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Introduction

(a, b)-arrangements

Let G = Rb × (S1)a be an abelian connected Lie group,
α ∈ Zr \ {0} an integer vector.

It defines a morphism

α : G r → G

sending (gi ) 7→
∑

i αigi . Consider

Hα = α−1(e).

A (a, b)-arrangement is a finite collection

A = {αi}i=1,...,n.

Example

(0,1) real hyperplane arrangement G = R,

(0,2) complex hyperplane arrangement G = C,

(1,1) toric arrangement G = C∗.
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Introduction

Goal: describe the cohomology ring of the complement
Ma,b
A := G r \

⋃
α∈AHα.

Definition

For every i the map αi : G r → G restricts to

αi : Ma,b
A → G \ {e}

and for any class ω ∈ H∗(G \ {e}) we define

ωi := α∗i (ω) ∈ H∗(Ma,b
A ).

Hope: the classes ωi generate H∗(Ma,b
A ) and it is possible to

describe the relations between them.
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Complex hyperplane arrangements

Complex hyperplane arrangements

We consider the case (0, 2) of complex hyperplane arrangements.
The cohomology of C \ {0} is generated by the form
ω = 1

2π
√
−1 d log z and

ωi =
1

2π
√
−1

d logαi (z).

Theorem (Orlik-Solomon 1980)

H∗(M0,2
A ;Z) ' Z[ω1, ω2, . . . , ωn]�(∂ωC | C circuit)

For each circuit C (i.e. minimal dependent set) of cardinality
k = |C | the Arnold relation is

∂ωC :=
k∑

i=1

(−1)iωc1ωc2 . . . ω̂ci . . . ωck = 0

and it holds at level of differential forms.
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Complex hyperplane arrangements

Example

Consider the complex arrangement in C2 given by the hyperplanes
H1 = {z1 = 0},H2 = {z2 = 0},H3 = {z1 + z2 = 0}.

H1 = {z1 = 0}

H2 = {z2 = 0}

H3 = {z1 + z2 = 0}

There is a unique circuit {1, 2, 3} and the associated Arnold
relation is

ω2ω3 − ω1ω3 + ω1ω2 = 0.
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Real hyperplane arrangements

Real hyperplane arrangements

The cohomology of R \ {0} is generated by the functions ω+ = δR+

and ω− = δR− with relations ω+ + ω− = 1 and ω+ω− = 0.

We

ω+
i = δH+

αi
and ω−i = δH−αi

.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring H∗(M0,1
A ;Z) = H0(M0,1

A ;Z) = Zπ0(M
0,1
A ) is

the ring Z[ω+
i , ω

−
i ]i with relations:

1 ω+
i + ω−i = 1 for all i ,

2 ω+
i ω
−
i = 0 for all i ,

3
∏k

i=1 ω
si
ci

= 0 for each signed circuit C = (c1, c2, . . . , ck).

A signed circuit C is a circuit with signs si ∈ {+,−} such that∑
i=1,...,k

simiαci = 0 ∈ Zr

for some mi ∈ N.

Roberto Pagaria Cohomology Rings of abelian arrangements Dec 2023 5 / 18



Real hyperplane arrangements

Real hyperplane arrangements

The cohomology of R \ {0} is generated by the functions ω+ = δR+

and ω− = δR− with relations ω+ + ω− = 1 and ω+ω− = 0. We

ω+
i = δH+

αi
and ω−i = δH−αi

.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring H∗(M0,1
A ;Z) = H0(M0,1

A ;Z) = Zπ0(M
0,1
A ) is

the ring Z[ω+
i , ω

−
i ]i with relations:

1 ω+
i + ω−i = 1 for all i ,

2 ω+
i ω
−
i = 0 for all i ,

3
∏k

i=1 ω
si
ci

= 0 for each signed circuit C = (c1, c2, . . . , ck).

A signed circuit C is a circuit with signs si ∈ {+,−} such that∑
i=1,...,k

simiαci = 0 ∈ Zr

for some mi ∈ N.

Roberto Pagaria Cohomology Rings of abelian arrangements Dec 2023 5 / 18



Real hyperplane arrangements

Real hyperplane arrangements

The cohomology of R \ {0} is generated by the functions ω+ = δR+

and ω− = δR− with relations ω+ + ω− = 1 and ω+ω− = 0. We

ω+
i = δH+

αi
and ω−i = δH−αi

.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring H∗(M0,1
A ;Z) = H0(M0,1

A ;Z) = Zπ0(M
0,1
A )

is
the ring Z[ω+

i , ω
−
i ]i with relations:

1 ω+
i + ω−i = 1 for all i ,

2 ω+
i ω
−
i = 0 for all i ,

3
∏k

i=1 ω
si
ci

= 0 for each signed circuit C = (c1, c2, . . . , ck).

A signed circuit C is a circuit with signs si ∈ {+,−} such that∑
i=1,...,k

simiαci = 0 ∈ Zr

for some mi ∈ N.

Roberto Pagaria Cohomology Rings of abelian arrangements Dec 2023 5 / 18



Real hyperplane arrangements

Real hyperplane arrangements

The cohomology of R \ {0} is generated by the functions ω+ = δR+

and ω− = δR− with relations ω+ + ω− = 1 and ω+ω− = 0. We

ω+
i = δH+

αi
and ω−i = δH−αi

.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring H∗(M0,1
A ;Z) = H0(M0,1

A ;Z) = Zπ0(M
0,1
A ) is

the ring Z[ω+
i , ω

−
i ]i with relations:

1 ω+
i + ω−i = 1 for all i ,

2 ω+
i ω
−
i = 0 for all i ,

3
∏k

i=1 ω
si
ci

= 0 for each signed circuit C = (c1, c2, . . . , ck).

A signed circuit C is a circuit with signs si ∈ {+,−} such that∑
i=1,...,k

simiαci = 0 ∈ Zr

for some mi ∈ N.

Roberto Pagaria Cohomology Rings of abelian arrangements Dec 2023 5 / 18



Real hyperplane arrangements

Real hyperplane arrangements

The cohomology of R \ {0} is generated by the functions ω+ = δR+

and ω− = δR− with relations ω+ + ω− = 1 and ω+ω− = 0. We

ω+
i = δH+

αi
and ω−i = δH−αi

.

Theorem (Gelfand-Varchenko 1986)

The cohomology ring H∗(M0,1
A ;Z) = H0(M0,1

A ;Z) = Zπ0(M
0,1
A ) is

the ring Z[ω+
i , ω

−
i ]i with relations:

1 ω+
i + ω−i = 1 for all i ,

2 ω+
i ω
−
i = 0 for all i ,

3
∏k

i=1 ω
si
ci

= 0 for each signed circuit C = (c1, c2, . . . , ck).

A signed circuit C is a circuit with signs si ∈ {+,−} such that∑
i=1,...,k

simiαci = 0 ∈ Zr

for some mi ∈ N.
Roberto Pagaria Cohomology Rings of abelian arrangements Dec 2023 5 / 18



Real hyperplane arrangements

Example

Consider the real arrangement in R2 given by the hyperplanes
H1 = {z1 = 0},H2 = {z2 = 0},H3 = {z1 + z2 = 0}.

H1 = {z1 = 0}

H2 = {z2 = 0}

H3 = {z1 + z2 = 0}

The circuit relations are ω+
1 ω

+
2 ω
−
3 = 0 and ω−1 ω

−
2 ω

+
3 = 0
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Real subspace arrangements

(0, b)-arrangements

We consider the case (0, b)-arrangements; this is a particular
instance of real subspace arrangement. Their posets of layers are
geometric lattices.

Theorem (Feichtner-Ziegler ’00, de Longueville-Schultz ’01)

If b > 1, then

H∗(M0,b
A ;Z) ' Z[ω1, ω2, . . . , ωn]�(∂ωC | C circuit) + (ω2

i )i
where the generators ωi are in degree b − 1.
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Toric arrangements

Unimodular arrangements

Assume a > 0.

Definition

An abelian arrangement is unimodular if for any I ⊆ A the
intersection

⋂
α∈I Hα is connected or empty.

Example

Consider the toric arrangements in (C∗)2

P1 P2
t21 t2 = 1

t2 = 1

t1 = 1

P
t1t2 = 1

t2 = 1

t1 = 1

The toric arrangement on the left is not unimodular, the right one
is unimodular.
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Toric arrangements

Toric arrangements

Consider the case of (1, 1)-arrangements.
The cohomology of C∗ \ {1} is generated by the forms
ω = 1

2π
√
−1 d log(z − 1) and ψ = 1

2π
√
−1 d log z with relation

ωψ = 0.

Defines the elements

ωi =
1

2π
√
−1

d log(αi (z)− 1) and ψi =
1

2π
√
−1

d logαi (z).

Theorem (De Concini-Procesi ’05)

The cohomology ring H∗(M1,1
A ;C) of a unimodular toric

arrangement is the ring H∗((C∗)r )[ωi ]i with relations:

1 ωiψi = 0 for all i ,

2 ∂ωC + l .o.t. = 0 for each signed circuit C = (c1, c2, . . . , ck).

Unimodularity implies that the cohomology is generated in degree
one.
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Toric arrangements

Let m(I ) = |π0(
⋂
α∈I Hα)| be the number of connected

components (i.e. the multiplicity function of the arithmetic
matroid).

Theorem (Callegaro, D’Adderio, Delucchi, Migliorini, P. ’20)

The cohomology ring H∗(M1,1
A ;Z) of a toric arrangement is the

H∗((C∗)r )-algebra generated by ωW ,I with I independent set and
W ∈ π0(

⋂
α∈I Hα) with relations:

1 ωW ,Iψi = 0 for all I 3 i ,

2 ωW ,IωZ ,J = ±
∑

L∈π0(W∩Z) ωL,ItJ

3
∑

some A(X ±
m(A)

m(A∪B)ωW ,AψB = 0, for each generalized circuit

X and each L ∈ π0(
⋂
α∈C Hα).
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Toric arrangements

P Q ′

QP ′

P Q

De Concini-Procesi result implies

ω1ω2 − ω1ω3 + ω2ω3 − ψ2ω3 = 0,

ω1ω
′
2 − ω1ω

′
3 + ω′2ω

′
3 − ψ2ω

′
3 = 0.

Setting ωP,23 such that π∗ωP,23 = ω2ω3 +ω′2ω
′
3, the

CDDMP construction yields

ω1ω2 − ω1ω3 + ωP,23 −
1

2
ψ2ω3 = 0.
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Abelian arrangements

Abelian arrangements

We consider the general case of non-compact abelian
arrangements, i.e. b > 0.

Theorem (Liu,Tran,Yoshinaga ’21)

If b > 0, the homology H∗(M
a,b
A ;Z) is torsion free and the

Poincaré polynomial is

P
Ma,b
A

(t) = (−ta+b−1)rχa
A

(
−(1 + t)a

ta+b−1

)
.
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Abelian arrangements

A generalized circuit is a set X such that rk(X ) = |X | − 1.

Theorem (Bazzocchi, P, Pismataro ’24)

If b > 0, the cohomology H∗(Ma,b
A ;Z) is the H∗(G r )-algebra

generated by ωW ,I with I independent set and W ∈ π0(
⋃
α∈I Hα)

with relations:

1 ωW ,Iψ
j
i = 0 for all I 3 i and j = 1, . . . , a,

2 ωW ,IωZ ,J = ±
∑

L∈π0(W∩Z) ωL,ItJ
3 for each generalized circuit X = C t F and each

L ∈ π0(
⋂
α∈X Hα)∑

B⊆C+

± m(A)

m(A ∪ B̃)
ωW ,AψB̃

−
∑

B⊆C−
± m(A)

m(A ∪ B̃)
ωW ,AψB̃

= 0,

where A = X \ B and B̃ = B \min(B).
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Abelian arrangements

Sketch of proof

1 Consider the embedding j : R \ {0} ↪→ Rb × (S1)a \ {e}. Its
pushforward in cohomology is j∗(ω

+) = ω, j∗(ω
−) = ψ − ω,

and j∗(1) = ψ (if b > 1 we set ψ ≡ 0).

H0(R \ {0}) Ha+b−1(G \ {e})

HBM
1 (R \ {0}) HBM

1 (G \ {e})

PD

j∗

jBM∗

PD−1

Y W

jBM
∗ R− jBM

∗ R+

R× S1 \ (0, 1)
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Abelian arrangements

Sketch of proof

1 Consider the embedding j : R \ {0} ↪→ Rb × (S1)a \ {e}. Its
pushforward in cohomology is j∗(ω

+) = ω, j∗(ω
−) = ψ − ω,

and j∗(1) = ψ (if b > 1 we set ψ ≡ 0).

2 Consider a unimodular arrangement A and use Künneth
formula for j : M0,1

A → Ma,b
A :

j∗(
∏
i∈I

ω+
i ) = ±ωIψB\I

where B ⊇ I is any basis.

3 Pushforward the Gelfand-Varchenko relations to obtain
relations in cohomology.

4 Use separating covers to extend the relations to general
arrangements.

5 Use a variation of the Briskorn lemma and
deletion-contraction argument.
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formula for j : M0,1

A → Ma,b
A :

j∗(
∏
i∈I

ω+
i ) = ±ωIψB\I

where B ⊇ I is any basis.

3 Pushforward the Gelfand-Varchenko relations to obtain
relations in cohomology.

4 Use separating covers to extend the relations to general
arrangements.

5 Use a variation of the Briskorn lemma and
deletion-contraction argument.

Roberto Pagaria Cohomology Rings of abelian arrangements Dec 2023 15 / 18



Abelian arrangements

Sketch of proof

1 Consider the embedding j : R \ {0} ↪→ Rb × (S1)a \ {e}. Its
pushforward in cohomology is j∗(ω

+) = ω, j∗(ω
−) = ψ − ω,

and j∗(1) = ψ (if b > 1 we set ψ ≡ 0).

2 Consider a unimodular arrangement A and use Künneth
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Abelian arrangements

Example

H1 = {x1 = 0}

H2 = {x2 = 0}

H3 = {x1 + x2 = 0}

The Gelfand-Varchenko relations are:

ω+
1 ω

+
2 ω
−
3 = 0 ω−1 ω

−
2 ω

+
3 = 0

ω+
1 ω

+
2 (1− ω+

3 ) = 0 (1− ω+
1 )(1− ω+

2 )ω+
3 = 0

ω+
1 ω

+
2 − ω

+
1 ω

+
3 − ω

+
2 ω

+
3 + ω+

3 = 0

By pushforward we obtain:

ω1ω2 − ω1ω3 + ω2ω3 = 0 if b > 1

ω1ω2 − ω1ω3 + ω2ω3 − ψ2ω3 = 0 if b = 1
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Abelian arrangements

The ordered configuration space is

Confn(X ) = {(p1, . . . , pn) ∈ X n | pi 6= pj}

Theorem (Cohen, Taylor ’78)

Describe the associated graded with respect to a certain filtration

grF H∗(Confn(X × R))

as a ring by using the Arnold relations.

Corollary (Bazzocchi, P, Pismataro ’24)

For b > 0, description of

H∗(Confn(Rb × (S1)a))

by generators and relations.

In particular, H∗(Confn(R× (S1)a)) 6' grF H∗(Confn(R× (S1)a))
as rings.
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Abelian arrangements

Other applications

1 Formality of abelian arrangements. It is already known in the
cases (0, b) [Brieskorn ’73, Feichtner, Yuzvinsky ’05] and
(1, 1) [De Concini, Procesi ’05, Dupont ’16]

2 Cohomology of Ma,0
A from the cohomology of M1,0

A (real toric
arrangement). In 2018, Bibby constructed a spectral sequence
for M2,0

A , but the Betti numbers are unknown.

3 Explicit basis for Borel-Moore homology of abelian
arrangements.
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Thanks for listening!

roberto.pagaria@unibo.it
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