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Maps between configuration spaces

Let X be a topological space. Define:

Fn(X ) := {(p1, . . . , pn) ∈ X n | pi 6= pj}
Cn(X ) := {E ⊂ X | |E | = n} ' Fn(X )/Sn

Example

Fn(S1) = S1 ×Sn−1 × Rn−1 and C2(S1) is the Möbius strip.

Example

Fn(R2) is the complement of the hyperplane arrangement of type
An−1.
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Example

Fn(R2) is the complement of the hyperplane arrangement of type
An−1.

Roberto Pagaria Configuration spaces on surfaces Friday, May 24 1 / 19



Maps between configuration spaces

Let X be a topological space. Define:

Fn(X ) := {(p1, . . . , pn) ∈ X n | pi 6= pj}
Cn(X ) := {E ⊂ X | |E | = n} ' Fn(X )/Sn

Example

Fn(S1) = S1 ×Sn−1 × Rn−1 and C2(S1) is the Möbius strip.

Example

Fn(R2) is the complement of the hyperplane arrangement of type
An−1.

Roberto Pagaria Configuration spaces on surfaces Friday, May 24 1 / 19



Maps between configuration spaces

Delete a point

Theorem (Fadell, Neuwirth 1962)

If M is a manifold without boundary, then p : Fn(M)→ Fn−1(M)
is a fibration with fibre M \ {n − 1 points}.

Recall the long exact sequence of homotopy groups:

· · · → πn(F )→ πn(E )→ πn(B)→ πn−1(F )→ . . .

Corollary (Fadell, Neuwirth 1962)

If S is a surface different from S2 and P2(R), then Fn(S) and
Cn(S) are K (π, 1).

Let M be a topological manifolds with boundary ∂M. The natural
inclusion Fn(M \ ∂M)→ Fn(M) is a homotopy equivalence.
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Maps between configuration spaces

Add a point

Theorem (Fadell, Neuwirth 1962)

If M is a non-compact manifold without boundary then the
fibration p : Fn(M)→ Fn−1(M) has a section.
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Maps between configuration spaces

Theorem (Ellenberg, Wiltshire-Gordon 2015)

If M is a manifold that admits a non-zero vector field then
dimH i (Fn(M);Q) is polynomial in n.

Moreover, for any k > 0 there exists a replication map
r : Cn(M)→ Ckn(M) that induces isomorphism in lower degree in
rational cohomology.
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Maps between configuration spaces

Closed manifolds

Example

The sphere S2 does not admit isomorphisms in (co-)homology in
lower degree, because
H1(Cn(S2);Z) = H2(Cn(S2);Z) = Z/(2n − 2)Z.

However, the obvious multivalued map p : Cn+1(M) ⇒ Cn(M)
induces isomorphism in rational cohomology:

Theorem (Church 2011)

The map p∗ : Hi (Cn+1(M);Q)→ Hi (Cn(M);Q) is an
isomorphisms for i < n.
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Maps between configuration spaces

Remark

The condition n > i is necessary since H2(C1(S2);Q) = Q and
H2(Cn(S2);Q) = 0 for n > 1.

Let i : N ↪→ M be an inclusion of manifolds of the same dimension.

Theorem (Church 2011)

For each k ≤ n, the map i∗ : Hk(Cn(N);Q)→ Hk(Cn(M);Q) has
constant rank (independent from n).
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Maps between configuration spaces

The Euler characteristic

Theorem (Felix, Thomas 2000)

Let M be an even-dimensional manifold. Then
∞∑
n=0

χ(Cn(M))un = (1 + u)χ(M)

Moreover, χ(Fn(M)) = n!χ(Cn(M)).
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Maps between configuration spaces

The Betti numbers

Theorem (Drummond-Cole, Knudsen 2017)

Explicit calculation of the Betti numbers (i.e. bi (X ) = dimH i (X ))
of Cn(S) for all surfaces S using the Chevalley-Eilenberg complex.

For 4 < i < n, the number bi (Cn(Σg )) is

−
(

2g + i − 1

2g

)
−
(

2g + i − 4

2g − 1

)
+

g−1∑
j=0

j∑
m=0

(−1)g+j+1 2j − 2m + 2

2j −m + 2
·

[(6j+2i+2g−2m+3−3(−1)i+j+g+m

4

m, 2j −m + 1

)
+

(6j+2i+2g−2m+1+3(−1)i+j+g+m

4

m, 2j −m + 1

)
+

(6j+2i+2g−2m−3+3(−1)i+j+g+m

4

m, 2j −m + 1

)
+

(6j+2i+2g−2m−5−3(−1)i+j+g+m

4

m, 2j −m + 1

)]
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The Kriz model

DGCAs

Definition

A DGCA is a differential graded-commutative algebra (E , d), i.e.
E = ⊕n∈NE

n and xy = (−1)|xy |yx with a differential d : E → E
that satisfies the Leibniz rule d(xy) = d(x)y + (−1)|x |x d(y).

Example

Let V a finite dimensional vector space. The map
d: Λ• V ⊗ S• V → Λ• V ⊗ S• V defined by d(v ⊗ 1) = 0 and
d(1⊗ v) = v ⊗ 1 defines a DGCA.

Moreover, H i (Λ• V ⊗ S• V , d) = 0 for i > 0.
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The Kriz model

The Kriz model

Theorem (Kriz 1994)

Let M be a smooth projective variety. There exists a DGCA
(E (M), d) such that H•(E (M), d) ' H•(Fn(M);Q).

Let E be the external algebra on generators

xi for x in a basis of H•(M) and i ≤ n with degree (deg x , 0),

ωi ,j for i < j with degree (0, dimM − 1),

and relations

(xi − xj)ωi ,j = 0,

ωi ,jωj ,k − ωi ,jωi ,k + ωj ,kωi ,k = 0.

The differential of degree (d , 1− d) is given by

d(xi ) = 0,

d(ωi ,j) = [∆]i ,j .
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Representation theory

Group actions

The mapping class group Γg of Σg acts on Cn(Σg ).
The action is not symplectic, but the induced action on
grW• H•(Cn(Σg )) is symplectic, hence it factors through Sp(2g ;Z).

Γg � Sp(2g ;Z) y H1(Σg ;Z) ' Z2g

The action on H0(Σg ;Z) and H2(Σg ;Z) is trivial.

Explicitly: (σ×M) · xi = (M(x))σ(i) and (σ×M) ·ωi ,j = ωσ(i),σ(j).

We extend the action to the rationals Sp(2g ;Q) y H1(Σg ;Q) in
order to use the representation theory of Lie algebras.
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Representation theory

The action of the symmetric group

Theorem (Ashraf, Azam, Berceanu 2012)

The Kriz model decomposes as

Ep,q =
⊕

F some forests

Ind
Sn×Sp(2g)
Z(F ) ξF .

n

2n(0, 0)

(p, p + 1)

Corollary (P. 2018)

For q > p + 1 we have (Ep,q)Sn = 0 by using Frobenius reciprocity.
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Representation theory

There exists an homotopy between E and E ′ such that the support
of E ′ is the following:

n

2n
(0, 0)

(p, p + 1)

2g + 2

Moreover, there exists a model (Ag , d) and submodules FnA such
that H(FnAg , d) = H(Cn(Σg )) and

Ag = (Q⊕Qa⊕Qb ⊕Qab)⊗ Λ• V ⊗ S• V

where V = Vω1 = H1(Σg ) ' Q2g as Sp(2g)-representation.

Problem: d(a) = b + η with η ∈ V0 ⊆ Λ2 V .
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Representation theory

Representation theory of Sp(2g)

From the Lie theory the irreducible representations of Sp(2g) are
parametrized by dominant weights, i.e. are isomorphic to Vλ for
some vector λ = a1ω1 + a2ω2 + · · ·+ agωg , ai ∈ N.

Let ρ = gω1 + (g − 1)ω2 + · · ·+ 2ωg−1 + ωg be the sum of
positive roots.

Theorem (Weyl dimension formula)

dimVλ =
∏
α∈∆+

(λ+ ρ, α)

(λ, α)

Example

dimViω1+ωj
=

(
2g + i + 1

i , j

)
2g + 2− 2j

2g + 2 + i − j

j

i + j
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Representation theory

The algebra Λ• V

Problem: d(a) = b + η with η ∈ V0 ⊆ Λ2 V .

The module Λ• V as Sp(2g)-representation splits as:

0 1 2 . . . g . . . 2g − 2 2g − 1 2g

V0 V0 . . . V0 . . . V0 V0

Vω1 . . . . . . Vω1

Vω2 . . . Vω2 . . . Vω2

. . .
... . .

.

Vωg

The multiplication by η moves “two on the right”.
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Representation theory

The CDGA (Λ• V ⊗ S• V , d)

We need to compute ker d: in degree (j , i) it is isomorphic to
Wiω1+ωj

as representation of SL(2g).

Theorem (Branching rule)

For j ≤ g,

Wiω1+ωj
=

⊕
0≤2k<j

Viω1+ωj−2k
⊕

⊕
0≤2k<j−1

V(i−1)ω1+ωj−2k−1
,

and Wiω1+ωj
= Wiω1+ω2g−j

as representation of Sp(2g).
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Representation theory

Mixed Hodge Theory

Let X be an algebraic variety, possibly non-projective and singular.

Theorem (Deligne 1974)

There exists a increasing filtration Wk of H i (X ;Q) such that

grk H
i (X ;Q) := Wk/Wk−1

admits a Hodge Structure of weight k.

This Mixed Hodge Structure is functorial and it is preserved by all
canonical maps.

Example

The cohomology of the model (A, d) in position (p, q) contributes
to grp+2q H

p+q(C(Σg )).
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Representation theory

The representation ring

The representation ring of a group G is R(G ), the Z-module
generated by all finite-dimensional representations V and relations

[V ] + [W ] = [V ⊕W ].

The multiplication given is by:

[V ] · [W ] = [V ⊗W ].

Example

dim: R(G )→ Z is a morphism of ring.
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Betti numbers

Let
Pg (t, s, u) =

∑
i ,n,k

[grWi+2k H
i+k(Cn(Σg ))]t i skun

in the representation ring R(Sp(2g))[[t, s, u]].

Theorem (P. 2019)

The series Pg is

1

1− u

(
(1+t2su3)(1+t2u)+(1+t2su2)t2g su2(g+1) +(1+t2su2)·

· (1 + t2su3)
∑

1≤j≤g
i≥0

[Viω1+ωj
]t j+i s iuj+2i (1 + t2(g−j)su2(g−j+1))

)
.
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Thanks for listening!

roberto.pagaria@gmail.com
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