}
\omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0 & \omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}\left(1-\omega_{3}^{+}\right)=0 & \left(1-\omega_{1}^{+}\right)\left(1-\omega_{2}^{+}\right) \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}-\omega_{1}^{+} \omega_{3}^{+}-\omega_{2}^{+} \omega_{3}^{+}+\omega_{3}^{+}=0 &
\end{array}
$$

Example

The Gelfand-Varchenko relations are:

$$
\begin{array}{ll}
\omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0 & \omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}\left(1-\omega_{3}^{+}\right)=0 & \left(1-\omega_{1}^{+}\right)\left(1-\omega_{2}^{+}\right) \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}-\omega_{1}^{+} \omega_{3}^{+}-\omega_{2}^{+} \omega_{3}^{+}+\omega_{3}^{+}=0 &
\end{array}
$$

By pushforward we obtain:

$$
\omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{2} \omega_{3}=0 \quad \text { if } b>1
$$

Example

The Gelfand-Varchenko relations are:

$$
\begin{array}{ll}
\omega_{1}^{+} \omega_{2}^{+} \omega_{3}^{-}=0 & \omega_{1}^{-} \omega_{2}^{-} \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}\left(1-\omega_{3}^{+}\right)=0 & \left(1-\omega_{1}^{+}\right)\left(1-\omega_{2}^{+}\right) \omega_{3}^{+}=0 \\
\omega_{1}^{+} \omega_{2}^{+}-\omega_{1}^{+} \omega_{3}^{+}-\omega_{2}^{+} \omega_{3}^{+}+\omega_{3}^{+}=0 &
\end{array}
$$

By pushforward we obtain:

$$
\begin{array}{ll}
\omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{2} \omega_{3}=0 & \text { if } b>1 \\
\omega_{1} \omega_{2}-\omega_{1} \omega_{3}+\omega_{2} \omega_{3}-\psi_{2} \omega_{3}=0 & \text { if } b=1
\end{array}
$$

The ordered configuration space is
$\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}$

The ordered configuration space is

$$
\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Theorem (Cohen, Taylor '78)

Describe the associated graded with respect to a certain filtration

$$
\operatorname{gr}_{\mathcal{F}} H^{*}\left(\operatorname{Conf}_{n}(X \times \mathbb{R})\right)
$$

as a ring by using the Arnold relations.

The ordered configuration space is

$$
\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Theorem (Cohen, Taylor '78)

Describe the associated graded with respect to a certain filtration

$$
\operatorname{gr}_{\mathcal{F}} H^{*}\left(\operatorname{Conf}_{n}(X \times \mathbb{R})\right)
$$

as a ring by using the Arnold relations.

Corollary (Bazzocchi, P, Pismataro '24)

For $b>0$, description of

$$
H^{*}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{b} \times\left(S^{1}\right)^{a}\right)\right)
$$

by generators and relations.

The ordered configuration space is

$$
\operatorname{Conf}_{n}(X)=\left\{\left(p_{1}, \ldots, p_{n}\right) \in X^{n} \mid p_{i} \neq p_{j}\right\}
$$

Theorem (Cohen, Taylor '78)

Describe the associated graded with respect to a certain filtration

$$
\operatorname{gr}_{\mathcal{F}} H^{*}\left(\operatorname{Conf}_{n}(X \times \mathbb{R})\right)
$$

as a ring by using the Arnold relations.

Corollary (Bazzocchi, P, Pismataro '24)

For $b>0$, description of

$$
H^{*}\left(\operatorname{Conf}_{n}\left(\mathbb{R}^{b} \times\left(S^{1}\right)^{a}\right)\right)
$$

by generators and relations.
In particular, $H^{*}\left(\operatorname{Conf}_{n}\left(\mathbb{R} \times\left(S^{1}\right)^{a}\right)\right) \nsucceq \operatorname{gr}_{\mathcal{F}} H^{*}\left(\operatorname{Conf}_{n}\left(\mathbb{R} \times\left(S^{1}\right)^{a}\right)\right)$ as rings.

Other applications

(1) Formality of abelian arrangements. It is already known in the cases $(0, b)$ [Brieskorn '73, Feichtner, Yuzvinsky '05] and $(1,1)$ [De Concini, Procesi '05, Dupont '16]

Other applications

(1) Formality of abelian arrangements. It is already known in the cases $(0, b)$ [Brieskorn '73, Feichtner, Yuzvinsky '05] and $(1,1)$ [De Concini, Procesi '05, Dupont '16]
(2) Cohomology of $M_{\mathcal{A}}^{a, 0}$ from the cohomology of $M_{\mathcal{A}}^{1,0}$ (real toric arrangement). In 2018, Bibby constructed a spectral sequence for $M_{\mathcal{A}}^{2,0}$, but the Betti numbers are unknown.

Other applications

(1) Formality of abelian arrangements. It is already known in the cases $(0, b)$ [Brieskorn '73, Feichtner, Yuzvinsky '05] and $(1,1)$ [De Concini, Procesi '05, Dupont '16]
(2) Cohomology of $M_{\mathcal{A}}^{a, 0}$ from the cohomology of $M_{\mathcal{A}}^{1,0}$ (real toric arrangement). In 2018, Bibby constructed a spectral sequence for $M_{\mathcal{A}}^{2,0}$, but the Betti numbers are unknown.
(3) Explicit basis for Borel-Moore homology of abelian arrangements.

Thanks for listening!

roberto.pagaria@unibo.it

