Roberto Pagaria Scuola Normale Superiore

Unordered configuration spaces on surfaces

at Western University

Friday, May 24

Covered topics:

1 Maps between configuration spaces

2 The Kriz model

3 Representation theory

Let X be a topological space. Define:

$$F_n(X) := \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}$$
$$C_n(X) := \{E \subset X \mid |E| = n\} \simeq F_n(X)/\mathfrak{S}_n$$

Let X be a topological space. Define: $F_n(X) := \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}$ $C_n(X) := \{E \subset X \mid |E| = n\} \simeq F_n(X)/\mathfrak{S}_n$

Example

 $\mathsf{F}_n(S^1) = S^1 imes \mathfrak{S}_{n-1} imes \mathbb{R}^{n-1}$ and $\mathsf{C}_2(S^1)$ is the Möbius strip.

Let X be a topological space. Define: $F_n(X) := \{(p_1, \dots, p_n) \in X^n \mid p_i \neq p_j\}$ $C_n(X) := \{E \subset X \mid |E| = n\} \simeq F_n(X)/\mathfrak{S}_n$

Example

$$\mathsf{F}_n(S^1) = S^1 imes \mathfrak{S}_{n-1} imes \mathbb{R}^{n-1}$$
 and $\mathsf{C}_2(S^1)$ is the Möbius strip.

Example

 $F_n(\mathbb{R}^2)$ is the complement of the hyperplane arrangement of type A_{n-1} .

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_n(M) \to F_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}.$

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_n(M) \to F_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}.$

Recall the long exact sequence of homotopy groups:

$$\cdots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots$$

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_n(M) \to F_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}$.

Recall the long exact sequence of homotopy groups:

$$\cdots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots$$

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S^2 and $\mathbb{P}_2(\mathbb{R})$, then $F_n(S)$ and $C_n(S)$ are $K(\pi, 1)$.

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then $p: F_n(M) \to F_{n-1}(M)$ is a fibration with fibre $M \setminus \{n-1 \text{ points}\}$.

Recall the long exact sequence of homotopy groups:

$$\cdots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots$$

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S^2 and $\mathbb{P}_2(\mathbb{R})$, then $F_n(S)$ and $C_n(S)$ are $K(\pi, 1)$.

Let *M* be a topological manifolds with boundary ∂M . The natural inclusion $F_n(M \setminus \partial M) \to F_n(M)$ is a homotopy equivalence.

Add a point

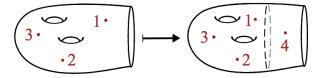
Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the fibration $p: F_n(M) \to F_{n-1}(M)$ has a section.

Add a point

Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the fibration $p: F_n(M) \to F_{n-1}(M)$ has a section.



Theorem (Ellenberg, Wiltshire-Gordon 2015)

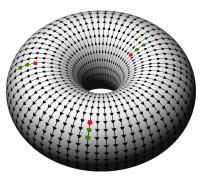
If *M* is a manifold that admits a non-zero vector field then dim $H^i(F_n(M); \mathbb{Q})$ is polynomial in *n*.

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If *M* is a manifold that admits a non-zero vector field then dim $H^i(F_n(M); \mathbb{Q})$ is polynomial in *n*. Moreover, for any k > 0 there exists a replication map $r: C_n(M) \to C_{kn}(M)$ that induces isomorphism in lower degree in rational cohomology.

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If *M* is a manifold that admits a non-zero vector field then dim $H^i(F_n(M); \mathbb{Q})$ is polynomial in *n*. Moreover, for any k > 0 there exists a replication map $r: C_n(M) \to C_{kn}(M)$ that induces isomorphism in lower degree in rational cohomology.



Closed manifolds

Example

The sphere S^2 does not admit isomorphisms in (co-)homology in lower degree, because $H_1(C_n(S^2);\mathbb{Z}) = H^2(C_n(S^2);\mathbb{Z}) = \mathbb{Z}/(2n-2)\mathbb{Z}.$

Closed manifolds

Example

The sphere S^2 does not admit isomorphisms in (co-)homology in lower degree, because $H_1(C_n(S^2); \mathbb{Z}) = H^2(C_n(S^2); \mathbb{Z}) = \mathbb{Z}/(2n-2)\mathbb{Z}.$

However, the obvious multivalued map $p: C_{n+1}(M) \rightrightarrows C_n(M)$ induces isomorphism in rational cohomology:

Theorem (Church 2011)

The map p_* : $H_i(C_{n+1}(M); \mathbb{Q}) \to H_i(C_n(M); \mathbb{Q})$ is an isomorphisms for i < n.

Remark

The condition n > i is necessary since $H^2(C_1(S^2); \mathbb{Q}) = \mathbb{Q}$ and $H^2(C_n(S^2); \mathbb{Q}) = 0$ for n > 1.

Remark

The condition n > i is necessary since $H^2(C_1(S^2); \mathbb{Q}) = \mathbb{Q}$ and $H^2(C_n(S^2); \mathbb{Q}) = 0$ for n > 1.

Let $i: N \hookrightarrow M$ be an inclusion of manifolds of the same dimension.

Theorem (Church 2011)

For each $k \leq n$, the map $i_* \colon H_k(C_n(N); \mathbb{Q}) \to H_k(C_n(M); \mathbb{Q})$ has constant rank (independent from n).

The Euler characteristic

Theorem (Felix, Thomas 2000)

Let M be an even-dimensional manifold. Then $\sum_{n=0}^{\infty} \chi(\mathsf{C}_n(M)) u^n = (1+u)^{\chi(M)}$

Moreover, $\chi(F_n(M)) = n!\chi(C_n(M))$.

The Betti numbers

Theorem (Drummond-Cole, Knudsen 2017)

Explicit calculation of the Betti numbers (i.e. $b_i(X) = \dim H^i(X)$) of $C_n(S)$ for all surfaces S using the Chevalley-Eilenberg complex.

The Betti numbers

Theorem (Drummond-Cole, Knudsen 2017)

Explicit calculation of the Betti numbers (i.e. $b_i(X) = \dim H^i(X)$) of $C_n(S)$ for all surfaces S using the Chevalley-Eilenberg complex.

For
$$4 < i < n$$
, the number $b_i(C_n(\Sigma_g))$ is

$$-\binom{2g+i-1}{2g} - \binom{2g+i-4}{2g-1} + \sum_{j=0}^{g-1} \sum_{m=0}^{j} (-1)^{g+j+1} \frac{2j-2m+2}{2j-m+2} \cdot \binom{6j+2i+2g-2m+3-3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m+1+3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3+3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3+3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3+3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3+3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3+3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m,2j-m+1} + \binom{\frac{6j+2i+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m} + \binom{\frac{6j+2j+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m} + \binom{\frac{6j+2j+2g-2m-3-3(-1)^{i+j+g+m}}{4}}{m} + \binom{\frac{6j+2j+2g-2m-3-3(-1)^{i+j+g+m}}{m}}{m} + \binom{\frac{6j+2j+2g-2m-3-3(-1)^{i+j+g+m}}{m}}{m} + \binom{\frac{6j+2j+2g-2m-3-3(-1)^{i+j+g+m}}{m}}{m} + \binom{\frac{6j+2j+2g-2m-3-3(-1)^{i+j+g+m}}{m}}{m} + \binom{\frac{6j+2j+2g-2m-3}{m}}{m}}{m} + \binom{\frac{6j+2g-2m-3}{m}}{m} +$$

DGCAs

Definition

A DGCA is a differential graded-commutative algebra (E, d), i.e. $E = \bigoplus_{n \in \mathbb{N}} E^n$ and $xy = (-1)^{|xy|}yx$ with a differential d: $E \to E$ that satisfies the Leibniz rule $d(xy) = d(x)y + (-1)^{|x|}x d(y)$.

DGCAs

Definition

A DGCA is a differential graded-commutative algebra (E, d), i.e. $E = \bigoplus_{n \in \mathbb{N}} E^n$ and $xy = (-1)^{|xy|}yx$ with a differential d: $E \to E$ that satisfies the Leibniz rule $d(xy) = d(x)y + (-1)^{|x|}x d(y)$.

Example

Let V a finite dimensional vector space. The map d: $\Lambda^{\bullet} V \otimes S^{\bullet} V \rightarrow \Lambda^{\bullet} V \otimes S^{\bullet} V$ defined by $d(v \otimes 1) = 0$ and $d(1 \otimes v) = v \otimes 1$ defines a DGCA.

Moreover, $H^i(\Lambda^{\bullet} V \otimes S^{\bullet} V, d) = 0$ for i > 0.

Theorem (Kriz 1994)

Let *M* be a smooth projective variety. There exists a DGCA (E(M), d) such that $H^{\bullet}(E(M), d) \simeq H^{\bullet}(F_n(M); \mathbb{Q})$.

Theorem (Kriz 1994)

Let *M* be a smooth projective variety. There exists a DGCA (E(M), d) such that $H^{\bullet}(E(M), d) \simeq H^{\bullet}(F_n(M); \mathbb{Q})$.

Let E be the external algebra on generators

- x_i for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\deg x, 0)$,
- $\omega_{i,j}$ for i < j with degree $(0, \dim M 1)$,

Theorem (Kriz 1994)

Let *M* be a smooth projective variety. There exists a DGCA (E(M), d) such that $H^{\bullet}(E(M), d) \simeq H^{\bullet}(F_n(M); \mathbb{Q})$.

Let E be the external algebra on generators

- x_i for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\deg x, 0)$,
- $\omega_{i,j}$ for i < j with degree $(0, \dim M 1)$,

and relations

•
$$(x_i - x_j)\omega_{i,j} = 0$$
,

• $\omega_{i,j}\omega_{j,k} - \omega_{i,j}\omega_{i,k} + \omega_{j,k}\omega_{i,k} = 0.$

Theorem (Kriz 1994)

Let *M* be a smooth projective variety. There exists a DGCA (E(M), d) such that $H^{\bullet}(E(M), d) \simeq H^{\bullet}(F_n(M); \mathbb{Q})$.

Let E be the external algebra on generators

- x_i for x in a basis of $H^{\bullet}(M)$ and $i \leq n$ with degree $(\deg x, 0)$,
- $\omega_{i,j}$ for i < j with degree $(0, \dim M 1)$,

and relations

•
$$(x_i - x_j)\omega_{i,j} = 0$$
,

• $\omega_{i,j}\omega_{j,k} - \omega_{i,j}\omega_{i,k} + \omega_{j,k}\omega_{i,k} = 0.$

The differential of degree (d, 1 - d) is given by

- $d(x_i) = 0$,
- $\mathsf{d}(\omega_{i,j}) = [\Delta]_{i,j}$.

Group actions

The mapping class group Γ_g of Σ_g acts on $C_n(\Sigma_g)$. The action is not symplectic, but the induced action on $\operatorname{gr}^W_{\bullet} H^{\bullet}(C_n(\Sigma_g))$ is symplectic, hence it factors through $Sp(2g; \mathbb{Z})$.

$$\Gamma_g \twoheadrightarrow Sp(2g;\mathbb{Z}) \curvearrowright H^1(\Sigma_g;\mathbb{Z}) \simeq \mathbb{Z}^{2g}$$

The action on $H^0(\Sigma_g; \mathbb{Z})$ and $H^2(\Sigma_g; \mathbb{Z})$ is trivial.

Group actions

The mapping class group Γ_g of Σ_g acts on $C_n(\Sigma_g)$. The action is not symplectic, but the induced action on $\operatorname{gr}^W_{\bullet} H^{\bullet}(C_n(\Sigma_g))$ is symplectic, hence it factors through $Sp(2g; \mathbb{Z})$.

$${\sf \Gamma}_g woheadrightarrow {\it Sp}(2g;{\mathbb Z}) \curvearrowright {\it H}^1({\sf \Sigma}_g;{\mathbb Z}) \simeq {\mathbb Z}^{2g}$$

The action on $H^0(\Sigma_g; \mathbb{Z})$ and $H^2(\Sigma_g; \mathbb{Z})$ is trivial.

Explicitly: $(\sigma \times M) \cdot x_i = (M(x))_{\sigma(i)}$ and $(\sigma \times M) \cdot \omega_{i,j} = \omega_{\sigma(i),\sigma(j)}$.

We extend the action to the rationals $Sp(2g; \mathbb{Q}) \curvearrowright H^1(\Sigma_g; \mathbb{Q})$ in order to use the representation theory of Lie algebras.

The action of the symmetric group

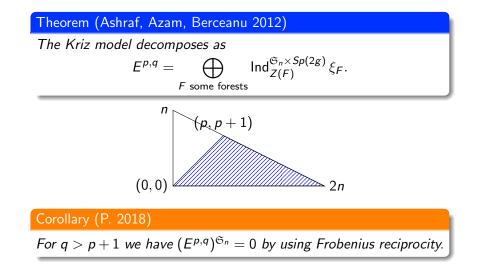
Theorem (Ashraf, Azam, Berceanu 2012)

The Kriz model decomposes as $F^{p,q} = \bigoplus$

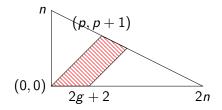
$$\mathsf{E}^{p,q} = \bigoplus_{\mathsf{Ind}_{Z(F)}^{\mathfrak{S}_n \times Sp(2g)} \xi_F} \mathsf{Ind}_{Z(F)}^{\mathfrak{S}_n \times Sp(2g)} \xi_F$$

F some forests

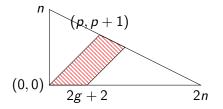
The action of the symmetric group



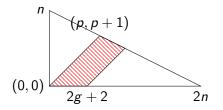
There exists an homotopy between E and E' such that the support of E' is the following:



There exists an homotopy between E and E' such that the support of E' is the following:



Moreover, there exists a model (A_g, d) and submodules F_nA such that $H(F_nA_g, d) = H(C_n(\Sigma_g))$ and $A_g = (\mathbb{Q} \oplus \mathbb{Q}a \oplus \mathbb{Q}b \oplus \mathbb{Q}ab) \otimes \Lambda^{\bullet} V \otimes S^{\bullet} V$ where $V = V_{\omega_1} = H^1(\Sigma_g) \simeq \mathbb{Q}^{2g}$ as Sp(2g)-representation. There exists an homotopy between E and E' such that the support of E' is the following:



Moreover, there exists a model (A_g, d) and submodules F_nA such that $H(F_nA_g, d) = H(C_n(\Sigma_g))$ and $A_g = (\mathbb{Q} \oplus \mathbb{Q}a \oplus \mathbb{Q}b \oplus \mathbb{Q}ab) \otimes \Lambda^{\bullet} V \otimes S^{\bullet} V$ where $V = V_{\omega_1} = H^1(\Sigma_g) \simeq \mathbb{Q}^{2g}$ as Sp(2g)-representation. **Problem:** $d(a) = b + \eta$ with $\eta \in V_0 \subseteq \Lambda^2 V$.

Representation theory of Sp(2g)

From the Lie theory the irreducible representations of Sp(2g) are parametrized by dominant weights, i.e. are isomorphic to V_{λ} for some vector $\lambda = a_1\omega_1 + a_2\omega_2 + \cdots + a_g\omega_g$, $a_i \in \mathbb{N}$.

Representation theory of Sp(2g)

From the Lie theory the irreducible representations of Sp(2g) are parametrized by dominant weights, i.e. are isomorphic to V_{λ} for some vector $\lambda = a_1\omega_1 + a_2\omega_2 + \cdots + a_g\omega_g$, $a_i \in \mathbb{N}$. Let $\rho = g\omega_1 + (g-1)\omega_2 + \cdots + 2\omega_{g-1} + \omega_g$ be the sum of positive roots.

Theorem (Weyl dimension formula)

dim
$$V_{\lambda} = \prod_{\alpha \in \Delta^+} rac{(\lambda +
ho, \alpha)}{(\lambda, \alpha)}$$

Representation theory of Sp(2g)

From the Lie theory the irreducible representations of Sp(2g) are parametrized by dominant weights, i.e. are isomorphic to V_{λ} for some vector $\lambda = a_1\omega_1 + a_2\omega_2 + \cdots + a_g\omega_g$, $a_i \in \mathbb{N}$. Let $\rho = g\omega_1 + (g-1)\omega_2 + \cdots + 2\omega_{g-1} + \omega_g$ be the sum of positive roots.

Theorem (Weyl dimension formula)

dim
$$V_{\lambda} = \prod_{\alpha \in \Delta^+} rac{(\lambda +
ho, \alpha)}{(\lambda, \alpha)}$$

Example

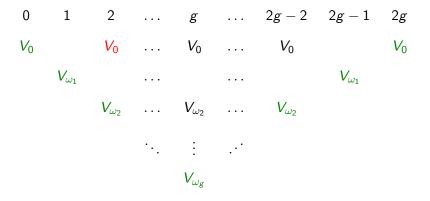
$$\dim V_{i\omega_1+\omega_j} = \binom{2g+i+1}{i,j} \frac{2g+2-2j}{2g+2+i-j} \frac{j}{i+j}$$

The algebra $\Lambda^{\bullet} V$

Problem: $d(a) = b + \eta$ with $\eta \in V_0 \subseteq \Lambda^2 V$.

The algebra $\Lambda^{\bullet} V$

Problem: $d(a) = b + \eta$ with $\eta \in V_0 \subseteq \Lambda^2 V$. The module $\Lambda^{\bullet} V$ as Sp(2g)-representation splits as:



The multiplication by η moves "two on the right".

Roberto Pagaria

The CDGA ($\Lambda^{\bullet} V \otimes S^{\bullet} V$, d)

We need to compute ker d: in degree (j, i) it is isomorphic to $W_{i\omega_1+\omega_j}$ as representation of SL(2g).

Theorem (Branching rule)

For
$$j \leq g$$
,
 $W_{i\omega_1+\omega_j} = \bigoplus_{0 \leq 2k < j} V_{i\omega_1+\omega_{j-2k}} \oplus \bigoplus_{0 \leq 2k < j-1} V_{(i-1)\omega_1+\omega_{j-2k-1}}$,
and $W_{i\omega_1+\omega_j} = W_{i\omega_1+\omega_{2g-j}}$ as representation of $Sp(2g)$.

Mixed Hodge Theory

Let X be an algebraic variety, possibly non-projective and singular.

Theorem (Deligne 1974)

There exists a increasing filtration W_k of $H^i(X; \mathbb{Q})$ such that $\operatorname{gr}_k H^i(X; \mathbb{Q}) := W_k/W_{k-1}$

admits a Hodge Structure of weight k.

This Mixed Hodge Structure is functorial and it is preserved by all canonical maps.

Mixed Hodge Theory

Let X be an algebraic variety, possibly non-projective and singular.

Theorem (Deligne 1974)

There exists a increasing filtration W_k of $H^i(X; \mathbb{Q})$ such that $\operatorname{gr}_k H^i(X; \mathbb{Q}) := W_k/W_{k-1}$

admits a Hodge Structure of weight k.

This Mixed Hodge Structure is functorial and it is preserved by all canonical maps.

Example

The cohomology of the model (A, d) in position (p, q) contributes to $\operatorname{gr}_{p+2q} H^{p+q}(C(\Sigma_g))$.

The representation ring

The representation ring of a group G is R(G), the \mathbb{Z} -module generated by all finite-dimensional representations V and relations $[V] + [W] = [V \oplus W].$

The multiplication given is by:

 $[V] \cdot [W] = [V \otimes W].$

The representation ring

The representation ring of a group G is R(G), the \mathbb{Z} -module generated by all finite-dimensional representations V and relations $[V] + [W] = [V \oplus W].$

The multiplication given is by:

$$[V] \cdot [W] = [V \otimes W].$$

Example

dim: $R(G) \rightarrow \mathbb{Z}$ is a morphism of ring.

Let

$$P_g(t,s,u) = \sum_{i,n,k} [\operatorname{gr}_{i+2k}^W H^{i+k}(\mathsf{C}_n(\Sigma_g))] t^i s^k u^n$$

in the representation ring R(Sp(2g))[[t, s, u]].

Let

$$P_g(t,s,u) = \sum_{i,n,k} [\operatorname{gr}_{i+2k}^W H^{i+k}(\mathsf{C}_n(\Sigma_g))] t^i s^k u^n$$

in the representation ring R(Sp(2g))[[t, s, u]].

Theorem (P. 2019) The series P_g is $\frac{1}{1-u} \Big((1+t^2 s u^3)(1+t^2 u) + (1+t^2 s u^2) t^{2g} s u^{2(g+1)} + (1+t^2 s u^2) \cdot (1+t^2 s u^3) \sum_{\substack{1 \le j \le g \\ i \ge 0}} [\mathbb{V}_{i\omega_1+\omega_j}] t^{j+i} s^i u^{j+2i} (1+t^{2(g-j)} s u^{2(g-j+1)}) \Big).$

Thanks for listening!

roberto.pagaria@gmail.com